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Abstract. The extended weak order is a combinatorial poset associated to a Coxeter
group, defined in terms of biclosed sets of roots in a root system. The lattice of torsion
classes is an algebraic poset, defined in terms of sets of modules for an algebra. We
show that the extended weak order for the affine symmetric group S̃n is in fact a
lattice quotient of the lattice of torsion classes for the preprojective algebra of a cycle
quiver. We show how this allows one to translate between algebraic and combinatorial
perspectives. In particular, we show that the extended weak order on S̃n encodes the
exchange graphs of cluster algebras of type Ã via its lattice quotients.
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1 Introduction

Given a Coxeter group (W, S), the extended weak order of W is a poset Bic(W) whose
elements are the biclosed sets of reflections of W. Extended weak order was introduced by
Matthew Dyer to study Hecke algebras and Kazhdan–Lusztig theory, and is the subject
of many open conjectures [12]. When W is a finite Coxeter group, such as Sn, the
extended weak order of W can be identified with the weak order on W. For infinite
Coxeter groups, the weak order embeds as an order ideal of Bic(W), but there are more
elements of Bic(W). If W is an affine Coxeter group of type Ã, B̃, C̃, or D̃, then there
are explicit combinatorial models for Bic(W), introduced in [7]. In particular, if W is
the affine symmetric group S̃n, which is the Coxeter group of type Ãn−1, then elements
of Bic(W) can be identified with translation-invariant total orders (see Definition 2.1). For
finite and affine Coxeter groups, Bic(W) is known to be a lattice [6], but it is still an open
question whether this is the case for any Coxeter group.

There is another family of posets we will also be interested in. Let A be an algebra
over C. Then the lattice of torsion classes of A is a poset Tors(A) whose elements are
torsion classes in the category of A-modules which are finite-dimensional over C. This
lattice is studied in the context of τ-tilting and silting theory for algebras. Each quiver
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Q has an associated preprojective algebra ΠQ over C. When Q is an oriented Dynkin dia-
gram associated to the finite Coxeter group W, then there is an isomorphism of lattices
Tors(ΠQ)

∼−→ Bic(W) [13]. Our first main result is the analog of this fact when W = S̃n
1.

Theorem 1.1. Let Q be an orientation of the cycle graph on n vertices. Then there is a quotient
map of complete lattices

Tors(ΠQ) ↠ Bic(S̃n).

We prove a stronger version, which allows us to extract information about ΠQ-
modules from the lattice theory of Bic(W). A module M for ΠQ is called a spherical

module (or a real brick) if Exti(M, M) =

{
C if i = 0 or 2
0 otherwise

. In other words, M has the

same cohomology groups as a 2-sphere. Our second main result both classifies the spher-
ical modules of ΠQ in terms of join-irreducible elements of Bic(W), and also describes
the existence of maps between spherical modules using the poset structure of Bic(W).
We write JIrr(Bic(W)) for the completely join-irreducible elements of Bic(W), and we write
Sph(ΠQ) for the spherical modules. We will index elements of both sets by diagrams
(denoted below by σ) as described in Section 3.

Theorem 1.2. There is a bijection

JIrr(Bic(W))
∼−→ Sph(ΠQ)

J 7→ Πσ(J).

Furthermore, the following are equivalent:

• There exists a non-zero map of ΠQ-modules from Πσ(J1)
to Πσ(J2);

• There does not exist R ∈ Bic(W) so that R ≥ J1 and J2 covers R ∧ J2.

The objects put in bijection by Theorem 1.2 are also in bijection with a third, geometric
object called shards. The bijection between JIrr(Bic(W)) and shards of the affine braid
arrangement was the subject of [2], an extended abstract from FPSAC 2024. In their
recent work [10], Dana, Speyer, and Thomas showed that shards inject into Sph(ΠQ); the
resulting real bricks are called shard modules. In the course of the proof of Theorem 1.2,
we show that every spherical module of ΠQ is a shard module. We will also prove [10,
Conjecture 6.11] for any quiver.

