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Abstract. We introduce semi-standard rhombic tableaux as a new combinatorial model
for Schubert polynomials corresponding to cohomology classes of a partial flag vari-
ety. Based on Elnitsky’s rhombic tilings, our model generalizes semi-standard Young
tableaux in the case of Grassmannian. Our construction naturally extends to infinite
flag varieties (Stanley symmetric functions) and to K-theory using set-valued tableaux.
We also discuss a generalization of Bender–Knuth involution.
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1 Introduction

Let G = GLn(C) be the complex general linear group and B ⊂ G the Borel subgroup
consisting of upper triangular matrices. The full flag variety G/B = {V1 ⊂ V2 ⊂ · · · ⊂
Vn = Cn : dim(Vi) = i} has finitely many B-orbits, which are parametrized by elements
of the Weyl group Sn. For w ∈ Sn, the Schubert variety Xw is defined to be the closure
of the B-orbits corresponding to w.

The cohomology ring of the flag variety H∗Z(G/B) has basis given by cohomology
classes of the Schubert varieties [Xw] for w ∈ Sn. Borel presented H∗Z(G/B) as the quo-
tient of the polynomial ring Rn := Z[x1, · · · , xn]/I where I = ⟨e1, · · · , en⟩ is the ideal
generated by elementary symmetric functions. The structure of H∗Z(G/B) was further
revealed by Bernstein–Gelfand–Gelfand [3] and Demazure [5] using divided difference
operators. Based on the divided difference operators, Lascoux and Schützenberger [11]
identified polynomial representatives called Schubert polynomials in the cosets of the quo-
tient ring Rn, which can be defined and studied purely algebraically and combinatorially.

Motivated by Hilbert’s 15th problem, modern Schubert calculus focuses on the mul-
tiplicative structure of H∗Z(G/B), where the major open problems is to combinatorially
characterize the multiplicative structure constant cw

u,v of H∗Z(G/B), where cw
u,v is the num-

ber such that
[Xw] · [Xu] = ∑

v
cw

u,v[Xv].
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Via works of Lascoux and Schützenberger, this problem is equivalent to finding structure
constants for multiplying Schubert polynomials. As means to better understand these
polynomials, many combinatorial models are given, including pipe-dreams [2, 7] and
bumpless pipe-dreams [9], which allow combinatorial analysis of these polynomials.

One might also consider the cohomology ring of partial flag varieties when G/B is
replaced with G/P for a parabolic subgroup P. In the special case of the Grassmannian
(when P is maximal parabolic), the Schubert structure constants are well studied and
well understood, namely the Littlewood–Richardson rule and its many variants [12, 14,
8]. A key to success in this case is that the Grassmannian Schubert polynomials are
actually Schur polynomials, an important class of symmetric polynomials which admits
a combinatorial model using semi-standard Young tableaux (SSYT).

In this paper, we give a tableau-like model for Schubert polynomials corresponding
to any choice of partial flag variety, called semi-standard rhombic tableaux, which gener-
alizes the SSYT model for Schur polynomials. Our model has the flexibility to work
within a particular partial flag variety (including the full flag variety). We also give a
generalization of the Bender–Knuth involution to rhombic tableaux, and defer other gen-
eralizations of tableau-operations to the final version of this paper. We also extend our
model to the K-theory of partial flag varieties, generalizing the semi-standard set-valued
tableaux of Buch [4].

The structure of this paper is as follows. In Section 2 we review backgrounds of Schur
and Schubert polynomials. In Section 3 we define rhombic tableaux and state our main
theorem therein. In Section 4, we describe a generalized Bender–Knuth involution on
rhombic tableaux. To close this manuscript, in Section 5, we define set-valued rhombic
tableaux for the K-theory of flag varieties.

2 Background on Schur and Schubert polynomials

Let ∂i : Z[x1, x2, · · · ]→ Z[x1, x2, · · · ] be the divided difference operators defined by

∂i( f ) =
f − si( f )
xi − xi+1

where si f is the polynomial obtained from f by swapping xi ↔ xi+1. Schubert polyno-
mials are the only family of polynomials ‘compatible’ with these operators, and can be
defined recursively

Sw0 = xn−1
1 xn−2

2 · · · xn−1

∂iSw =

{
Swsi if wsi < w
0 otherwise

where w0 ∈ Sn is the longest word w0 = [n, n− 1, · · · , 2, 1].
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In case of the Grassmannian Grk(C
n) = {V ⊂ Cn : dim(V) = k}, its Schubert cells

are indexed by k-Grassmannian permutations, which are permutations with at most one
descent at position k. Let λ(w) denote the bijection between Grassmannian permutations
and partitions. The Schubert polynomials of a k-Grassmannian permutation are certain
Schur polynomials in the first k variables, i.e. Sw(x1, · · · , xn−1) = sλ(w)(x1, · · · , xk).

