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Deformations of restricted reflection arrangements
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Abstract. We construct free, non-constant multiplicities and free Shi-like deformations
for all restrictions of Weyl arrangements AW . Both are given in terms of root-theoretic
data of W and our proofs are case-free. In type-A we give a bijective proof of resulting
product formulas for the number of regions of the deformations, while at the same time
proving a wide generalization of Joyal’s bijection between labeled trees and functions.
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1 Introduction

A deformation of a real, central hyperplane arrangement A in some space V is an affine
arrangement in V each of whose hyperplanes is parallel to some hyperplane of A. If
we have fixed a linear form αH ∈ V∗ for each hyperplane H ∈ A, any deformation
can be encoded by a selection of offsets m(H) ⊂ R which we record as a function
m : A → P(R). We write Am for the deformation:

Am :=
{

αH(x) ∈ m(H) | H ∈ A
}

. (1.1)

Deformations of arrangements Am give rise to Ziegler’s multiarrangements (A, m):
abstract structures of arrangements with multiplicities m : A → Z≥0 that are usually
studied in terms of their modules of logarithmic derivations Der(A, m) (polynomial vec-
tor fields tangent to each hyperplane of A with order of tangency given by m). In more
detail, the restriction of the cone of Am on the special hyperplane defines the multi-
arrangement (A, m) with multiplicities given by the cardinalities of the sets of offsets
m(H) = |m(H)|.

A multiarrangement (A, m) is called free when the module Der(A, m) is free over the
polynomial algebra C[V]. In this case, we call m a free multiciplicity of A, and we call
the (positive, integer) degrees of the generators of Der(A, m) the exponents of (A, m).
We call the arrangement A free if m = 1 is a free multiplicity of A, in which case the
exponents of (A, 1) are the roots of the characteristic polynomial of A. All chordal,
supersolvable, and reflection arrangements are free, but it is very difficult, for any given
A, to classify its free multiplicities m or even to construct families of free multiplicities.
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Given a free multiplicity m for A, it is even more difficult to determine whether there
exist any deformations Am, with m(H) = |m(H)| for all H ∈ A, that are themselves (i.e.
their cones) free.

The family of reflection arrangements AW for a Weyl group W is the most promi-
nent case where we have infinite collections of free multiplicities that all have associated
free deformations. All constant multiplicities are free with exponents given by Coxeter-
theoretic data while the Fuss–Shi and Fuss–Catalan arrangements are compatible de-
formations (for the even- and odd- constant multiplicities respectively). In particular,
the Shi arrangement Shi(W), given below with its characteristic polynomial, is a free
deformation corresponding to the constant m = 2 multiplicity:

Shi(W) :=
{
⟨ρ, x⟩ ∈ {0, 1} | ρ ∈ Φ+

W
}

has χ
(

Shi(W); t
)
= (t − h)n, (1.2)

where h and n are the Coxeter number and rank of W and Φ+
W its set of positive roots.

Most of the known examples of free multiplicities are constant or almost constant
while examples of associated deformations are always subarrangements of affine Weyl
arrangements. Only in the case of the braid arrangement Br(n), Abe–Nuida–Numata [1]
have constructed an n-parameter family of free multiplicities (ANN) with Nakashima–
Tsujie [6] later constructing compatible deformations. In all these cases the offset func-
tions m(H) always determine equally-spaced-apart affine hyperplanes.

In this work, we construct free multiplicities for all restricted reflection arrangements
AX

W of Weyl groups W, for any flat X ∈ LAW , and give associated free deformations. The
resulting objects simultaneously generalize the Shi arrangements Shi(W) to the restricted
case and the ANN multiplicities to all Weyl types. The multiplicity functions are non-
constant, they are given in terms of relative Coxeter numbers of W, and the associated
deformations are not equally-spaced but described in root-theoretic terms.
Main theorems. When discussing restrictions AX

W of the arrangement AW associated to
a Weyl group W, it is convenient to use the coordinate system of fundamental coweights.
Indeed, if (α1, . . . , αn) are the simple roots of W so that AW ⊂ V := Vect(α1, . . . , αn), then
the fundamental coweights (ω1, . . . , ωn) are their dual basis (i.e. ⟨αi, ωj⟩ = δi,j) and we
write the arbitrary element v ∈ V as v = v1ω1 + . . . + vnωn.