There are many combinatorial motivations for studying ΠQ-modules. One reason
is their connection to canonical bases for the quantum groups and for coordinate rings
of flag varieties. For example, each ΠQ-module has an associated polytope, its Harder–
Narasimhan polytope. The Harder–Narasimhan polytope of a generic ΠQ-module is an

1Since the original writing of this extended abstract, we have generalized Theorems 1.1, 1.2 and 1.3
from type Ã to all affine types. See [4].
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MV polytope2, and MV polytopes give a realization of Kashiwara crystals [8]. Spherical
modules are all generic in this sense, so they give rise to MV polytopes. One can use
Theorem 1.2 to study these MV polytopes: for example, to deduce vertices corresponding
to spherical submodules.

Another combinatorial motivation for studying ΠQ-modules is to understand clus-
ter algebras. Each cluster algebra (with a choice of initial seed) gives rise to a directed
graph called the ordered exchange graph, which describes the mutations connecting dif-
ferent seeds [9]. For finite-type cluster algebras, these graphs are an orientation of the
1-skeleton of an associahedron of the appropriate type. The following theorem partially
resolves a question of David Speyer from OPAC 2020 [15] in the case of type Ã cluster
algebras.

Theorem 1.3. Let Q be an orientation of the n-cycle, and let AQ be the cluster algebra (with
principal coefficients) associated to Q. Then there is a lattice congruence ∼Q of Bic(W) so that
the ordered exchange graph of AQ embeds as a subgraph of the Hasse diagram of Bic(W)/∼Q.

We deduce Theorem 1.3 essentially formally from Theorem 1.2 together with results
from cluster-tilting theory. An interesting question is to describe these quotients combi-
natorially, which would give a new way of describing type Ã cluster algebras. In finite
type, this question is answered via the Cambrian lattices, which are the source of a lot
of interesting Catalan and cluster combinatorics. As a partial answer to the question, in
recent work with Colin Defant [5] we describe the combinatorics of Bic(W)/∼Q in the
case where Q is the oriented cycle. The resulting lattice quotient is the affine Tamari lattice;
it can be identified with the subposet of Bic(W) consisting of 312-avoiding translation-
invariant total orders, and has a description using translation-invariant binary trees.

We remark on one more motivation for studying ΠQ modules: the McKay corre-
spondence associates to the cycle quiver an ADE singularity; in our case, the singularity
is the zero locus X of the polynomial x2 + y2 + zn in C3. There is a minimal resolution
of singularities Y → X, and one version of the McKay correspondence asserts that ΠQ-
modules are (derived) equivalent to coherent sheaves on the algebraic variety Y. The
homological mirror symmetry conjecture predicts that these objects are further (derived)
equivalent to certain Lagrangian submanifolds of a symplectic variety [1, Section 9.2].
Spherical modules correspond to the Lagrangian submanifolds which are diffeomor-
phic to 2-spheres. The arc diagrams we describe in Section 3 (to parametrize spherical
modules) also arise in symplectic geometry as the image of Lagrangian spheres under
a Lefschetz fibration. This particular case of homological mirror symmetry seems to be
unproven, but we will use intuition motivated by this picture in our argument. It would
be an interesting question to interpret our results on the symplectic geometry side of
mirror symmetry.

2Since we are in the affine case, the right notion is an affine MV polytope, which has more data in
addition to the polytope itself.
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We now outline the structure of this extended abstract. In Section 2, we define the
posets Bic(W) and Tors(ΠQ) and give relevant background. In Section 3, we construct
the bijection JIrr(Bic(W)) → Sph(ΠQ). Then in Section 4, we sketch the proof of Theo-
rems 1.1 and 1.2 and in Section 5 we prove Theorem 1.3.

2 Background

The Coxeter group of type Ãn−1 is called the affine symmetric group S̃n. From now on,
W will always denote this group.

2.1 Extended weak order of S̃n

Extended weak order was introduced by Matthew Dyer and has a uniform description
for any Coxeter group. Rather than give this definition, we will focus on the case of S̃n,
where there is an explicit combinatorial model introduced in [3, 7]. See also [2] for an
introduction to this poset, which gives some geometric motivation for its definition.