Schur functions are generating functions of semi-standard Young tableaux, defined as
follows. A SSYT of shape λ is a filling of the Young diagram of λ with numbers such that
every row is weakly increasing and every column is strictly increasing. Denote SSYT(λ)
the set of all such tableau and SSYT(k)(λ) the set of SSYT’s with maximal entry k. For
T ∈ SSYT(λ), define wt(T) := ∏i xnumber of i in T

i . For example, the following is a SSYT
with wt(T) = x3

1x2
2x2

3.
3 3 2

2 1 1

1

Then the Schur polynomials are defined as follows

sλ(x1, x2, · · · , xk) = ∑
T∈SSYT(k)(λ)

wt(T)

And the Schur symmetric functions are defined as

sλ(x1, x2, · · · ) = ∑
T∈SSYT(λ)

wt(T)

Remark 2.1. We note that the SSYT’s in our paper are actually reverse tableaux. Since
we will use reverse labeling throughout this paper, we will simply drop the adjective
reverse.

3 Rhombic Tableaux

Let P be a parabolic subgroup of B. There exist an indexing set IP = {k1, · · · , kl} ⊂
[n − 1] such that the partial flag variety is given by G/P = G(IP; n) = {V1 ⊂ · · · ⊂
Vl : dim Vi = ki}. The Schubert cells in G/P are indexed by permutations in the corre-
sponding parabolic subgroup WP of Sn, which consists of permutations of given descent
structure WP = {w ∈ Sn : w(i) > w(i + 1) only if i ∈ IP}. For the rest of this section, we
fix some P and abbreviate I = IP = {k1, · · · , kl}.

We first define I-Elnitsky path which are in bijection with elements in WP.

Definition 3.1. Given I = {k1, · · · , kl} ⊂ [n− 1], we define di = ki − ki−1 (setting k0 := 0
and kl+1 := n) and let Ĩ = (d1, · · · , dl+1). An I-Elnitsky path is a sequence of n + 1
points in R2 connected by n steps satisfying the following properties:
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1. Starting at (0, 0).

2. Each step moves in the direction of (i−1)π
l+1 for some i ∈ [l + 1] by one unit.

3. For each i, there are di steps in the direction of (i−1)π
l+1 .

Let DI denote the collection of I-Elnitsky paths. To simplify our notation, we shall denote
αi =

(i−1)π
l+1 , and write an I-Elnitsky path as p = (p1, · · · , pn) if its i-th step is in direction

αpi .

Example 3.2. Let l = 4, the following diagram illustrates the possible moves in an Elnit-
sky path.

0

π
5

2π
5

3π
5

4π
5

π

The following are several examples of I-Elnitsky paths, with Ĩ = (3, 2, 3, 1, 2).

It is important to note that every I-Elnitsky path ends at the same point. We will now
define a bijection between I-Elnitsky path and WP.

Proposition 3.3 ([6]). For p = (p1, · · · , pn) ∈ DI , let Φ(p) = w be the permutation such
that w−1(i) = pi + #{j < i : pj = pi}. Meanwhile, the inverse map is given as follows:
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Φ−1(w) = p is the sequence such that pi = j if k j−1 < w−1(i) ≤ k j. Then Φ is a bijection
between DI and WP.

Example 3.4. Let I = (3, 6; 8), Ĩ = (3, 3, 2) and p = (1, 2, 1, 3, 3, 2, 1, 2) be an I-Elnitsky
path. Then Φ(p)−1 = [1, 4, 2, 7, 8, 5, 3, 6], and Φ(p) = [1, 3, 7, 2, 6, 8, 4, 5] is a permutation
whose descents only occur at positions 3, 6.

To each w ∈WP, we associate a possibly degenerate polygon of 2n sides.

Definition 3.5. For w ∈WP, we define the Elnitsky polygon of w to be the 2n-gon bounded
by Φ(id) and Φ(w), denoted sh(w), also called the its shape of w.

The 2n-gon sh(w) is possibly degenerate but must contain at most one non-empty
bounded region. In the case of Grassmannian (l = 1), the shape of a permutation in WP

is the same as the corresponding Young diagram.

Example 3.6. Continuing Example 2, the following is the Elnitsky polygon of w =
13726845.