For every subset J ⊆ [n], we may define the standard flat XJ

XJ :=
⋂
j∈J

{
v ∈ V : ⟨αj, v⟩ = 0

}
=

⊕
j∈Jc

R · ωj, (1.3)

having basis {ωj | j ∈ Jc} and coordinates vJc := (vj)j∈Jc (where Jc := [n] \ J). For every
root ρ = ∑ aiαi ∈ Φ+

W we define the restriction ρJc associated to the standard flat XJ as
ρJc := ∑j∈Jc ajαj (note that ρJc does not necessarily belong to XJ). The restricted reflection

arrangement AXJ
W := {H ∩ XJ | H ∈ AW , H ̸⊃ XJ} becomes

AXJ
W =

{
⟨ρJc , vJc⟩ = 0 | ρ ∈ Φ+

W , ρJc ̸= 0
}

.
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We use the auxilliary vector ωJ := ∑j∈J ωj to define the Shi-deformation of AXJ
W as:

Shi(AXJ
W ) :=

{
⟨ρJc , vJc⟩ = ϵ − ⟨ρ, ωJ⟩ | ϵ ∈ {0, 1}, ρ ∈ Φ+

W , ρJc ̸= 0
}

. (1.4)

Notice that many roots ρ ∈ Φ+
W will determine the same hyperplanes in (1.4); those will

only be counted once.

Figure 1: Relative Coxeter numbers in D5

Before we present the main Theorem, we
need to introduce another notation. We write
WX for the pointwise stabilizer of the flat X
in W; it is itself a reflection group, generated
by the reflections that fix X, but it may be re-
ducible. For any pair of flats Z ⊆ X in LAW

with dim(Z) = dim(X)− 1, the relative Coxeter
number h(X, Z) is defined as the Coxeter num-
ber of the unique irreducible component of WZ
that does not belong to WX.

The type of a flat X is the Coxeter type of
WX. In Figure 1 we see AX

D5
(given in coweight

coordinates) for any flat X of type A1 × A1 ×
A1 in the reflection arrangement of W = D5
and the numbers h(X, Zi) for all Zi ∈ AX.

Theorem 1.1. Let W be an irreducible Weyl group with rank n and Coxeter number h and
J ⊆ [n]. Then, the Shi-deformation of AXJ

W is free with characteristic polynomial

χ
(

Shi(AXJ
W ), t) = (t − h)dim(XJ).

Every hyperplane Z ∈ AXJ
W appears in Shi(AXJ

W ) with multiplicity mJ(Z) := h(XJ , Z). The

multiarrangement (AXJ
W , mJ) is also free with exponents (h, h, . . . , h).

Example 1.1. We consider in W = A4, with simple roots (αi)
4
i=1 = ei,i+1, the set J = {1, 3}

as in Figure 2. The flat AXJ
W has basis (ω2, ω4), coordinates vJc = (v2, v4), and we have

ωJ = ω1 + ω3. We group the roots with respect to their restriction on XJ :
• The four roots e23, e13, e24, e14 all restrict to the root e23 on XJ while the quantities

⟨ρ, ωJ⟩ equal 0, 1, 1, 2 respectively. We have that ⟨e23, vJc⟩ = v2, so that in total, they
contribute the hyperplanes v2 ∈ {1, 0,−1,−2}.

• The two roots e15, e25 restrict to the root e23 + e45 on XJ and the quantities ⟨ρ, ωJ⟩
equal 2, 1 respectively. They contribute the hyperplanes v2 + v4 ∈ {0,−1,−2}.

• The two roots e35, e45 restrict to the root e45 on XJ and the quantities ⟨ρ, ωJ⟩ equal
1, 0 respectively. They contribute the hyperplanes v4 ∈ {1, 0,−1}.
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Figure 2: Left and center: The root system for A4 with J = {1, 3}, and the resulting
Shi-deformation Shi(AXJ

A4
). Right: the Shi-deformation associated to the flat X of AD5

described in Figure 1.

In the center of Figure 2 we see the Shi deformation Shi(AXJ
W ); it has characteristic poly-

nomial (t − 5)2.

