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Abstract. The goal of this paper is twofold. Firstly, we provide a type-uniform formula
for the torus complexity of the usual torus action on a Richardson variety, by devel-
oping the notion of algebraic dimensions of Bruhat intervals, strengthening a type A
result by Donten-Bury, Escobar and Portakal. In the process, we give an explicit de-
scription of the torus action on any Deodhar component as well as describe the root
subgroups that comprise the component. Secondly, when a Levi subgroup in a reduc-
tive algebraic group acts on a Schubert variety, we exhibit a codimension preserving
bijection between the Levi–Borel subgroup (a Borel subgroup in the Levi subgroup) or-
bits in the big open cell of that Schubert variety and torus orbits in the big open cell of
a distinguished Schubert subvariety. This bijection has many applications including a
type-uniform formula for the Levi–Borel complexity of the usual Levi–Borel subgroup
action on a Schubert variety.
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1 Introduction

1.1 Group orbits in the full flag variety

Let G be a complex, connected, reductive algebraic group of rank r. Fix a maximal torus
T in G, and a Borel subgroup B of G containing T. The homogeneous space G/B is a
smooth projective variety known as the full flag variety. The study of the flag variety first
arose out of the need to formalize and justify the enumerative geometry of H. Schubert
as laid out in Hilbert’s 15th problem. These varieties are a central theme in much of the
mathematics of the 20th century and beyond, with deep and fundamental connections
to algebraic geometry, Lie theory, representation theory, algebraic combinatorics, and
commutative algebra.
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Of particular importance has been the study of orbits and orbit closures in the flag
variety. Famously, the B-orbits for the action of B by left translation yield a cellular
filtration of G/B; these orbits, denoted X◦

w, are referred to as Schubert cells and are
indexed by elements w of the Weyl group W of G. In his seminal work [7], C. Chevalley
introduced the now ubiquitous Bruhat order to describe the inclusion order of B-orbit
closures in G/B. These orbit closures, or as they are more commonly known, Schubert
varieties Xw for w ∈ W, are well-studied varieties that boast a rich combinatorial structure
that encodes many facets of their geometry.

A stratification of G/B via the orbits of the opposite Borel subgroup B− also exists;
the closure of these orbits are the opposite Schubert varieties Xw for w ∈ W. The Richardson
variety Ru,v for u, v ∈ W is defined to be the intersection Ru,v := Xv ∩ Xu.

1.2 Torus orbits in Schubert and Richardson Varieties

It is also instructive to study group orbits and their closures within Schubert and
Richardson varieties. Of particular interest in this setting is the statistic on the set of
orbits of a reductive algebraic group H known as the H-complexity.

If an algebraic group H acts on a variety X by a morphism of algebraic varieties,
we say that X is an H-variety. We denote the set of H-orbits in X by OH(X). Let H
be a reductive algebraic group and BH a Borel subgroup of H. The H-complexity of an
H-variety X, denoted cH(X), is the minimum codimension of a BH-orbit in X.

The normal H-varieties with H-complexity equal to 0 are the H-spherical varieties.
Spherical varieties generalize several important classes of algebraic varieties including
toric varieties, projective rational homogeneous spaces and symmetric varieties.

Unless otherwise stated, in this paper the action of any subgroup of G on any sub-
variety of G/B will always be left translation. We will refer to this as the usual action.
For any w ∈ W, both Xw and Xw are T-varieties for the usual action. We denote the
Bruhat order on W by ≤, writing u ≤ v if and only if Xu ⊆ Xv. For u ≤ v ∈ W,
Ru,v is nonempty and is a normal T-variety for the usual action. The maximal torus T
is a reductive algebraic group whose only Borel subgroup is T itself. Hence, a normal
T-variety with T-complexity equal to 0 is a T-spherical variety (that is, a toric variety).

P. Karuppuchamy provided a succinct, root-system uniform classification of the toric
Schubert varieties [15]. E. Tsukerman and L. Williams introduced Bruhat interval poly-
topes to study the geometry of Richardson varieties and noted connections to torus or-
bits [21]. This connection was expanded on by E. Lee, M. Masuda, and S. Park, yielding
a classification of toric Richardson varieties in G/B where G is of Dynkin-type A [16],
with further results by C. Gaetz [10] . A classification of toric Richardson varieties in any
full flag variety was provided by M. Can and P. Saha in [6].

