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Faces of Parking Function Polytopes
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Abstract. We extended the notion of parking function polytopes and explored their
normal fans, face posets, and h-polynomials. To capture their combinatorial prop-
erties, we introduced generalizations of ordered set partitions, which we refer to as
binary partitions and skewed binary paritions. Using properties of preorder cones,
we developed tools to characterize the family of skewed binary partitions that bijec-
tively corresponds to the normal fan of a parking function polytope. Additionally, we
gave a formula for the h-polynomials of simple parking function polytopes in terms of
generalized Eulerian polynomials.
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1 Introduction

Suppose that u ∈ Rn is a vector satisfying 0 ≤ u1 ≤ · · · ≤ un. Let a = (a1, . . . , an) ∈ Rn
≥0

and b1 ≤ b2 ≤ · · · ≤ bn be the non-decreasing rearrangement of a1, . . . , an. We say
that a is a u-parking function if bi ≤ ui for all i = 1, . . . , n. The parking function polytope
associated to u, denoted by PF(u), is defined to be the convex hull of all u-parking
functions. For non-triviality, we will always assume that u is a nonzero vector. Since
0, (un, 0, 0, . . . , 0), (0, un, 0, . . . , 0), . . . , (0, 0, . . . , 0, un) are n+ 1 affinely independent points
in PF(u), the polytope PF(u) is n-dimensional for all u ̸= 0.

Figure 1: Three examples of parking function polytopes
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We note that a parking function (of length n) was originally defined as a sequence of
positive integers (a1, . . . , an) such that its non-decreasing rearrangement b1 ≤ · · · ≤ bn
satisfies bi ≤ i for all i ∈ [n]. It is a fascinating combinatorial object closely connected to
other combinatorial models such as labeled trees [5], hyperplane arrangement, and non-
crossing partitions [12, 13]. The name "parking function" originates from Konheim and
Weiss [10], who introduced it as a way to choose n spots for parking n cars. Stanley later
defined parking function polytopes to be the convex hull of all such parking functions
in [15, Problem 12191], which corresponds, in our notation, to PF(0, 1, . . . , n − 1). He
also posed questions regarding their faces, volume, and number of lattice points, which
were subsequently studied by Amanbayeva and Wang [1]. Recently, Hanada, et al. [9],
and Bayer, et al. [2] examined a bigger class of parking function polytopes PF(u) where
u1, . . . , un are integers satisfying 0 ≤ u1 < · · · < un. Their work focused on the combina-
torial properties of these polytopes, providing formulas for volume and h-polynomials,
and exploring connections to other polytopes. One sees that our definition of parking
function polytopes further generalizes this notion by allowing 0 ≤ u1 ≤ · · · ≤ un to be
any non-decreasing real numbers, rather than strictly increasing integers. This expands
the family of parking function polytopes to include more combinatorial types. To un-
derstand their face structure, we introduced skewed binary partitions to describe their
normal fans, thereby revealing that the combinatorial types are determined entirely by
their multiplicity vectors. Furthermore, we provide a formula for the h-polynomials of
simple parking function polytopes in terms of generalized Eulerian polynomials.

Connection to other polytopes: Let Sn(u) := conv(τ(u) | τ is a permutation in Sn)
be the Sn-permutohedron generated by u, where τ(u) := (uτ(1), . . . , uτ(n)). The parking
function polytope PF(u) can equivalently be defined as

PF(u) := {x ∈ Rn
≥0 | ∃w ∈ Sn(u) such that w − x ∈ Rn

≥0} = (Rn
≤0 +Sn(u)) ∩ Rn

≥0.

This description allows us to see that every PF(u) is a polymatroid introduced by Ed-
monds in [6]. Thus, by the construction of polymatroid, we have that PF(u) consists of
all (x1, . . . , xn) satisfying xi ≥ 0 for all i ∈ [n] and for every nonempty subset I ⊆ [n]

∑
i∈I

xi ≤
|I|−1

∑
i=0

un−i.