Definition 3.7. For w ∈ WP, we define a rhombic tiling of sh(w) to be a tiling using (l+1
2 )

different rhombus tiles, where the sides of a rhombus tile are unit length line segment of
two different slopes in {αi : i ∈ [l + 1]}. Note that we do not allow rotation of rhombi in a
rhombic tiling. We say a rhombus is of type (i, j) if it uses slopes αi, αj with i < j. Further,
every edge in a rhombic tiling is directed in the positive direction (see Example 3.2).

Theorem 3.8 ([6]). For w ∈ WP, there exists a rhombic tiling of sh(w). Further, each rhombic
tiling of sh(w) uses exactly ℓ(w) many tiles.

Definition 3.9. Given a rhombic tiling, each edge is defined to be weak or strict as follows.
Take an edge e in the rhombic tiling, and denote its slope by θe. Now if we orient it
upward according to its direction, then there is a rhombus connected to e from the left,
suppose it uses slopes θe, θL. Similarly there is a rhombus connected to e from the right,
and suppose it uses slopes θe, θR. Then the e is said to be a weak edge if θe < min{θL, θR},
and strick otherwise. See Figure 1 for an illustration.
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Figure 1: Example of a rhombic tiling of an Elnitsky polygon. The weak edges are
colored red, and the rest of the edges are strict.

We are now ready to introduce the main object of this paper.

Definition 3.10. For each pair of connected rhombi in a rhombic tiling, denote the con-
necting edge e. And similar to Definition 3.9, we orient e upward and denote eL the
rhombus to its left and eR the rhombus to its right. A semi-standard rhombic tableaux T
is filling of the rhombi in a rhombic tiling using numbers such that for every edge e,
T(eL) < T(eR) if e is strict and T(eL) ≤ T(eR) if e is weak.

Denote SSRT(w) the set of all semi-standard rhombic tableaux on sh(w). We say a
semi-standard rhombic tableaux has restricted entries if a rhombus of type (i, j) can take
value in [k j], denote the set of such tableaux as SSRTI(w).

1

1

1

1

2

2

3

3
4

4

5

5

Figure 2: A rhombic tableau with weight x4
1x2

2x3x2
4x2

5 for I = (3, 5) and Ĩ = (3, 2, 3)

Similar to the case of Young tableaux, we define the weight of an SSRT to be wt(T) =
∏i xnumber of i in T

i . Then our main result is the following
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Theorem 3.11. Let I = {k1, · · · , kl} and for any w ∈WP. We have that

Sw(x1, · · · , xkl
) = ∑

T∈SSRTI(w)

wt(T)

and
Fw(x1, x2, · · · ) = ∑

T∈SSRT(w)

wt(T)

where Sw is the Schubert polynomial associated to w and Fw is the Stanley symmetric function
of w.

Proof. We will sketch the proof via a bijection with reduced compatible sequences. For a
definition of Schubert polynomials using compatible sequences, see [2]. A semi-standard
rhombic tableaux T ∈ SSRT(kl)(w) can be interpreted as a sequence of Elnitsky polygons
as follows. Let Pi be the sub-polygon of sh(w) formed by including the rhombi in T
numbered by i, · · · , kl. It turns out that each of Pi must also be an Elnitsky polygon
of some permutation, thus we set Pi = sh(wi). Then w = w1 ⊃ w2 ⊃ · · · ⊃ wkl is
corresponding reduced compatible sequence. Proof of the bijectivity will be omitted.

Further, to show that removing the constraint of maximal entry gives Stanley sym-
metric function, one can simply notice that embedding w ∈ Sn into the larger symmetric
group Sn+1 will add a degenerate edge to the Elnitsky polygon while leaving the possible
rhombus tilings unchanged, and allow one more number to put in the tableaux, which
precisely corresponds to the stabilization definition of Stanley symmetric functions.

4 Bender–Knuth Involution

In [1], Bender and Knuth introduced a family of involutive operations on semistandard
Young tableaux, now called Bender–Knuth involutions. They generalize the jeu de taquin
operations on SSYTs, which lead to the important Littlewood–Richardson rule. In this
section we present a generalization of Bender–Knuth involution on rhombic tableaux.
For the classical version of Bender–Knuth involution on SSYTs, we refer the readers to
[13].

We will define an action τi on SSRT(w) which possibly changes the rhombi labeled
by i and i + 1, and leave the rest of the rhombi unchanged. We shall first make some
definitions.

1. Two rhombi are said to be linked if they are connected by a strict edge. Note that a
linked component can be either a hexagon of three rhombi or a component of two
rhombi. The rhombi that are not linked are called singled.