Definition 2.1. A translation-invariant total order (TITO) is a total ordering ≺ of Z

satisfying the following two properties:

(a) For any i, j ∈ Z, we have i ≺ j if and only if i + n ≺ j + n, and

(b) For any i ∈ Z, if i + n ≺ i, then there exists some k ∈ Z with i + n ≺ k ≺ i.

Just like permutations, TITOs have a one-line notation. This is given by writing the
integers in ≺-order from left to right. Examples of TITOs for n = 4 include

· · · ≺ −2 ≺ −3 ≺ 0 ≺ −1 ≺ 2 ≺ 1 ≺ 4 ≺ 3 ≺ 6 ≺ 5 ≺ 8 ≺ 7 ≺ · · · (2.1)

· · · ≺ 0 ≺ 1 ≺ 4 ≺ 5 ≺ 8 ≺ 9 ≺ · · · ≺ 10 ≺ 11 ≺ 6 ≺ 7 ≺ 2 ≺ 3 ≺ · · · (2.2)

· · · ≺ 0 ≺ 4 ≺ 8 ≺ 12 ≺ · · · ≺ −2 ≺ −3 ≺ −1 ≺ 2 ≺ 1 ≺ 3 ≺ 6 ≺ 5 ≺ 7 ≺ · · · . (2.3)

To abbreviate this data, we use window notation to encode a TITO. The key observation
is that a TITO ≺ decomposes into blocks, which are subsets of Z on which ≺ restricts to
an ordering which is order-isomorphic to Z. For example, the TITO (2.2) has two blocks:
the first has the integers congruent to 0 or 1 modulo 4, and the second contains the rest.

Each block has its own window: if a block contains k residue classes, then a window
for it consists of k consecutive integers from the block. We need one more piece of
data to fully encode the block: if i is in the block and i + n ≺ i, then we underline the
window, otherwise we do not underline it. (This is independent of the choice of i.) To
get the window notation for the TITO, we list the windows for its blocks in order from
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left to right. For example, the window notations for (2.1), (2.2), and (2.3) are [2, 1, 4, 3],
[0, 1][2, 3], and [0][2, 1, 3], respectively.

We write Ṽ for the vector space with basis α0, α1, . . . , αn−1. For each pair of integers
i < j, we define αij := αi + αi+1 + · · ·+ αj−1, where for an integer i we define αi to be the
basis vector αi′ for the unique i′ ∈ {0, . . . , n− 1} congruent to i modulo n. For instance,
with n = 3 we have that α1,5 = α1 + α2 + α3 + α4 = α0 + 2α1 + α2. The type Ãn−1 positive
real root system is Φ+

re := {αij | i < j, i ̸≡ j mod n}. There are also imaginary roots:
Φ+

im := {αij | i < j, i ≡ j mod n}. We write δ = α0,n for the primitive imaginary root.

Definition 2.2. Let ≺ be a TITO. An inversion of ≺ is a positive real root αij so that j ≺ i.
Thus

inv(≺) := {αij | i < j, i ̸≡ j mod n, j ≺ i}

is the inversion set of ≺. A biclosed set3for S̃n is a subset of Φ+
re of the form inv(≺) for

a TITO ≺.

We write Bic(S̃n) for the poset of biclosed sets under inclusion order. This poset is
called the extended weak order of S̃n. It was shown to be a lattice in [6, 7]. The elements
of S̃n biject with TITOs having a single non-underlined window. The induced ordering
on elements of S̃n is the weak order. The map inv sending a TITO to a biclosed set is a
bijection, so we could equivalently think of extended weak order as an order on TITOs.
(This is the reason for including condition (b) in Definition 2.1; we could drop condition
(b) at the price of making inv non-injective.)

Remark 2.3. One cannot define the inversion set to include the imaginary roots αij with
i ≡ j mod n. The reason is that it is possible that there exist integers i, j ∈ Z so that
i ≺ i + n and j + n ≺ j. The definition of inversion would tell us that αj,j+n is an inver-
sion while αi,i+n is not an inversion. But these two roots are both equal to δ, the primitive
imaginary root. This issue does not arise for real roots. The TITO shown in equation
(2.2) with window notation [0, 1][2, 3] gives an example of this phenomenon. There is an
explanation for this in terms of brick modules (defined below): the purported “inver-
sion” α2,2+n and “non-inversion” α0,0+n should correspond to different sets of bricks, even
though they are the same vector. A large part of the proof of Theorem 1.2 is showing
that this does not happen for real bricks.