When u = (1, 2, . . . , n) or any strictly increasing sequence of positive real numbers,
the polytope PF(u) becomes a stellahedron, which is the graph associahedron of a star
graph originally introduced by Carr and Devadoss [3]. It follows from Corollary 2 and
Proposition 2 that the normal fan of every parking function polytope PF(u) is a coarsen-
ing of the normal fan of PF(1, 2, . . . , n), meaning PF(u) can be viewed as a deformation
of PF(1, 2, . . . , n). Recent work by Eur, Huh, and Larson [7] leverages the geometry of
the stellahedral toric variety to study matroids and explore the connections between
deformations of PF(1, 2, . . . , n) and polymatroids.
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Moreover, each PF(u) is a signed (type-B) generalized permutohedra (see [8]) and
can be viewed as a projection of a generalized permutohedra. Thus, properties of these
generalized permutohedra apply to parking function polytopes as well. In particular,
one can compute the volume and the Ehrhart polynomials of parking function polytopes
using existing formulas for generalized permutohedra. Due to space constraints, we will
omit further discussion of generalized permutohedra in this extended abstract.

Paper organization: In this extended abstract, we aim to describe the normal fans,
face posets, and h-polynomials of parking function polytopes, and present related find-
ings. We begin with an overview of fundamental concepts related to polyhedra, pre-
posets, and preorder cones, introducing binary partitions and skewed binary partitions
to describe the normal fans of these polytopes. Following this, we develop tools to
characterize the family of skewed binary partitions that corresponds bijectively to the
normal fan of a parking function polytope, and express the h-polynomials of simple
parking function polytopes in terms of generalized Eulerian polynomials.

2 Preliminaries

2.1 Polyhedra

A polyhedron P in Rd is the solution to a finite set of linear inequalities. A subset F of P
is said to be a face of P if there exists h ∈ Rd such that

F = {x ∈ P | h · x ≥ h · y, for all y ∈ P}.

A face of dimension dim(P)− 1 is called a facet, a face of dimension 1 is called an edge,
and a face of dimension zero is called a vertex. The partially ordered set F (P) of all
nonempty faces of P ordered by inclusion is called the face poset of P.

A cone is a polyhedron defined by a system of linear inequalities of the form a · x ≤ 0.
Let F be a nonempty face of P. The normal cone of P at F is the set

ncone(F, P) := {w ∈ Rd |w · x ≥ w · y for all x ∈ F and all y ∈ P},

that is, ncone(F, P) is the set of all w ∈ Rd such that w · x attains maximum value at F
over all points in P. The normal fan of P, denoted by Σ(P), is the set of normal cones of
P at all of its nonempty faces.

A bounded polyhedron is called a polytope and can alternatively be defined as a
convex hull of finitely many points in Rd. A d-dimensional polytope is said to be simple
if all its vertices are incident to exactly d edges. For a d-dimensional simple polytope P,
we let fi(P) be the number of its i-dimensional faces and define its f -polynomial to be
fP(t) := f0(P) + f1(P)t + · · ·+ fd(P)td. The h-polynomial and the h-vector of P are then
defined to be hP(t) = h0(P) + h1(P)t · · ·+ hd(P)td and (h0(P), . . . , hd(P)), respectively,
satisfying the relation fP(t) = hP(t + 1).
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Figure 2: Hasse diagrams of three preorders on [0, 8]

2.2 Preposets and preorder cones

We assume readers are familiar with basic poset notations, as presented, for example, in
[14, Section 3.1]. Here, we introduce a generalized concept: "preposet".

A binary operator ⪯ on a finite set A is called a preorder if it is reflexive and transitive
on A. A preposet is an ordered pair (A,⪯) of a finite set A and a preorder ⪯ on it. We
write i ≡ j if i ⪯ j and j ⪯ i. Thus, the relation ≡ is an equivalence relation on A and
partitions A into equivalence classes. We denote by A/≡ the set of equivalence classes
of A and ī the equivalence class of i. One sees we recover the definition of a poset if
we require a preposet (A,⪯) to satisfy i ≡ j if and only if i = j, i.e. the relation ≡ is
antisymmetric.

Note that the preorder ⪯ on A induces a partial order on A/≡ by letting ī ⪯ j̄ if i ⪯ j
in A, and thus defines a poset (A/≡,⪯). We say that i is a cover of j in the preposet
(A,⪯), denoted i ⋖ j, if ī is a cover of j̄ in the poset (A/≡,⪯). The Hasse diagram of a
preposet (A,⪯) is the Hasse diagram of the poset (A/≡,⪯) except that, when labeling
each node by equivalence classes ī, we remove the parentheses around the set. A preoder
⪯1 is said to be a contraction of another preorder ⪯2 if the Hasse diagram of (A,⪯1) can
be obtained by a sequence of edge contractions of the Hasse diagram of (A,⪯2).