Our first main result continues this line of research, giving a root-system uniform
combinatorial formula for the T-complexity of a Richardson variety in any full flag vari-
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ety. We do so by defining and developing the notion of algebraic dimensions for arbitrary
Bruhat intervals [u, v] in Section 3, where we provide multiple formulas for ad(u, v).

Theorem 1.1. For u ≤ v ∈ W, the T-complexity of the Richardson variety equals
cT(Ru,v) = ℓ(v)− ℓ(u)− ad(u, v).

Moreover, we have that
ad(u, v) = max

u≤w≤v
ℓ(v)− ℓ(w) where Rw,v is toric.

One highlight of Theorem 1.1 is that our method works uniformly across all Lie
types, and our key lemmas work uniformly across geometric realizations for any Coxeter
groups, while the theory of Bruhat interval polytopes is well-developed in type A, but
not as developed in other types. Moreover, Theorem 1.1 can be seen as a generalization
of the main result of [9] to other Lie types (with different arguments). Along the way,
in Theorem 3.14, we are also able to explicitly describe the torus action on any Deodhar
component by enumerating the root subgroups that comprise the component.

In the case of u = id, Theorem 1.1 simplifies to a simple, type-uniform combinatorial
formula for the torus complexity of a Schubert variety.

Corollary 1.2. For w ∈ W, the T-complexity of the Schubert variety Xw equals
cT(Xw) = ℓ(w)− supp(w),

where supp(w) is the cardinality of the support of w (see Section 2).

1.3 Levi–Borel subgroup orbits in Schubert Varieties

We now investigate the orbits of Levi–Borel subgroups (defined below) in a Schubert
variety. Our choice of T and B determine the root system Φ and a set of simple roots
∆ = {α1, . . . , αr}, respectively. The Weyl group W of G, is generated by the set of simple
reflections {si := sαi |αi ∈∆}. For I⊆∆, WI is the subgroup of W generated by {sαi |i∈ I}.

The standard parabolic subgroups of G containing B are indexed by subsets of ∆. The
standard parabolic subgroup associated to I is PI = BWI B with Levi decomposition

PI = LI ⋉UI ,

where LI is a reductive subgroup called a Levi subgroup, and UI is the unipotent radical
of PI . Define BLI := LI ∩ B. Then BLI is a Borel subgroup of LI , and we shall refer to
such subgroups as Levi–Borel subgroups. Our second main result concerns the orbits of
Levi–Borel subgroups in a Schubert cell.

Theorem 1.3. Let w ∈ W, I ⊆ ∆, and let w = Iw Iw be the left parabolic decomposition of w
with respect to I (see Section 2). The map O : OT(X◦

Iw)→OBLI
(X◦

w) given by Θ 7→ BLI
Iwx,

where x is any point in Θ, is a surjection. If LI acts on Xw, then O is a codimension preserving
bijection. That is,

dim(X◦
w)− dim(O(Θ)) = dim(X◦

Iw)− dim(Θ),
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for every Θ ∈ OT(X◦
Iw).

Theorem 1.3 allows us to intertwine the study of Levi–Borel orbits with the vast
literature on torus orbits and varieties, including our own Corollary 1.2, and has myriad
applications which we now detail. Our first application is Proposition 4.9 which provides
a lower bound on the codimension of a BLI -orbit in Xw. In the case where the Levi
subgroup LI acts on the Schubert variety Xw this leads to a closed formula for the
minimal codimension of a BLI -orbit in Xw.

While BLI acts on any Xw, since BLI ⊆ B, the same is not true for LI . The stabilizer of
Xw in G for the usual action is the standard parabolic subgroup PDL(w) [2, Lemma 8.2.3],
where DL(w) is the left descent set of w defined in Section 2. Thus, the Levi subgroups
LI ≤ PI ≤ PDL(w) for I ⊆ DL(w) are a family of reductive algebraic groups which act
on Xw. Our third main result is a root-system uniform, combinatorial formula for the
LI-complexity of any Schubert variety which is an LI-variety in any full flag variety.