2.2 The preprojective algebra ΠQ

Let Q be the oriented cycle quiver with n vertices, shown below. The double quiver Q
of Q has the same vertices and, in addition to the arrows of Q, has a reversed arrow a∗

for each arrow a of Q.
3Dyer defines biclosed sets for a general Coxeter group to be sets of positive roots subject to some

convexity requirements. One result of [7] is that the biclosed sets for S̃n are exactly the sets described here.
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Figure 1: A module for ΠQ. The un-
labeled linear maps are 0.

Figure 2: A string module, equivalent
to the module in Figure 1.
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The path algebra of Q is the algebra C[Q] whose elements are C-linear combinations
of paths in Q. Multiplication is given by concatenation of paths. The preprojective
algebra ΠQ is the quotient algebra

ΠQ := C[Q]/( ∑
a an arrow of Q

aa∗ − a∗a).

For more details see, e.g., [10]. We can describe modules for ΠQ as certain quiver rep-
resentations. More precisely, the data of a C[Q] module M is equivalently the data of

for each i ∈ {0, . . . , n− 1}: a vector space Mi, a linear map Mi Ri−→ Mi+1, and a linear

map Mi−1 Li←− Mi (here we take the indices to be cyclic modulo n). These data define a
module for ΠQ if and only if RiLi+1 − LiRi−1 = 0 for all i ∈ {0, . . . , n− 1}. See Figure 1
for an example of a ΠQ-module.

In terms of this data, a map ϕ : M → M′ between ΠQ modules corresponds to a
linear map ϕi : Mi → (M′)i for each i ∈ {0, . . . , n − 1}, such that ϕi+1Ri = R′iϕi and
ϕi−1Li = L′iϕi. We write mod(ΠQ) for the category of finite-dimensional ΠQ-modules.
(These are the modules so that ∑n−1

i=0 dim(Mi) is finite.) Unless otherwise specified,
“module” refers to an object of mod(ΠQ).

Given a module M, we define its dimension vector to be the vector dim(M) :=
∑n−1

i=0 dim(Mi)αi in Ṽ.

Definition 2.4. A module M is called a brick if HomΠQ(M, M) = C (equivalently, if
every nonzero map M → M is invertible). A brick M is called real if dim(M) is in Φ+

re,
and imaginary if dim(M) is in Φ+

im. We write Bricks(ΠQ) for the set of isomorphism
classes of bricks of ΠQ.

The following lemma is a strengthening of [10, Proposition 4.14] (using that
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mod(ΠQ) is a 2-Calabi–Yau category, we are over C, and a standard argument to deduce
non-real bricks are imaginary). It implies that spherical modules and real bricks coincide.

Lemma 2.5. Every brick is either real or imaginary. A module M is a real brick if and only if

Exti(M, M) =

{
C if i = 0 or 2
0 otherwise

.

For each i ∈ {0, . . . , n− 1} there is a simple module Si defined uniquely by Si
i = C

and Sj
i = 0 if j ̸= i. The modules S0, . . . , Sn−1 are exactly the simple spherical modules.

We will be most interested in string modules. These are modules that can be depicted as
in Figure 2. We interpret this picture in the following way: each copy of C over a vertex
i corresponds to a basis vector of Mi. The map Ri sends a basis vector e in Mi to the
basis vector of Mi+1 that the clockwise-leaving arrow from e points to, or to 0 if there is
no clockwise-leaving arrow from e. We define Li similarly. Hence the modules depicted
in Figures 1 and 2 are the same. Not every string module is a spherical module, but we
will show below that every spherical module is a string module.

2.3 The lattice of torsion classes Tors(ΠQ)

Definition 2.6. A torsion class in mod(ΠQ) is a collection of modules T satisfying the
following properties:

• if M is in T and M′ is isomorphic to M then M′ is in T , and

• if M is in T and Q is a quotient module of M then Q is in T , and

• if A is a submodule of M and A and M/A are both in T then M is in T .