Remark 1.2. In type-A, as suggested by Example 1.1 the resulting deformations have
simpler combinatorial descriptions. The subset J ⊆ [n] naturally determines a partition
m ⊢ (n + 1): we set mi = ai − ai−1 where {a0, . . . , ad} = {0} ∪ Jc (in Example 1.1,
m = (2, 2, 1)). If d = n + 1 − |J|, it is easy to see that the Shi deformation of AXJ

W is
affinely isomorphic to the deformation of the braid arrangement Br(d) which is given by
the hyperplanes xi − xj ∈ {−mi + 1, . . . , mj} (see more in Section 3).

In this case, the relative Coxeter multiplicities will then equal mi + mj for each hyper-
plane xi − xj = 0 which recovers the essential family of ANN multiplicities [1].

Remark 1.3. Every flat X ∈ LAW is conjugate to some standard flat XI , so indeed The-
orem 1.1 holds (with a generalization of the definition of Shi-deformation) for all re-
strictions of Weyl arrangements. Notice also that the restrictions AX

W are usually not
isomorphic to Weyl arrangements (outside of types A and B). The existence of defor-
mations as in Theorem 1.1 was surprising: there are no root lattices associated to such
AX

W .

In Section 2 we give a sketch for the proof of Theorem 1.1. The approach is induc-
tive utilizing generalizations of the deletion-restriction formulas to multiarrangements.
After Zaslavsky’s theorem, the product formula for the characteristic polynomial in The-
orem 1.1 implies that the Shi deformations Shi(AXJ

W ) have (h + 1)dim(XJ)-many regions.
In Section 3 we give in type-A a bijective proof of this result, in fact of a wide general-
ization, by labeling the regions of the deformation with certain labeled trees which we
enumerate via a generalization of Joyal’s bijection.
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2 Freeness and characteristic polynomial of Shi(AXJ
W )

In this section, we will sketch the proof of Theorem 1.1. We will start with the charac-
teristic polynomial of Shi(AXJ

W ) and the case of 2-dimensional flats XJ will also form the
base case for the inductive proof of freeness.

Let I ⊆ Φ+
W be a root ideal; that is, a set such that if α ∈ I and β ∈ Φ+ with α− β ∈ Φ+,

then β ∈ I also. Abe–Terao [2] defined the ideal-Shi arrangements as

Shi(W, I) :=
{

⟨ρ, x⟩ = 0, for ρ ∈ I
⟨ρ, x⟩ ∈ {0, 1}, for ρ ∈ Φ+ \ I

}
, (2.1)

and showed that they are free and described their exponents. Every root ρ ∈ Φ+ has
a height given as ⟨ρ, ω[n]⟩ (recall the definition ω[n] = ω1 + · · ·ωn from the previous
section) which varies between 1 and h − 1. In this way, a root ideal I determines a height
partition λ ⊢ |I| (where λi counts how many roots have height i), and Abe–Terao showed
that the exponents of Shi(W, I) are precisely the numbers h− es

I where (es
I)

n
s=1 is the dual

partition to λ (possibly padded with 0’s). In particular, they showed that

χ
(

Shi(W, I), t
)
=

n

∏
s=1

(t − h + es
I). (2.2)

Proof of Theorem 1.1 regarding the characteristic polynomial. Consider the following parallel
translate of the standard flat XJ , J ⊆ [n], defined in (1.3):

X1
J :=

⋂
j∈J

{
x ∈ V : ⟨αj, x⟩ = 1

}
= ωJ +

⊕
j∈Jc

R · ωj.

Note that X1
J is a flat of the Shi arrangement Shi(W). Moreover, it is not too hard to

show that the Shi-deformation of AXJ
W is precisely the restriction Shi(W)X1

J . Now we can
compute its characteristic polynomial inductively using the deletion-restriction formula.
Indeed, if J = {j1 < . . . < jd} and Jr = {j1, . . . , jr} then each set of (simple) roots
Ir := {αj1 , . . . , αjr} is an order ideal in Φ+ and has dual height partition (1r).

After the Abe–Terao result (2.2), the Ideal-Shi arrangements Shi(W, Ir) have charac-
teristic polynomials equal to (t − h + 1)r · (t − h)n−r and an inductive application of the
deletion-restriction formula shows that Shi(W)X1

Jr − ⋃
j∈J\Jr Hαj has characteristic poly-

nomial (t − h + 1)d−r · (t − h)n−d. In particular,

χ
(

Shi(W)X1
J , t

)
= (t − h)n−d.