Theorem 1.4. Let w ∈ W and suppose LI acts on the Schubert variety Xw (equivalently, I ⊆
DL(w)). If w = Iw Iw is the left parabolic decomposition of w with respect to I, then

cLI (Xw) = ℓ(Iw)− supp(Iw).

Theorem 1.4 is a refinement and generalization of numerous earlier results. The
second author and A. Yong initiated a study of LI-complexity 0 Schubert varieties in
[13], and therein conjectured a classification in terms of spherical elements of a Coxeter
group. Subsequently, both authors of this paper and A. Yong proved this conjecture first
for G of Dynkin-type A [11], and later for any full flag variety [12] (the latter was proved
contemporaneously via different methods by M. Can and P. Saha [5]). Using work of
R. S. Avdeev and A. V. Petukhov [1], the classification of LI-complexity 0 Schubert va-
rieties may be interpreted as a generalization of results of P. Magyar, J. Weyman, and
A. Zelevinsky [17] and J. Stembridge [19, 20] on spherical actions on (products of) flag
varieties. The interested reader may see [13, Theorem 2.4] for the details.

The outline of this paper is as follows. In Section 2, we introduce the necessary
background, including Schubert geometry and Coxeter groups. In Section 3, we fully
develop the notion of algebraic dimensions and establish Theorem 1.1. In Section 4, we
prove Theorem 1.3 and Theorem 1.4 with one of our main tools being an equivariant
isomorphism that allows us to use results in Section 3.

2 Preliminaries

2.1 Combinatorics of the Weyl group

Consider the following data associated to elements of the Weyl group W. For w ∈ W,
its Coxeter length is the smallest ℓ such that w can be written as product of ℓ simple
reflections. Such an expression is called a reduced word or a reduced expression of w.
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For u, v ∈ W, the product uv is said to be length additive if ℓ(uv) = ℓ(u) + ℓ(v). Let
W I be the set of minimal coset representatives in W of W/WI . In the same way, let IW be
the set of minimal coset representatives in W of WI\W. Given w ∈ W and I ⊆ ∆, w has a
unique right parabolic decomposition w = wIwI which is length-additive with wI ∈ WI and
wI ∈ W I . Similarly, w has a left parabolic decomposition w = Iw Iw which is length-additive
with Iw ∈ WI and Iw ∈ IW. We will denote the longest element of WI by w0(I), and the
longest element of W by w0

The support of w is
Supp(w) = {αi ∈ ∆ | si appears in any/all reduced words of w}.

The cardinality of Supp(w) is written as supp(w) = | Supp(w)|. For w ∈ W, its left
descent set and the right descent set are

DL(w) = {αi ∈ ∆ | ℓ(siw) < ℓ(w)}, DR(w) = {αi ∈ ∆ | ℓ(wsi) < ℓ(w)},

respectively. And its left inversion set and the right inversion set are
IL(w) = {α ∈ Φ+ | w−1(α) ∈ Φ−}, IR(w) = {α ∈ Φ+ | w(α) ∈ Φ−},

respectively, with |IL(w)| = |IR(w)| = ℓ(w). There are equivalent ways to write down
the inversion sets. For example,

IL(w) = Φ+ ∩ w(Φ−) = {α ∈ Φ+ | ℓ(sαw) < ℓ(w)}.

Given a length additive product uv, [4, Chapter VI, Section 1, Corollary 2 of Proposition
17] proves that IL(uv) = IL(u) ⊔ u(IL(v)). (2.1)
The (strong) Bruhat order is a partial order on W that is generated by

w < wsα for α ∈ Φ+, if ℓ(w) < ℓ(wsα).

Write [u, v] := {w ∈ W | u ≤ w ≤ v} for a Bruhat interval. A saturated chain from u to v
is a sequence of elements u = w(0) ⋖ w(1) ⋖ · · ·⋖ w(ℓ−1) ⋖ w(ℓ) = v, where w(i) ∈ W and
⋖ denotes a covering relation in the poset.