Example 1. Figure 2 displays the Hasse diagrams of three different preposets on [0, 8],
among which the preposet on the left is a poset. The preorder on the right is a contraction
of the preorder in the middle (by contracting the edge 0—7).

In [11, Section 3], Postnikov, Reiner, and Williams introduced a natural correspon-
dence between certain cones in the quotient space Rn/(1, . . . , 1)R and preorders of the
set [n] in their study of faces of generalized permutahedra. Later, Castillo and the first
author [4] called these cones preorder cones, indicating that they arise from some pre-
posets. In this paper, we will start with a preposet on [0, n] and consider preorder cones
without quotienting out (1, . . . , 1)R. More precisely, given a preposet ([0, n],⪯), we
define its associated preorder cone to be the cone σ⪯ := {(c0, c1, . . . , cn) ∈ Rn+1 | ci ≤
cj if i ⪯ j, for i, j ∈ [0, n]}. We will use preorder cones to describe the normal fans of
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parking function polytopes. However, it turns out that the slice of σ⪯ at c0 = 0 will
mostly play an important role. This leads us to introduce the following definition.

Definition 1. Let ⪯ be a preorder on [0, n]. The sliced preorder cone σ̃⪯ associated to ⪯ is
given by σ̃⪯ := {(c1, . . . , cn) ∈ Rn | c0 = 0 and ci ≤ cj if i ⪯ j, for i, j ∈ [0, n]}.

Example 2. Let ⪯ be the preorder in the middle of Figure 2. Then

σ̃⪯ = {(c1, . . . , c8) ∈ R8 | 0, c2, c5 ≤ c6, c7 ≤ c1 = c3 = c4 = c8}.

3 Binary partition and contraction

In this section, we consider a special family of preorders on [0, n] that can be represented
by what we call binary partitions of [0, n]. We will then characterize the contractions of
these preorders in terms of binary partitions. In the next section, we will consider special
cases of these partitions that will be useful for describing the normal cones of parking
function polytopes.

Recall that an ordered partition of a nonempty set S is a tuple B = (B1, . . . , Bk) of
nonempty disjoint subsets of S such that B1 ⊔ · · · ⊔ Bk = S. Each subset Bi is called a
block. To represent preorders on [0, n], we introduce an analogue of ordered partition
called "binary partition" of the set S = [0, n] by separating blocks into two different
kinds: homogeneous, and non-homogeneous. We will differentiate homogeneous block by
adding ⋆ as a superscript to the set. E.g., {1, 3}⋆ is a homogeneous block. We can apply
set-operations, such as union and intersection, to homogeneous and non-homogeneous
blocks as we normally do to usual sets. Thus, readers should think of being homoge-
neous (resp. non-homogeneous) simply as a way of labeling blocks.

Definition 2. Let k ∈ P. A binary partition of [0, n] into k blocks is an ordered tuple
(B1, . . . , Bk) of nonempty disjoint subsets of [0, n] such that B1 ⊔ · · · ⊔ Bk = [0, n] and
satisfies the following additional properties.

1. Every block is either homogeneous or non-homogeneous.

2. Every singleton block is non-homogeneous.

Definition 3. For each binary partition B = (B1, . . . , Bk) of [0, n], we associate the pre-
order ⪯B on the set [0, n] by letting

p ⪯B q if p ∈ Bi and q ∈ Bj and i < j

p ≡B q if p, q ∈ Bi for some homogeneous block Bi.

We also say that a binary partition C is a contraction of another binary partition B,
denoted by C ≤ B, if ⪯C is a contraction of ⪯B .
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{0, 2}
{3, 4}⋆

{1, 5, 6, 7}
{8}

{0, 2, 5}
{6, 7}
{1, 3, 4, 8}⋆

{0, 2, 5}
{6, 7}

{1, 3, 4, 8}⋆

{2, 5}
{0, 7}⋆

{6}
{1, 3, 4, 8}⋆

Figure 3: G(A,B) is crossing while G(B, C) is non-crossing

Example 3. B = ({0, 2, 5}, {6, 7}, {1, 3, 4, 8}⋆) and C = ({2, 5}, {0, 7}⋆, {6}, {1, 3, 4, 8}⋆)
are two binary partitions of [0, 8] for which ⪯B and ⪯C are the preorders in the middle
and on the right, respectively, of Figure 2.