Corollary 2.1. The multiplicities of the hyperplanes Z ∈ AXJ
W are given by the relative Coxeter

numbers h(XJ , Z).
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Proof. This is in fact a corollary of a localized version of Theorem 1.1. The arrangement
AXJ

WZ
is a 1-dimensional restriction of a Weyl arrangement and according to the theorem

χ
(

Shi(AXJ
WZ

, t)
)
=

(
t − h(XJ , Z)

)
; i.e. Shi(AXJ

WZ
) has h(XJ , Z)-many hyperplanes, which

in turn implies that Shi(AXJ
W ) has h(XJ , Z)-many hyperplanes parallel to Z.

Sketch for Theorem 1.1. The proof for freeness has the same idea as the construction de-
scribed above but is more technical. Abe–Terao–Wakefield [3] have developed a version
of the deletion-restriction formula for multiarrangements. We still start with known
freeness results from [2] about Ideal-Shi arrangements and compute the Euler multiplic-
ity of [3] every time we restrict on a smaller dimensional flat. The recursive definition
of the Euler multiplicity is equivalent to the recursive definition of the relative Coxeter
numbers.

A base case for the induction is covered by dimension-2 flats in which case knowledge
of the characteristic polynomial is almost sufficient to determine the free exponents. Af-
ter we prove freeness of the multiarrangements, we deduce freeness of the deformations
by applying Yoshinaga’s method [7].

3 A bijection in type A

For a positive integer n, we define [n] := {1, 2, . . . , n} (for n ≤ 0, we define [n] = ∅). For
any integers m ≤ n we define [m : n] := {k ∈ Z | m ≤ k ≤ n}.

We consider real hyperplane arrangements made of a finite number of affine hyper-
planes of the form

{(x1, . . . , xd) ∈ Rd | xi − xj = s}, (3.1)

with i, j ∈ {1, . . . , d} and s ∈ Z. From now on, we make an abuse of notation and denote
by {xi − xj = s} the hyperplane in (3.1).

Given a d-tuple of integers m = (m1, . . . , md) ∈ Nd, we define the m-Shi arrangement
as

Am :=
⋂

1≤i<j≤d
s∈[−mi :mj+1]

{xi − xj = s}.

Our goal is to describe a bijection explaining the product formula for the number of
regions in the m-Shi arrangement (see Theorem 1.1 and Remark 1.2).

Our method actually applies to a larger family of arrangements, which includes both
the m-Shi arrangements and the m-Catalan arrangements. For a positive integer d we
denote

R+
d := {(i, j) ∈ [d]2 | i < j}.
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Given a set I ⊆ R+
d we define the arrangement

AI
m :=

⋂
1≤i<j≤d

s∈[−mi :mj+ai,j]

{xi − xj = s},

where ai,j = 1 if (i, j) ∈ I, and ai,j = 0 otherwise. We say that the set I ⊆ R+
d is

down-closed if for any pair (i, j) ∈ I and any integer i′ ∈ [i], the pair (i′, j) is also in I.
We will show that the regions of AI

m are in bijection with a set of (rooted plane
labeled) trees, via the general bijective framework of [4], and that, in turn, this set of
trees is in bijection with a set of (plane directed) graphs which are easy to enumerate
whenever the set I is down-closed.

3.1 Bijection with plane labeled graphs

We need to recall some vocabulary and results from [4].

Definition 3.1. A braid-type arrangement A ⊂ Rd is called transitive if for all distinct indices
i, j, k ∈ [d] and integers s, t ≥ 0 one has:

if {xi − xj = s} /∈ A with s > 0 or i > j, and {xj − xk = t} /∈ A with t > 0 or j > k,
then {xi − xk = s + t} /∈ A.

It is easy to see that AI
m is transitive for any set I ⊆ R+

d . Indeed, if {xi − xj = s} /∈ AI
m

and {xj − xk = t} /∈ AI
m with s, t ≥ 0, then s ≥ mj + 1 and t ≥ mk + 1; hence s + t >

mk + 1 and {xi − xk = s + t} /∈ AI
m.

For any transitive arrangement, a bijection is described in [4] between the regions of
A and a set of trees. Recall that a rooted k-ary tree is a rooted plane tree such that every
node has exactly k children, which are ordered.