2.2 Root subgroups

For α ∈ Φ, let Uα be the root subgroup corresponding to α. Given w ∈ W, define
Uw := U ∩ wU−w−1, where U and U− are the unipotent parts of B and B− := w0Bw0,
respectively. A sequence of subgroups H1, . . . , Hk in an algebraic group H is said to
directly span H if the product morphism H1 × · · · × Hk → H is a bijection. The subgroup
Uw of U is closed and normalized by T. Hence [3, Section 14.4] implies that Uw is directly
spanned (in any order) by the root subgroups contained in it. Thus

Uw := U ∩wU−w−1 =

(
∏

α∈Φ+

Uα

)⋂(
w ∏

α∈Φ−
Uαw−1

)
=

(
∏

α∈Φ+

Uα

)⋂(
∏

α∈Φ−
Uw(α)

)
,
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where the second equality is [3, Section 14.4] applied to U and U−, and the last equality
is [14, Part II, 1.4(5)]. Thus Uα is contained in Uw if and only if α ∈ I(w). Hence

Uw = ∏
α∈I(w)

Uα. (2.2)

Let w = ad be the left parabolic decomposition of w with respect to I, where a ∈ WI
and d ∈ IW. Define Vd := aUda−1.

Lemma 2.1. The group Vd is a closed subgroup of Uw normalized by T. Indeed, Uw is directly
spanned in any order by the subgroups Ua and Vd, that is, Uw = UaVd = VdUa.

3 The torus complexity of Richardson varieties

In this section, we establish a formula for the complexity of the usual torus T action on
any Richardson variety Ru,v where u ≤ v in the Bruhat order.

Definition 3.1. The (undirected) Bruhat graph on a Weyl group W is the graph Γ with
vertex set W and edges w ∼ sαw for α ∈ Φ+. For each edge w ∼ sαw, we say that it has
label or weight α, and write wt(w, sαw) = α. For u ≤ v, let Γ(u, v) be the Bruhat graph
restricted to the vertex set [u, v].

Definition 3.2. For u ≤ v, let AD(u, v) be the R-span of all edge labels in Γ(u, v), i.e.
AD(u, v) = spanR{wt(x, y) | u ≤ x < y ≤ v}.

Let ad(u, v) = dim AD(u, v) be the algebraic dimension of the Bruhat interval [u, v].

3.1 The algebraic dimension of Bruhat intervals

We now describe multiple ways to simplify the computation of AD(u, v).

Lemma 3.3. AD(u, v) is spanned by the labels of all cover relations incident to u inside [u, v],
and dually, by all cover relations incident to v inside [u, v].

Proposition 3.4. Let αi be a right descent of v. We have the following recursion:

AD(u, v) =

{
AD(usi, vsi) if usi < u,
AD(u, vsi) + R · wt(u, usi) if usi > u.

Example 3.5. Denote the symmetric group of degree 4 by S4. Let u, v ∈ S4 with u = 3412,
v = 1324 in one-line notation and let i = 2. According to the first case of Proposition 3.4,
AD(1324, 3412) = AD(1234, 3142). In particular, the rank sizes of [1324, 3412] are 1, 4, 4, 1
while the rank sizes of [1234, 3142] are 1, 3, 3, 1. The covers from the maximum in these
two intervals are highlighted. The weights from 3412 are e1 − e3, e2 − e3, e1 − e4 and
e2 − e4 while the weights from 3142 are e1 − e3, e2 − e3 and e2 − e4 (from left to right).
The same linear space is spanned by these two sets of weights.
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Proposition 3.6. AD(u, v) has the following properties.

1. For any u ≤ w ⋖ v, AD(u, v) = AD(u, w) + R · wt(w, v).

2. For any saturated chain u = w(0) ⋖ w(1) ⋖ · · ·⋖ w(ℓ−1) ⋖ w(ℓ) = v,
AD(u, v) = spanR{wt(w(i), w(i+1)) | i = 0, . . . , ℓ− 1}.

3. For any w ∈ [u, v], AD(u, v) is spanned by the labels of all cover relations incident to w
inside [u, v].

Definition 3.7. A Bruhat interval [u, v] is toric if ad(u, v) = ℓ(v)− ℓ(u).

In light of Proposition 3.6(2), we always have ad(u, v) ≤ ℓ(v)− ℓ(u).
In fact, knowing which intervals are toric provides us with full control over ad(u, v).

Proposition 3.8. ad(u, v) = maxw∈[u,v] ℓ(w)− ℓ(u) where [u, w] is toric.