We denote the poset of torsion classes under inclusion order by Tors(ΠQ).

The collection of torsion classes is closed under intersection, so any set of modules S
is contained in a unique minimal torsion class S . In particular, Tors(ΠQ) is a complete
lattice. Torsion classes are determined by the bricks that they contain, in the sense that
if T is a torsion class, then T = T ∩ Bricks(ΠQ) [11]. Thus understanding bricks is the
first step to understanding torsion classes, and this is what we do next.

3 The bijection JIrr(Bic(W))→ Sph(ΠQ)

An element J of a complete lattice is called a complete join-irreducible (JI) if there is
an element J∗ covered by J so that whenever X < J, also X ≤ J∗. Equivalently, J is not
the join of any set of lattice elements not containing J. We write JIrr(Bic(W)) for the set
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Figure 3: Two shard arcs. The arc on
the left has TITO [0, 1][2, 3] and the arc
on the right has TITO [7, 12, 2, 5].

Figure 4: The string modules associ-
ated to the shard arcs in Figure 3.

of JIs of Bic(W). Given a biclosed set X, a lower wall of X is an element α ∈ X so that
X \ {α} is also a biclosed set. If X = inv(≺) for a TITO ≺ and i < j, then αij is a lower
wall for X if and only if j ≺ i and j and i appear consecutively in the one-line notation
of ≺. Each JI of Bic(W) has exactly one lower wall, but this is not enough to characterize
them.

Lemma 3.1 ([2]). A biclosed set X with exactly one lower wall is a JI if and only if it is of the
form inv(≺), where the window notation of ≺ does not contain two consecutive non-underlined
windows.

Both of the TITOs (2.2) and (2.3) have inversion sets with exactly one lower wall, but
only (2.2) is a JI. In [2], the JIs of Bic(W) were described using arc diagrams. An arc
diagram lives in R2 with the origin deleted. We label n points in the plane with 1, . . . , n
and call them marked points. We depict the marked points in a ring around the origin.
An arc is a curve in the plane with its endpoints on marked points, and which otherwise
does not pass through marked points or the origin. We consider arcs to be equivalent
if they are connected by a homotopy fixing the endpoints which does not pass through
marked points or the origin. We say the arc is non-crossing if it does not intersect itself.
A shard arc is a non-crossing arc with distinct endpoints so that its angular coordinate is
monotonic (i.e. it wraps around the origin without reversing direction). Two shard arcs
are depicted in Figure 3.

We now summarize the main result of [2], which also appears in [3]. Given a JI
J = inv(≺), we build a shard arc σ(J) as follows: let αij be the lower wall of J; without
loss of generality assume 1 ≤ i ≤ n. We imagine a bug driving a car in R2, starting at
the marked point i. The bug drives clockwise around the origin, detouring around the
marked points by turning either left or right. At the kth marked point it approaches, the
bug turns left if and only if i + k ≺ i. When the bug approaches the (j− i)th point, it
drives straight to it and stops. The path driven is a shard arc denoted σ(J).

Theorem 3.2 ([2]). The map J 7→ σ(J) is a bijection between JIs and shard arcs.
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We now introduce the map from JIrr(Bic(W)) to Sph(ΠQ). Let σ be a shard arc, and
define a string module Πσ as follows. Imagine our bug driving clockwise along the arc.
Each time the bug is in a gap between i and i + 1, it drops a copy of C into (Πσ)i. After
the bug reaches the end of the arc, it then starts back at the beginning and drives around
the arc another time. This time, when the bug turns to detour around i, it draws an
arrow between the copy of C encountered previously and the copy of C it is about to
encounter. The arrow points toward the previous C if the bug turns right, and the arrow
points toward the next C if the bug turns left. Two examples of the resulting string
modules are shown in Figure 4.

Lemma 3.3. The map J 7→ Πσ(J) is a bijection JIrr(Bic(W))
∼−→ Sph(ΠQ).

Proof. By Theorem 3.2, it is enough to verify that the map σ 7→ Πσ is a bijection from
shard arcs to Sph(ΠQ). First, we note that σ 7→ Πσ is an injective map, since we can
reverse the bug’s algorithm to recover the shard arc σ from Πσ. It remains to verify that
Πσ is in fact spherical, and that every spherical module arises in this way.