Definition 3.2. Let m, d ∈ N. We define T d
m as the set of rooted (m + 1)-ary trees with d nodes

labeled with distinct labels in [d] (the leaves have no labels).
For a tree T ∈ T d

m we identify the nodes with their labels in [d] (so that the node set of T in
[d]). By definition, a node j ∈ [d] of T has exactly m + 1 (ordered) children, which are denoted
by 0-child(j), 1-child(j), . . . , m-child(j) respectively.

The node i ∈ [d] is the s-cadet of the node j ∈ [d] if i = s-child(j) and t-child(j) is a leaf for
all s < t ≤ m. In this case, we write i = s-cadet(j).

Definition 3.3. Let m, d ∈ N, and let

Ad
m :=

⋃
1≤i<j≤d
s∈[−m:m]

{xi − xj = s} ⊆ Rd.
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For any sub-arrangement A ⊆ Ad
m we define

T d
m(A) := {T ∈ T d

m | if i, j ∈ [d] and s ∈ {0, 1, . . . , m} are such that {xi − xj = s} /∈ A
then i ̸= s-cadet(j) unless s = 0 and i > j}.

Theorem 3.4 ([4, Theorem 8.8]). If an arrangement A ⊆ Ad
m is transitive, then the regions of

A are in bijection with the trees in T d
m(A).

We want to apply Theorem 3.4 to the arrangement AI
m. Let us describe more explic-

itly the set of trees associated to the regions of AI
m.

Definition 3.5. Given a tuple m = (m1, . . . , md) ∈ Nd, and a set I ⊆ R+
d , we set m =

1 + max(mi | i ∈ [d]) and define T I
m as the set of trees in T d

m such that for every node j ∈ [d],
• s-child(j) is a leaf for all s > mj + 1,
• (mj+1)-child(j) is either a leaf or a node i such that (i, j) is in I.

It is easy to see that the set of trees T I
m defined above coincides with the set of

trees T d
m(AI

m) given by Definition 3.3. Therefore, applying Theorem 3.4 to the transitive
arrangement AI

m gives the following result.

Proposition 3.6. Let d be a positive integer, let m = (m1, . . . , md) ∈ Nd, and let m = 1 +
max(mi | i ∈ [n]). For any set I ⊆ R+

d the regions of the arrangement AI
m are in bijection with

the trees in T I
m.

3.2 Bijection with plane functional graphs, and enumeration

Definition 3.7. A fun-graph1 is a directed graph such that every vertex v has outdegree at most
one, together with a total ordering of the incoming edges at each vertex.

Two fun-graphs are represented in Figure 3.
Note that rooted plane trees, oriented toward the root-vertex, are fun-graphs. We will

therefore (somewhat foolhardily) extend some common vocabulary about rooted plane
trees to fun-graphs:

• If (u, v) is a directed edge of the fun-graph F we say that v is the parent of v and u
is the child of v.

• A vertex v is a leaf if is has indegree 0, and a node otherwise. A vertex v is a root if
it has outdegree 0.

• The children of a node v are ordered according to the total ordering of the incoming
edges at v. If v has m+ 1 children we will denote them by 0-child(v), . . . , m-child(v)
respectively.

1The term fun-graph is short for “functional plane graph”: functional because the edges can be thought
as a function from a subset of the vertices to the set of vertices, and plane because the total ordering of the
incoming edges at each vertex can be used to define a planar embedding of the graph.
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Definition 3.8. Let m, d ∈ N. We define F d
m as the set of all fun-graphs with d nodes labeled

with distinct labels in [d] (the leaves have no labels), such that every node has m + 1 children,
and the only root is the node labeled d.

We will now describe a bijection Ψ between the set F d
m of fun-graphs, and the set

T d
m of trees. This bijection is a variation on a construction due to Joyal for proving the

Cayley formula [5]. Figure 3 illustrates this bijection (for m = 3 and d = 15).

13
9

6

2

5 8 410 15

11127

14

1

3

6 5 8 10 15

11
127

3

4

1314

2

1

9

F

Ψ(F )

Figure 3: Top: A fun-graph F in F 15
3 . Bottom: the tree Ψ(F), which is in T 15

3 .

A fun-graph F has two types of connected components: some connected components
are rooted plane trees (oriented toward their root), and the other components have ex-
actly one directed cycle, to which some rooted plane trees are attached. We call these
types of connected components the tree components and tree-cycle components of F respec-
tively. Note that the number of tree components is equal to the number of roots of
F.