The dual statement of Proposition 3.8:
ad(u, v) = max

w∈[u,v]
ℓ(v)− ℓ(w) where [w, v] is toric,

follows from the exact same argument. It is also clear from Proposition 3.8 that the
following more symmetric-looking statement holds:

ad(u, v) = max
u≤x≤y≤v

ℓ(y)− ℓ(x) where [x, y] is toric.

3.2 The torus complexity via Deodhar decompositions

We investigate the torus action on Richardson varieties in detail. Our main technical tool
is the Deodhar decomposition. We will follow the notation of [18].

Definition 3.9 ([18, Section 3]). For an expression w = qi1 · · · qiℓ where each qik ∈ S∪{1},
define w(k) = qi1 · · · qik for k = 1, . . . , ℓ. Set w(0) = 1. Define the following sets:

J+w :={k ∈ {1, . . . , ℓ} | w(k−1) < w(k)},

J◦w :={k ∈ {1, . . . , ℓ} | w(k−1) = w(k)},

J−w :={k ∈ {1, . . . , ℓ} | w(k−1) > w(k)}.

For a reduced expression v = si1 · · · siℓ , a subexpression is obtained from v by replacing
some of the factors with 1. A subexpression u of v is called distinguished if u(j) ≤ u(j−1)sij

for all j = 1, . . . , ℓ. In other words, if multiplication by sij (on the right) decreases the
length of u(j−1), then we must have u(j) = u(j−1)sij in a distinguished subexpression.

For every simple root αi ∈ ∆, there is a corresponding homomorphism φi : SL2 → G.
Define the following elements

xαi(m) = φi

(
1 m
0 1

)
, yαi(m) = φi

(
1 0
m 1

)
, ṡi = φi

(
0 −1
1 0

)
.
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For the majority of this work, we abuse notation and refer to the coset representative
of w ∈ W = NG(T)/T in NG(T) by w. In their work, Marsch and Rietsch fix specific
coset representatives. To stay in line with their notation and constructions, in this self-
contained section, we follow their notational conventions. For si ∈ W, we fix ṡi as
our coset representative of si ∈ W in NG(T). For any w ∈ W with w = si1 · · · siℓ , let
ẇ := ṡi1 · · · ṡiℓ be our coset representative of w in NG(T).

As introduced in Section 2.2, for each α ∈ Φ there is an associated root subgroup
Uα in G. The simple root subgroup Uαi for αi ∈ ∆ is the image of xαi in G, namely
{xαi(m) | m ∈ C}. For α ∈ Φ, there exists w ∈ W and αi ∈ ∆ such that α = w(αi). Then
Uα = ẇUαi ẇ

−1; it is the image of xα(m) := ẇxαi(m)ẇ−1 in G. In a similar way, define
yα(m) := ẇyαi(m)ẇ−1. Then yα(m) = x−α(m). It will be important later, that for any
t ∈ T and m ∈ C, txα(m) = xα(α(t)m)t. (3.1)

Definition 3.10 ([18, Definition 5.1]). For a reduced word v = si1 · · · siℓ and a distin-
guished subword u, define the following set

Gu,v =

g = g1g2 · · · gℓ

∣∣∣∣∣∣∣
gk = xαik

(mk)ṡ−1
ik

if k ∈ J−u ,
gk = yαik

(pk) if k ∈ J◦u,
gk = ṡik if k ∈ J+u ,

for pk ∈ C∗, mk ∈ C

 .

We have Gu,v ≃ (C∗)J◦u × CJ−u . Now, the Deodhar component is Du,v := Gu,vB/B ⊂ G/B.
We have the isomorphism Gu,v ≃ Du,v via g 7→ gB/B ([18, Proposition 5.2 ]).

A distinguished subword u is called positive if u(j−1) ≤ u(j) for all j, i.e. J−u = ∅.
Given a fixed reduced word v of v and an element u ≤ v, there is a unique positive dis-
tinguished subword u+ of u, whose Deodhar component Du+,v has the same dimension
as Ru,v by [18, Lemma 3.5].

Theorem 3.11 ([8, Theorem 1.1]). Assume u ≤ w and fix a reduced word v of v. The Richard-
son cell R◦

u,v := X◦
v ∩ Xu

◦ has a decomposition R◦
u,v =

⊔
u Du,v into a disjoint union over all

distinguished subwords u of v that evaluate to u.