For two binary partitions B = (B1, . . . , Bp) and C = (C1, . . . , Cq) of [0, n], we associate
the bipatite graph G(B, C) in the following way: the blocks in B are vertices on the
left and the blocks in C are vertices on the right. A left vertex Bi is adjacent to a right
vertex Cj if Bi ∩ Cj ̸= ∅. A vertex of G(B, C) is non-homogeneous (resp. homogeneous) if it
corresponds to a non-homogeneous (resp. homogeneous) block. Additionally, we say that
G(B, C) is non-crossing if its edges do not cross.

Example 4. Let A = ({0, 2}, {3, 4}⋆, {1, 5, 6, 7}, {8}), B = ({0, 2, 5}, {6, 7}, {1, 3, 4, 8}∗),
and C = ({2, 5}, {0, 7}⋆, {6}, {1, 3, 4, 8}⋆) be three binary partitions of [0, 8]. Then, as
shown in Figure 3, one sees that G(A,B) is crossing while G(B, C) is non-crossing .

By applying a characterization of preorder contractions given by Postnikov, Reiner,
and Williams [11, Proposition 3.5], we obtain a description of binary partition contrac-
tions in terms of their corresponding sliced preorder cones, as stated in the next lemma.

Lemma 1. Let B be a binary partition of [0, n]. Then a set F is a face of the sliced preorder cone
σ̃B := σ̃⪯B if and only if F = σ̃C for some binary partition C that is a contraction of B.

The next theorem gives another characterization of binary partition contractions in
terms of bipartite graphs.

Theorem 1. We have that C ≤ B if and only if G(B, C) satisfies all of the following conditions.

(1) It is a non-crossing bipatite graph.

(2) Every left non-homogeneous vertex is adjacent to at most one non-homogeneous vertex.

(3) Every right non-homogeneous vertex has degree one and is adjacent to a non-homogeneous
vertex.

(4) Every left homogeneous vertex has degree one and is adjacent to a homogeneous vertex.

(5) If a right homogeneous vertex has degree one, then it is adjacent to a homogeneous vertex.
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4 Skewed binary partition and composition

We now introduce "skewed binary partition" which is a special case of binary partition,
and "skewed binary composition". We will later use them to describe the normal cones
of parking function polytopes. Similarly to how a composition records the sizes of
blocks in an ordered partition, a skewed binary composition will be used for storing
information of the blocks of a skewed binary partition. We begin by describing the
skewed binary composition notation. First, the entries of our composition are nonzero
integers (as opposed to being positive integers). Additionally, we allow two different
variations of entries: i◦ and i⋆. We consider these two variations to have the same
numerical values as i, and use the absolute value sign to take their numerical values.
Hence, |i◦| = |i⋆| = i = |i|.

For convenience, we let N◦ := {i◦ | i ∈ N}, P := N>0 and P⋆
≥2 := {i⋆ | i ∈ P, i ≥ 2}.

Definition 4. Let n ∈ P and k ∈ N. A skewed binary composition of n into k + 2 parts is an
ordered tuple b = (b−1, b0, b1, . . . , bk) such that ∑k

i=−1 |bi| = n and satisfy

(b−1, b0) ∈ (N × N◦) ∪ (P × {0}) and bi ∈ P ∪ P⋆
≥2 for all 1 ≤ i ≤ k.

Definition 5. Let n ∈ P and k ∈ N. An (ordered) skewed binary partition of [0, n] into
k + 2 blocks is an ordered tuple (B−1, B0, . . . , Bk) of disjoint subsets of [0, n] such that
B−1 ⊔ B0 ⊔ B1 ⊔ · · · ⊔ Bk = [0, n] satisfying the following conditions:

1. B0 is homogeneous, provided |B0| ≥ 2, and B−1 is non-homogeneous.

2. 0 ∈ B−1 or 0 ∈ B0. If 0 ∈ B−1, then B−1 contains at least another element and
B0 = ∅. Hence, if 0 ∈ B−1, then |B−1| ≥ 2 and |B0| = 0.