Let F be a fun-graph in F d
m, and let k ≥ 0 be its number of tree-cycle components. For

each tree-cycle component C we call head the node of C with maximal label among the
nodes on the directed cycle of C. Let a1, . . . , ak be the heads of the tree-cycle components
of F with the convention a1 < a2 < · · · < ak. Let also b1, . . . , bk be the parents in F of
a1, . . . , ak respectively. We define Ψ(F) as the fun-graph obtained as follows:

• For all i ∈ [k], cut the edge (ai, bi) in two halves: an outgoing half-edge hi incident
to ai and an incoming half-edge h′i incident to bi.
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• For all i ∈ [k − 1], glue the half edge h′i to the half-edge hi+1 (hence, if ai =
s-child(bi) in F, then ai+1 = s-child(bi) in Ψ(F)).

• If k > 0, then delete the half-edge h1 (so that a1 becomes a root of Ψ(F)), and attach
an outgoing half-edge to node d and glue it to h′k (hence, if ak = s-child(bk) in F,
then d = s-child(bk) in Ψ(F)).

An example is given in Figure 3.
It is easy to see that Ψ(F) is a rooted plane tree (with root a1 if k > 0 and root d if

k = 0). We also claim that Ψ is a bijection between F d
m and T d

m . Before formally stating
this result, we define some parameters which are preserved by Ψ. Given a fun-graph
F with exactly d nodes labeled with distinct labels in [d], we say that a triple (i, j, s) is
a descent triple of F if i = s-child(j) for some nodes i, j ∈ [d] such that i < j and some
s ∈ N. We say that (j, s) is a weak-ascent pair of F if j ∈ [d] and s-child(j) is a node i such
that i ≥ j.

Theorem 3.9. The map Ψ is a bijection between F d
m and T d

m . Moreover, for any fun-graph
F ∈ F d

m, the set of descent triples (resp. weak-ascent pairs) of F is equal to the set of descent
triples (resp. weak-ascent pairs) of Ψ(F).

Proof. It is easy to see that the image, under Ψ, of any fun-graph in F d
m is a tree in

T d
m . In order to see that Ψ is a bijection we describe the inverse map. Given a rooted

tree T ∈ T d
m (oriented toward the rood vertex) we consider the sequence of nodes

i1, . . . , iℓ = d between the root i1 and the node d. We consider the left-to-right maxi-
mum a1, a2, . . . , ak, ak+1 = d in this sequence. For i ∈ [k], let bi be the parent of ai+1 We
define Γ(T) as the fun-graph obtained as follows:

• For all i ∈ [k], cut the edge (ai+1, bi) in two halves: an outgoing half-edge hi+1
incident to ai+1 and an incoming half-edge h′i incident to bi.

• Delete the half-edge hk+1 (so that the node d becomes a root of Γ(T)), attach an
outgoing half-edge h1 to a1, and for all i ∈ [k] glue the half edge h′i to the half-edge
hi.

It is easy to see that Ψ and Γ are inverse mappings (this is essentially the “Foata cor-
respondence” for permutations, which maps the number of cycles to the number of
left-to-right maxima). Thus, the map Ψ is a bijection between F d

m and T d
m .

Lastly, note that for a fun-graph F ∈ F d
m all the edges which are different in F and

Ψ(F) (the edges that are cut by Ψ or Γ) are edges of the form (i, j) where i, j are nodes
with i ≥ j (because, in the above notation, ai ≥ bi and ai+1 > bi). This implies that the
descent triples and weak-ascent pairs are all preserved by Ψ.

Definition 3.10. Given a tuple m=(m1, . . . , md)∈Nd, and a set I ⊆ R+
d , we set m = 1 +

max(mi | i ∈ [n]) and define F I
m as the set of fun-graphs in T d

m such that for every node j ∈ [d],
• s-child(j) is a leaf for all s > mj + 1,
• (mj+1)-child(j) is either a leaf or a node i such that (i, j) is in I.
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Proposition 3.11. Let m = (m1, . . . , md) ∈ Nd, and let I ⊆ R+
d . The trees in T I

m are in
bijection with the fun-graphs in F I

m via the bijection Ψ.