Definition 3.12. Fix a reduced word v of v and a distinguished subword u. For each
k ∈ J◦u, define βk = wt(u(k−1), u(k−1)sik); for each k ∈ J−u , define βk = wt(u(k), u(k−1)) (cf.
Definition 3.1). Note that in both cases, sβk = u(k−1)sik u−1

(k−1) so βk = ±u(k−1)(αik). To be
precise, when k ∈ J◦u, u(k−1) < u(k−1)sik and when k ∈ J−u , u(k−1) > u(k−1)sik , so we have
that βk = u(k−1)(αik) when k ∈ J◦u and βk = −u(k−1)(αik) when k ∈ J−u . Also define

Uk =

{
U∗
−βk

if k ∈ J◦u
U−βk if k ∈ J−u

.

Define TD(u, v) = spanR{βk | k ∈ J◦u ∪ J−u } and td(u, v) = dim TD(u, v).
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For any x ∈ Du,v, there is a unique g ∈ Gu,v such that the coset gB equals x. In this
case, call g the standard form of x. For a g ∈ Gu,v and k ∈ J◦u ∪ J−u , let

g(k) =

{
pk if k ∈ J◦u
mk if k ∈ J−u

.

We say that x is a general point in Du,v if g(k) is nonzero for all k ∈ J−u .

Lemma 3.13. Fix u ≤ v and a reduced word v = si1 · · · siℓ of v. Let u = u1 · · · uℓ be a
distinguished subword of v for u. Let J◦u ∪ J−u = {j1 < j2 < · · · < jz} and g ∈ Gu,v. Then

g =
z

∏
k=1

x−β jk
(g(jk))u̇, Du,v =

z

∏
k=1

Ujk u̇B.

Theorem 3.14. Fix u ≤ v and fix a reduced word v of v. Let u be a distinguished subword of
v for u. For a general point x ∈ Du,v the span of the weights of the torus action on the orbit Tx
equals TD(u, v). And if x ∈ Du,v is not general, then the torus weights on Tx are contained in
TD(u, v). Moreover, we have

TD(u, v) ⊂ TD(u+, v) = AD(u, v).

Corollary 3.15. For u ≤ v, the Bruhat interval [u, v] is toric if and only if the Richardson
variety Ru,v is toric.

4 The Levi complexity of Schubert varieties

4.1 An equivariant isomorphism

The content in the first portion of this section is similar in broad form to our argument
from [12], but here our results apply to any w ∈ W and I ⊆ ∆.

Let X be a T-variety with action denoted by ·. For each u ∈ W we define a T-action
·u on X by t ·u x = utu−1 · x for all x ∈ X and t ∈ T. The action ·u does not depend on
the coset representative chosen for u and so is well-defined. Henceforth, · will always
denote the usual action of T on G/B by left multiplication.

For a positive integer n let An be the affine n-space. We use the following well-known
fact [3, Sections 14.12, 14.4] repeatedly in what follows. For all v ∈ W,

X◦
v = UvvB ∼= Aℓ(v)(as varieties). (4.1)

From now on, to simplify our notation let the left parabolic decomposition of w with
respect to I ⊆ S be w = ad where a ∈ WI and d ∈ IW. Recall that Vd := aUda−1.

Definition 4.1. The I-heart of the Schubert variety Xw, denoted HeartI(Xw), is the sub-
variety VdwB ⊆ UwwB = X◦

w.

Proposition 4.2. HeartI(Xw) is T-stable for the action · . Additionally, HeartI(Xw) is
T-equivariantly isomorphic to X◦

d equipped with the T-action ·a−1 under the map ϕ :
HeartI(Xw) → X◦

d given by hB 7→ a−1hB.
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Define BLI := LI ∩ B and ULI to be the unipotent radical of BLI . Then BLI = T ⋉ ULI

is a Borel subgroup of LI , and ULI = BLI ∩ U = ∏α∈Φ+(I) Uα [3, Section 14].
Set Uā = ∏α∈ϕ+(I)\I(a) Uα. If ϕ+(I) \ I(a) = ∅, then we define Uā to be the trivial

subgroup of G. Then Uā is a closed subgroup of U normalized by T and
BLI = T ⋉ULI = T ⋉ ∏

α∈ϕ+(I)
Uα = T ⋉ (UāUa).