2. Two linked components are said to be bonded if they are connected via two weak
edges. Note that a bonded component may contain at most one hexagon that is
formed by three rhombi.
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3. A bonded component has content i (resp. j) is it contains exactly one more occur-
rence of i (resp. j) than j (resp. i).1 Further, the content of a singled rhombus is the
same as the number it contains.

On a bonded component containing a hexagon, we define the braid operation to be
iteratively applying the “star-triangle” involution

i + 1

i + 1
i ←→

i

i
i + 1

until all the labelling in the bonded component become valid.
We are now ready to define the Bender–Knuth involution τi.

Definition 4.1.

1. First remove the bonded components without any hexagon, as these rhombi will
remain unchanged.

2. The bonded components and the other singled rhombi will form several stripes
connected by weak edges.

3. We will toggle the bonded components and the singled rhombi—like the usual
Bender–Knuth involution—such that within every strip, the total number of i and
the total number of i + 1 in the contents are swapped. When toggling a singled
rhombi, we simply just change the number; when toggling a bonded component,
we apply the braid operation.

Example 4.2. The following is an example of a Bender–Knuth involution, with the num-
ber 1 representing i and 2 representing i + 1.

1Note that in any bonded component, the number of i and the number of j must differ by one.
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From left to right we have: (1) a rhombic tableau restricted to the numbers i and i + 1,
(2) highlighted bonded components, (3) removing the bonded components that don’t
contain a hexagon, leaving out two strips connected by weak edges, and (4) toggling
each of the strips. The highlighted numbers are the contents of the bonded-components
and the singled rhombi. Note that only the top bonded component is applied a braid
operation, the other two bonded components are unchanged.

Theorem 4.3. The Bender–Knuth action τi is an involution on SSRT(w) for any w.

Since each Bender–Knuth operator exchanges xi with xi+1 in the monomials, similar
to the case of Schur functions, this implies:

Corollary 4.4. The Stanley symmetric functions are symmetric.

Remark 4.5. We note that the Bender–Knuth action on the set of SSRT with maximal
entry is more intricate than on all SSRT. In particular, for I = {k1, · · · , kl}, the num-
bers 1, · · · , kl are grouped into different sets {1, · · · , k1}, {k1 + 1, · · · , k2}, · · · , {kl−1 +
1, · · · , kl}. When imposing a maximal entry, numbers of different group will inherit
additional rules of which type of rhombi they can appear. In fact, for SSRTI , the Bender–
Knuth involution implies that Schubert polynomials are symmetric within each variable
groups, as we expected.
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5 Set-valued Rhombic Tableaux and K-Theory

In [10], Lascoux introduced Grothendieck polynomials as polynomial representative
of Schubert classes in the K-theory ring of the flag variety. In [4], Buch introduced a
set-valued tableau model for the K-theory of Grassmannians. A set-valued tableau is,
loosely speaking, a semi-standard Young tableaux whose entries can be a set of different
numbers. In this section, we extend our model to K-theory, using a set-valued analogue
of rhombic tableaux.

Definition 5.1. Recall the definition of weak and strong edges in Definition 3.9. For an
edge e let eL denote the rhombus to its left and eR the rhombus to its right. A set-valued
rhombic tableaux T is filling of the rhombi in a rhombic tiling using non-empty sets of
natural numbers such that for every edge e, max T(rL) < min T(rR) if e is strict and
max T(rL) ≤ min T(rR) if e is weak. See Figure 3 for an example.

Denote SVRT(w) the set of all set-valued rhombic tableaux on sh(w). Similarly, we
define set-valued rhombic tableaux with restricted entries if the numbers in a rhombus
of type (i, j) is taken from the set [k j], and denote the set of such tableaux as SVRTI(w).

1

1, 2

1

1, 2

2

2, 3

3

4
4

3

5

4, 5

Figure 3: A set-valued rhombic tableau with weight x4
1x4

2x3
3x3

4x2
5 for I = (3, 5) and

Ĩ = (3, 2, 3)

Analogous to Buch’s formula [4], we have

Theorem 5.2. Let I = {k1, · · · , kl} and for any w ∈WP. We have that

Gw(x1, · · · , xkl
) = ∑

T∈SVRTI(w)

wt(T)

and
Gw(x1, x2, · · · ) = ∑

T∈SVRT(w)

wt(T)
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where Gw is the Grothendieck polynomial associated to w and Gw is the stable Grothendieck
symmetric function of w.
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