Proof. Let m = 1 + max(mi | i ∈ [n]). It is easy to see that a tree in T d
m is in T I

m if and
only if

(a) it has no weak-ascent pairs of the form (j, s) for s > mj,
(b) it has no descent triple of the form (i, j, s) for s > mj except maybe if s = mj + 1

and (i, j) ∈ I.
Similarly, a fun-graphs in F d

m is in F I
m if and only if it satisfies (a) and (b). Hence

Theorem 3.9 immediately implies that Ψ induces a bijection between F I
m and T I

m.

We can now establish a product formula for the number of regions of the arrangement
AI

m, provided that I is down-closed. Recall that I ⊆ R+
d is called down-closed if for any

pair (i, j) ∈ I and any i′ ∈ [i], the pair (i′, j) is also in I.

Corollary 3.12. Let m = (m1, . . . , md) ∈ Nd, and let I ⊆ R+
d . If I is down-closed, then the

number of regions of AI
m is

d−1

∏
i=1

(n + 1 − d + i + ci),

where n := ∑d
j=1(mj + 1) for all i ∈ [d], ci = #{j ∈ [d] | (i, j) ∈ I}.

Note that the set R+
d is down-closed, hence Corollary applies to the m-Shi arrange-

ment Shim = AR+
d

m and shows that the number of regions of this arrangement is nd−1,
where n = ∑d

j=1(mj + 1). Note also that applying Corollary to the set I = ∅ (which is
down-closed) shows that the m-Catalan arrangement A∅

m =
⋂

1≤i<j≤d
s∈[−mi :mj]

{xi − xj = s} has

n!/(n − d + 1)! regions.

Proof. By Propositions 3.6 and 3.11, the number of regions of AI
m is equal to |F I

m|. By
definition, fun-graphs in F I

m have exactly d − 1 edges between nodes: exactly one edge
out of each node labeled in [d − 1]. Let us count the number of possibilities for choosing
the edge out of node i, starting with the node i = d − 1 and going down.

• For the edge out of the node i = d − 1, there are n + cd−1 possibilities: the term
n accounts for the possibilities where i is s-child(j) with s ∈ {0, . . . , mj} for some
j ∈ [d], and the term cd−1 accounts for the possibilities where v is (mj+1)-child(j)
for some j ∈ [d].

• For the edge out of the node i = d − 2, there are n + cd−2 − 1 possibilities: the term
n accounts for the possibilities where i is s-child(j) with s ∈ {0, . . . , mj} for some
j ∈ [d], the term cd−2 accounts for the possibilities where v is (mj+1)-child(j) for
some j ∈ [d], while the −1 term accounts for the fact that 1 of the above possibilities
has been taken by the node d − 1 (the condition on I implies that any of the choices
available to the node d − 1 is also among the choices available to the node d − 2).
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• For the edge out of the node i = d − 3, there are n + cd−3 − 2 possibilities: the term
n accounts for the possibilities where i is s-child(j) with s ∈ {0, . . . , mj} for some
j ∈ [d], the term cd−2 accounts for the possibilities where v is (mj+1)-child(j) for
some j ∈ [d], while the term −2 accounts for the fact that 2 of the above possibilities
has been taken by the nodes d − 1 and d − 2 (the condition on I implies that any
of the choices available to the nodes d − 1 and d − 2 is also available to the node
d − 3).

• . . .
• For the edge out of the node i = 1, there are n + c1 − (d − 2) possibilities: the

term n accounts for the possibilities where i is s-child(j) with s ∈ {0, . . . , mj} for
some j ∈ [d], the term c1 accounts for the possibilities where v is (mj + 1)-child(j)
for some j ∈ [d], while the term −(d − 2) accounts for the fact that (d − 2) of the
above possibilities has been taken by the nodes d − 1, d − 2, . . . , 2 (the condition on
I implies that any of the choices available to the nodes d − 1, d − 2, . . . , 2 is also
available to the node 1).

Multiplying these number of possibilities together gives the claimed counting formula.

Remark 3.13. Observe that the above self-contained proof implies the formula for the
number of regions in the Shi and Catalan arrangements (without assuming the Cayley or
Catalan formulas). In fact, Theorem 3.9 gives a new easy way to prove various counting
formulas for trees (plane trees, k-ary trees, labeled plane trees according to the degree
distribution etc.).
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