Lemma 4.3. The following are equivalent. (1) Uā is the trivial subgroup of G. (2) ϕ+(I) \
IL(a) = ∅, where ϕ+(I) is the set of positive roots corresponding to the Levi subgroup LI (3) LI
acts on Xw. (4) I ⊆ DL(w). (5) a = w0(I).

Lemma 4.4. HeartI(Xw) is Uā-stable for the usual action.

Lemma 4.5. Let x ∈ X◦
w \ HeartI(Xw) and h1, h2 ∈ HeartI(Xw).

1. u2h1 /∈ HeartI(Xw) for all u2 ∈ Ua with u2 ̸= e.

2. tu1x /∈ HeartI(Xw) for all t ∈ T and u1 ∈ Uā.

3. Let b = tu1u2 ∈ BLI with t ∈ T, u1 ∈ Uā, and u2 ∈ Ua. If bh1 = h2, then u2 = e and
tu1h1 = h2.

Lemma 4.6. Let x ∈ X◦
w. Then (BLI · x) ∩ HeartI(Xw) ̸= ∅.

We now define our surjection from T-orbits in HeartI(Xw) to BLI -orbits in X◦
w, which

is a codimension preserving bijection in the case where LI acts on the Schubert variety .

Theorem 4.7. The map β : OT(HeartI(Xw)) → OBLI
(X◦

w) given by Θ 7→ BLI x where x is any
point in Θ is a surjection. If LI acts on Xw, then β is a codimension preserving bijection. That
is, dim(X◦

w)− dim(β(Θ)) = dim(HeartI(Xw))− dim(Θ),
for every Θ ∈ OT(HeartI(Xw)).

We are now able to prove Theorem 1.3.

Corollary 4.8. If LI acts on Xw, the minimal codimension of a BLI -orbit in X◦
w equals the torus

complexity of X◦
d for the usual torus action. That is, cLI (X◦

w) = cT(X◦
d).

4.2 Orbits in the Schubert Variety

In this section let w ∈ W and I ⊆ ∆. For any u ∈ W, let u = Iu Iu be the left parabolic
decomposition of u with respect to I. Our goal is to extend Corollary 4.8 to a formula
for the Levi complexity of a Schubert variety. To do this, we will need to lower bound
the codimension of a BLI -orbit in X◦

u for u ≤ w. The difficulty in this case is that LI may
not act on Xu, though of course BLI acts, and so Uā will not be the trivial subgroup of G.
For a subvariety X of a variety Y, write codimY(X) for the codimension of X in Y.
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Proposition 4.9. Let u ≤ w ∈ W. Let Ξ ∈ OBLI
(X◦

u). Let h ∈ Ξ∩HeartI(Xu) and Θ = T · h.
Then

codimX◦
u(Ξ) ≥ ℓ(u)− supp(Iu)− ℓ(w0(I))

and
codimXw(Ξ) ≥ ℓ(w)− supp(Iu)− ℓ(w0(I)).

We can now prove Theorem 1.4.

Proof of Theorem 1.4. The equivalence of LI acting on Xw and I ⊆ DL(w) is Lemma 4.3.
The Bruhat decomposition tells us that the Schubert variety Xw is the disjoint union

of the Schubert cells for u ≤ w, Xw =
⊔

u≤w X◦
u, and hence

OBLI
(Xw) =

⊔
u≤w

OBLI
(X◦

u).

Thus
cBLI

(Xw) = min
u≤w

Ξ∈OBLI
(X◦

u)

codimXw(Ξ)

≥ min
u≤w

(
ℓ(w)− supp(Iu)− ℓ(w0(I))

)
= ℓ(w)− ℓ(w0(I)) + min

u≤w

(
− supp(Iu)

)
= ℓ(Iw)− max

u≤w

(
supp(Iu)

)
= ℓ(Iw)− supp(Iw),

where the inequality is Proposition 4.9, the third equality follows from Lemma 4.3, and
the final equality follows from the fact that u ≤ w implies Iu ≤ Iw.

Corollary 4.8 and Corollary 1.2 imply that this lower bound on cBLI
(Xw) is in fact

achieved. We conclude that cBLI
(Xw) = ℓ(Iw) + supp(Iw).
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