To prove these facts, we use reflection functors, as described in [10]. Write NoSubi for
the subcategory of modules that do not have Si as a submodule, and NoQuoti for the
subcategory of modules that do not have Si as a quotient. Reflection functors are inverse
equivalences of categories Σi : NoQuoti ⇄ NoSubi : Σ−1

i . We omit their definition for
brevity. A straightforward verification shows that ΠΣ has Si as a quotient if and only if
a subarc of Σ matches one of the following two patterns:

i i + 1 or i i + 1 . (∗)

A less straightforward computation shows that if σ is a shard arc, and Πσ is in
NoQuoti, then Σi(Πσ) = Πσ′ where σ′ is another shard arc. More precisely, we can
construct σ′ by imagining putting a finger on each of the marked points i and i + 1 in
the plane and twisting 180◦ counter-clockwise. During this twist, we deform σ so that it
avoids crossing any marked points. If one of i or i + 1 is an endpoint of σ, then we also
move that endpoint. After relabeling i and i + 1 so they appear in their original order,
the resulting arc is the new shard arc σ′. This process translates to several local moves
(applied separately to each segment of σ which passes through the box):

i i + 1⇒ i i + 1 , i i + 1 ⇒ i i + 1 , i i + 1⇒ i i + 1 .

By [10, Theorem 4.3], it follows that for any Πσ ∈ NoQuoti which is a real brick, we
have that Πσ′ is a real brick. Similar remarks apply to Σ−i , which acts by twisting 180◦

clockwise.
Given any shard arc σ, we can perform a 180◦ twist involving one of the endpoints

of σ to make a shorter shard arc σ′. Without loss of generality, this twist is counter-
clockwise. Then σ must avoid the patterns (∗) or the result of the twist would not be a
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shard arc. But then Πσ is in NoQuoti, so it follows that Πσ = Σ−i ΣiΠσ = Σ−i Πσ′ . By
induction Πσ′ is a real brick, hence so is Πσ. This shows that the image of σ 7→ Πσ

consists of spherical modules.
Now let M be any real brick. Then M = Σi M′ or M = Σ−i M′ for some real brick

M′ ∈ NoQuoti (resp. M′ ∈ NoSubi) of smaller dimension [10, Theorem 5.1]. Without
loss of generality, M = Σi M′. By induction M′ is of the form Πσ for some shard arc σ.
Then ΣiΠσ = Πσ′ for some shard arc σ′. We conclude that σ 7→ Πσ is surjective.

Remark 3.4. Under homological mirror symmetry, the operation of twisting an arc 180◦

corresponds to applying a Dehn twist around a Lagrangian sphere.

4 Proof of Theorems 1 and 2

In this section we will sketch the proof of Theorems 1 and 2. We refer the reader to
[3, 4] for more details. We will assume familiarity with the “Fundamental Theorem of
Semidistributive Lattices” [14], and will freely use notation and terms from there. Our
first goal is to show that there is a quotient of Tors(ΠQ) given by contracting exactly the
imaginary bricks. This reduces to the following lemma, which implies that imaginary
bricks do not directly force real bricks.

Lemma 4.1. If M is a real brick and D ⊆ M is a submodule which is an imaginary brick, then
there is a brick D′ ̸∼= D in the torsion class {D} so that D′ ⊆ M. The dual statement also holds.

We will also make use of the following result, which follows quickly from the fact
that Bic(W) is an inverse limit of finite semidistributive lattices (in turn due to arguments
in [6] and semidistributivity in rank 3).

Lemma 4.2. Bic(W) is a completely semidistributive well-separated κ-lattice.

Hence the full power of [14] applies to Bic(W). In particular, Lemma 4.1 implies
there is a lattice quotient of Tors(ΠQ) contracting exactly the imaginary bricks. Then
Theorem 1.2 identifies that quotient with Bic(W) using its factorization system; hence
Theorem 1.2 implies Theorem 1.1.