3. For each 0 ≤ i ≤ k, if Bi is a singleton, then it is non-homogeneous.

4. Bi ̸= ∅ for all 1 ≤ i ≤ k.

See the first column of Table 1 for examples of skewed binary partitions of [0, 8].
Comparing Definition 5 to Definition 2, one sees that a skewed binary partition is simply
a binary partition with extra requirements (conditions 1. and 2.). In fact, removing empty
blocks from a skewed binary partition yields a binary partition. For instance, removing
the empty block from the skewed binary partition shown at the top of Table 1 gives a
binary partition in Example 3. Thus, properties of binary partitions extend naturally to
skewed binary partitions when regarded in this way.

Definition 6. For a skewed binary partition B of [0, n], let B̂ be the binary partition
obtained by removing the empty blocks from B. We define the associate preorder ⪯B on
the set [0, n] to be the preorder ⪯B̂ . We also say that a skewed binary partition C is a
contraction of another skewed binary partition B if ⪯C is a contraction of ⪯B .
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skewed binary partition B type(B)
({0, 2, 5}, ∅, {6, 7}, {1, 3, 4, 8}⋆) (2, 0, 2, 4⋆)
({2, 5}, {0, 7}⋆, {6}, {1, 3, 4, 8}⋆) (2, 1◦, 1, 4⋆)
({1, 3, 4, 5, 8}, {0}, {2}, {6, 7}) (5, 0◦, 1, 2)

(∅, {0}, {2, 3, 8}, {1, 6, 7}⋆, {4, 5}) (0, 0◦, 3, 3⋆, 2)
({5, 7}, {0, 1, 3}⋆, {2, 4}⋆, {6, 8}⋆) (2, 2◦, 2⋆, 2⋆)

(∅, {0, 1, 2, 3, 4, 5, 6, 7, 8}⋆) (0, 8◦)

Table 1: Examples of skewed binary partitions of [0, 8] and their types

One notices that we also include a column of "type(B)" on the right of Table 1. We
introduce this concept in the definition below.

Definition 7. Let B = (B−1, B0, . . . , Bk) be a skewed binary partition of [0, n]. We asso-
ciate a skewed binary composition b = (b−1, b0, . . . , bk) of n to B as followings:

1. For 1 ≤ i ≤ k, let bi = |Bi| if Bi is non-homogeneous, and bi = |Bi|⋆ if Bi is
homogenous.

2. If 0 ∈ B0, then let b0 = h◦, where h = |B0| − 1, and let b−1 = |B−1|.
3. If 0 ∈ B−1, then let b0 = |B0| = 0 and let b−1 = |B−1| − 1.

We say that this vector b is the type of B and denote it by type(B).
Proposition 1. Suppose that B = (B−1, B0, B1, . . . , Bk) is a skewed binary partitions of [0, n]
with type(B) = (b−1, b0, . . . , bk). Then the co-dimension of σ̃B (with respect to the space Rn) is

|b0|+ ∑
bi∈P⋆

≥2

(|bi| − 1).

5 Face Structure

5.1 Face Poset and Normal Fan

It is well-known that, for every polytope P, the dual poset of F (P) is isomorphic to
the poset F (Σ(P)). Therefore, rather than describing the face poset of parking function
polytopes, we can alternatively describe their normal fans. It turns out that these fans
only depend on the multiplicity vector of u.

Definition 8. Suppose that there are ℓ positive integers appearing in u: d1 < d2 < · · · <
dℓ. We define m0(u) to be the number of 0’s in u, and mi(u) be the number of di’s in u
for each 1 ≤ i ≤ ℓ. The multiplicity vector and the data vector of u are defined respectively
to be m(u) = (m0(u), m1(u), . . . , mℓ(u)) and d(u) = (d1, d2, . . . , dℓ). We refer to (m, d)
as the MD pair for u.
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For example, if u = (0, 0, 4, 4, 4, 6, 8, 8), then m(u) = (2, 3, 1, 2) and d(u) = (4, 6, 8).
With the notion of MD pair, we now can interchangeably write PF(u) as PF(m, d).

Definition 9. Suppose m = (m0, m1, . . . , mℓ) is a multiplicity vector of a vector in Rn.
Let r = n − m0 = m1 + · · ·mℓ. We let b0, . . . , br be the following r + 1 skewed binary
compositions of n:

1. We let

b0 :=

{
(m0, 0, m1, . . . , mℓ) if m0 > 0
(0, 0◦, m1, . . . , mℓ) if m0 = 0

.

2. Suppose 1 ≤ k ≤ r. Let j be the unique integer in which m1 + · · ·+ mj−1 < k ≤
m1 + · · ·+ mj. We define bk := (m0 + k, 0◦, m1 + · · ·+ mj − k, mj+1, . . . , mℓ).

We denote by Ωm the set of these r + 1 skewed binary compositions of n.

Example 5. Let m = (2, 3, 1, 2) and m′ = (0, 3, 5) be two multiplicity vectors of vec-
tors in R8. Then Ωm = {(2, 0, 3, 1, 2), (3, 0◦, 2, 1, 2), (4, 0◦, 1, 1, 2), (5, 0◦, 1, 2), (6, 0◦, 2),
(7, 0◦, 1), (8, 0◦)} and Ωm′ = {(0, 0◦, 3, 5), (1, 0◦, 2, 5), (2, 0◦, 1, 5), (3, 0◦, 5), (4, 0◦, 4),
(5, 0◦, 3), (6, 0◦, 2), (7, 0◦, 1), (8, 0◦)}.

It can be shown that v = (v1, . . . , vn) is a vertex of PF(u) if and only if v is a permu-
tation of a point of the form (0, . . . , 0, ui+1, . . . , un) for some 0 ≤ i ≤ n. The next theorem
describes the normal cones at vertices of parking function polytopes.

Theorem 2. Let (m, d) be an MD pair. Then there is a bijection between the vertices of PF(m, d)
and the skewed binary partitions in {B | type(B) ∈ Ωm} such that if vB is the vertex of
PF(m, d) corresponding to the skewed binary partition B, then ncone(vB, PF(m, d)) = σ̃B.

Let B = (B−1, B0, . . . , Bk) be a skewed binary partition whose type satisfies type(B) =
(b−1, b0, . . . , bk) ∈ Ωm. Then the bijection in Theorem 2 maps B to the vertex vB =
(v1, . . . , vn) that is the permutation of the point (w1, . . . , wn) = (0, . . . , 0, ub−1+1, . . . , un)
satisfying vi = wt if i ∈ Bj where t = |b−1|+ · · ·+ |bj|.

Theorem 2 also allows us to determine when PF(m, d) is a simple polytope.

Corollary 1. Let (m, d) be an MD pair where m = (m0, m1, . . . , mℓ). Then PF(m, d) is simple
if and only if either m = (0, n) or (n − 1, 1) or m1 = · · · = mℓ−1 = 1 for some ℓ ≥ 2.

Definition 10. Let m be a multiplicity vector. We define SBP(m) to be the poset of all
skewed binary partitions B such that type(B) ∈ Ωm and their contractions, ordered by
contraction, i.e. C,B ∈ SBP(m) satisfy C ≤ B if C is a contraction of B.

Applying Lemma 1 to skewed binary partitions, we obtain the following result as a
consequence of Theorem 2.
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Corollary 2. Let (m, d) be an MD pair. Then the posets Σ(PF(m, d)) and SBP(m) are
isomorphic. Moreover, If FB is the face of PF(m, d) in which ncone(FB, PF(m, d)) corresponds
to the skewed binary partition B, then ncone(FB, PF(m, d)) = σ̃B.

Thus, the combinatorial types of parking function polytopes depend solely on the
multiplicity vector, i.e. two parking functions polytopes PF(u1) and PF(u2) have iso-
morphic face posets (hence normal fans) if m(u1) = m(u2).

Since Σ(PF(m, d)) and SBP(m) are isomorphic as posets, it is then natural to ask
how can we describe all the skewed binary partitions B in SBP(m). Due to the sym-
metry of parking function polytope, we have that if B corresponds to a normal cone in
Σ(PF(m, d)), then every skewed binary partition of the same type also corresponds to a
normal cone in Σ(PF(m, d)). Thus, we can describe these skewed binary partitions by
their types. Theorem 1 allows us to characterize them, as stated in the next proposition.

Proposition 2. Suppose that m = (m0, . . . , mℓ) is a multiplicity vector of of a vector in Rn,
and B is a skewed binary partition of [0, n]. Then B is in SBP(m) if and only if type(B) =
(b−1, b0, . . . , bp) is a skewed binary composition satisfying the following conditions.

(1) 0 < |b−1|+ |b0| ≤ m0 if and only if b0 = 0.