For J1, J2 ∈ JIrr(Bic(W)), we write J1 → J2 if J1 ̸≤ κ(J2). Then Theorem 1.2 re-
duces to showing that J1 → J2 if and only if HomΠQ(Πσ(J1)

, Πσ(J2)) ̸= 0. To prove this,
we use folding. Let Ŵ = S∞ be the group of permutations of Z fixing all but finitely
many elements; this is a Coxeter group of type A∞. Let Π̂ be its preprojective algebra.
Each J ∈ JIrr(Bic(W)) has an unfolding Ĵ ∈ JIrr(Bic(Ŵ)), and each spherical module
Πσ(J) has an unfolding Π̂σ(J), which is a real brick for Π̂. There is a “translation by
n” operator Trn on both Bic(Ŵ) and the Π̂-modules. Unfolding has the property that
J1 → J2 if and only if Ĵ1 → Trkn Ĵ2 for some k, and HomΠQ(Πσ(J1)

, Πσ(J2)) ̸= 0 if and
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only if HomΠ̂(Π̂σ(J1)
,TrknΠ̂σ(J2)) ̸= 0 for some k. Furthermore, Ĵ1 → Trkn Ĵ2 if and only

if HomΠ̂(Π̂σ(J1)
,TrknΠ̂σ(J2)) ̸= 0, by Theorem 1.2 in type A (a consequence of [13]). It

follows that J1 → J2 if and only if HomΠQ(Πσ(J1)
, Πσ(J2)) ̸= 0, completing the proof.

As a corollary, we deduce the following, which resolves [10, Conjecture 6.11]4.

Lemma 4.3. If M1, M2 ∈ Sph(ΠQ) and dim(M1) = dim(M2), then Hom(M1, M2) ̸= 0.

5 Proof of Theorem 3

In this section, we assume the reader is familiar with cluster algebras and their additive
categorifications. Let Q be a quiver which is an orientation of the cycle graph and AQ
the principal coefficients cluster algebra associated to Q. We wish to show that there is a
lattice quotient L of Bic(W) so that the Hasse diagram of L contains the ordered exchange
graph of AQ. The key is that there is a known lattice quotient L of Tors(ΠQ) which has
the property we desire. If Q is acyclic, then we set Λ := C[Q] to be the path algebra of Q.
If Q is the oriented cycle, then we set Λ to be the quotient of C[Q] which is a cluster-tilted
algebra of type D. This is the quotient by the ideal generated by paths of length n− 1. In
both cases, Λ is a quotient algebra of ΠQ, so there is a quotient map Tors(ΠQ) ↠ Tors(Λ)
[11]. When Λ is a path algebra of an acyclic quiver or a cluster-tilted algebra, then it is
known (see, e.g., [9, Section 4.5]) that the Hasse diagram of Tors(Λ) contains the ordered
exchange graph of AQ in the connected component of the bottom element.

Our goal is now to prove that there is a common quotient of Tors(Λ) and Bic(W). We
use the theory of quotient lattices from [14], and define L to be the quotient of Tors(Λ)
given by contracting all imaginary bricks of Λ. By Lemma 4.1 and [14, Theorem 6.3],
no other bricks are contracted in this quotient. Then Tors(ΠQ) ↠ L factors through the
quotient Tors(ΠQ) ↠ Bic(W), since all bricks contracted in the second quotient are also
contracted in the first.

We now wish to show that the quotient Tors(Λ) ↠ L maps the ordered exchange
graph isomorphically onto its image. Since each edge in the exchange graph has a brick
label (cf. [14, Remark 3.12]), the only way this could fail is if the brick label of some
edge of the exchange graph is contracted in the quotient. In other words, we wish to
show that the bricks labeling the edges of the exchange graph are all real bricks. Now,
if M is a brick labeling an edge of the exchange graph, then dim(M) is a c-vector of the
cluster algebra [9, f-tors → int-t-str → 2-smc → c-mat]. It is known that the c-vectors of
acyclic cluster algebras [9, Theorem 3.23] and of the oriented cycle cluster algebra (e.g.,
[5]) are real roots. Hence all brick labels must be real, and Tors(Λ) ↠ L restricts to an
isomorphism on the ordered exchange graph.

4We give a different proof of this conjecture (for all types) in [4].
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