(2) m0 < |b−1|+ |b0|+ |b1| 1 and for every positive integer i ≤ ℓ, there exists at most one
positive integer j such that

m0 + · · ·+ mi−1 ≤ |b−1|+ · · ·+ |bj−1| < |b−1|+ · · ·+ |bj| ≤ m0 + · · ·+ mi. (5.1)

(3) If j is a positive integer such that there exists a positive integer i satisfying (5.1), then
bj ∈ P. Otherwise, bj ∈ P⋆ for 1 ≤ j ≤ p.

6 h-vectors

Given a poset (Q,≤Q) where Q ⊂ N, we say that the ordered pair (i, j) is a descent of
(Q,≤Q) if i ⋖Q j and j < i, and say that (i, j) is an ascent if i ⋖Q j and j > i.

As noted in Corollary 1, PF(m, d) is simple if and only if either m = (0, n) or (n− 1, 1)
or m1 = · · · = mℓ−1 = 1 for some ℓ ≥ 2. This implies that for every B ∈ Ωm, the preorder
≤B is a poset and its Hasse diagram is a tree. We will denote the number of descents
and ascents of the poset ([0, n],≤B) by des(B) and asc(B), respectively. The following
lemma, which is a slight variation of [11, Theorem 4.2], expresses the h-polynomials of
simple parking function polytopes in terms of descents and ascents.

1If B = (B−1, B0), then the inequality becomes m0 < |b−1|+ |b0|.
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Lemma 2. If PF(m, d) is an n-dimensional simple polytope, then its h-polynomial equals

h(t) = ∑
type(B)∈Ωm

tdes(B) = ∑
type(B)∈Ωm

tasc(B).

For p, q ∈ N, let T(p, q) be the poset on [p+ q] defined by the covering relations j⋖ j+
1 for all j ∈ [p− 1] and p⋖ k for all k ∈ [p+ 1, q]. Let Sn(T(p, q)) := {σ(T(p, q)) | σ ∈ Sn}
be the set of all posets on [p + q] having the same Hasse diagram as T(p, q).

Definition 11. Given a poset (T(p, q),≤T) on [p + q], we define its generalized Eulerian
polynomial to be

A(T(p, q), t) := ∑
T∈Sn(T(p,q))

tdes(T)

where des(T) is the number of descents of the poset T.

The generalized Eulerian polynomial A(T(p, q), t) has degree p + q − 1 and is palin-
dromic. The usual Eulerian polynomial Ap+1(t) of degree p is equal to A(T(p, 1), t).

Note that PF(0, n) is an n-cube and PF(n − 1, 1) is an n-simplex, and that their h-
polynomials are known to be (1 + t)n and 1 + t + · · · tn, respectively. The next theorem
gives a formula for the h-polynomials of all other simple ones.

Theorem 3. Let (m, d) be an MD pair where m = (m0, m1, . . . , mℓ) for some ℓ ≥ 2. Suppose
that PF(m, d) is n-dimensional and simple. Then its h-polynomial is given by

h(t) =


(

∑mℓ
j=0 (

n
j)t

j
)
+ t ∑ℓ−1

i=1 ( n
i+mℓ

)A(T(i, mℓ), t) if m0 = 0

g(t) +
(

∑mℓ
j=0 (

n
j)t

j
)
+ t ∑ℓ−2

i=1 ( n
i+mℓ

)A(T(i, mℓ), t) otherwise

where g(t) =
[
∑z

i=0 (
n
i )
(

∑n−i
j=i+1 tj

)]
+ ∑ℓ−2

i=1 ( n
i+mℓ

)
(

∑n−i−mℓ
j=2 tj

)
A(T(i, mℓ), t), and z =

min (mℓ, n − mℓ − 1) .

We can also express A(T(p, q), t) in terms of Eulerian polynomials. This leads to the
following result as a consequence of Theorem 3.

Corollary 3. Suppose that PF(u) is n-dimensional and simple. Then its h-polynomial has the
form h(t) = r0(t) + ∑n

k=1 rk(t)Ak(t) where Ad(t) is the Eulerian polynomial of degree d − 1
and rd(t) is a polynomial with nonnegative coefficients of degree ≤ n.

For instance, the h-polynomials of PF(1, . . . , n) and PF(0, . . . , n − 1) equal

1 +
n

∑
k=1

(
n
k

)
tAk(t) and 1 + tAn(t) +

n−2

∑
k=1

(
n
k

)
tAk(t), respectively.
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