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Abstract. It is well known that there is a duality map between the superstable configu-
rations and the critical configurations of a graph. This was extended to all M-matrices
in (Guzmán and Klivans, 2015). We show a natural way to extend this to all (L, M)-chip
firing pairs introduced in (Guzmán and Klivans, 2016). In addition, we study various
properties of z-superstable configurations and critical configurations of (L, M)-chip
firing pairs.

Résumé. Il est bien connu qu’il existe une dualité entre les configurations supersta-
bles et les configurations critiques d’un graphe. Dans (Guzmán et Klivans, 2015), ce
résultat a été étendu à toutes les M-matrices. Nous démontrons une façon naturelle
d’étendre cette dualité à toutes les paires (L, M) qui sont « chip-firing », introduites
dans (Guzmán et Klivans, 2016). De plus, nous étudions diverses propriétés des con-
figurations z-superstables et des configurations critiques des paires « chip-firing ».
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1 Introduction

Chip-firing is a game that takes place on a connected graph G, where chips are dis-
tributed across the vertices of G and moved to adjacent vertices based on a straightfor-
ward rule. This dynamical system has a profound theory that links to various fields in
mathematics and physics [1, 9, 10, 14]. For further details, please see the recent textbooks
[15] and [8].

Consider a simple graph G with n + 1 vertices, where one vertex is designated as the
sink, and chips are placed on each non-sink vertex. The allocation of chips is described
by an integer vector c⃗ ∈ Zn, known as a (chip) configuration. A non-sink vertex with chips
equal to or greater than its degree can fire, distributing one chip along each incident edge
to adjacent vertices. A configuration c⃗ is termed stable if no non-sink vertex is able to
fire.
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For a connected graph G, any starting configuration will eventually reach stability
via sequence of firings, with some chips moving to the sink vertex. Letting v1, ..., vn
represent the non-sink vertices of G, the chip-firing rules can be described using LG, the
n × n reduced Laplacian matrix of G.

The outcome of firing a vertex vi on a chip configuration c⃗ is represented by c⃗ − Le⃗i,
where e⃗i denotes the i-th standard basis vector. The matrix LG establishes an equivalence
relation among the vectors in Zn, with c⃗ and d⃗ being firing equivalent if c⃗ − d⃗ lies within
the image of LG. This determines the critical group of G, as described by K(G) :=
Zn/ Im LG [3].

A configuration c⃗ is considered valid (or effective) if for all i = 1, . . . , n, the condition
ci ≥ 0 holds. The goal is to identify notable valid configurations within each equivalence
class [⃗c] ∈ K(G). It turns out that each [⃗c] contains a distinct valid configuration that is
critical, which means it is stable and can be derived by iteratively firing from a sufficiently
large configuration b⃗. Stabilizing the sum of two critical configurations results in a critical
configuration.

One can show that each [⃗c] contains a unique valid configuration that is superstable,
which means that it is stable under set-firings, the simultaneous firing of a set of vertices.
A superstable configuration represents a solution to an energy minimization problem
and aligns with the concept of a G-parking function.

For a connected graph G, there is a straightforward bijection linking the set of critical
configurations and the set of superstable configurations, which are both correspondingly
in bijection with the set of spanning trees of G. This simple map (taking a configuration,
negating it coordinate-wise from a certain maximal configuration) is what is called the
duality map between superstable configurations and critical configurations, and our focus
is to extend this map to more general models.

Recently, chip-firing has been extended to more general settings, where the reduced
Laplacian of a graph is replaced by other matrices (see, for instance, [11, 12]). We use a
matrix M to define a firing rule that mimics the graphical setting: firing vi now takes a
configuration c⃗ to c⃗− Me⃗i, where e⃗i stands for the unit vector with 1 at the i-th coordinate.
For a well-defined notion of chip-firing we require that M satisfies an avalanche finite
property, so that repeated firings of any initial configuration eventually stabilize in an
appropriate sense. The class of matrices with this property are known as M-matrices, and
can be characterized in a number of ways (see Definition 2.1 below). In [12], Guzmán and
Klivans have shown that the chip-firing theory defined by an M-matrix leads to good
notions of critical and superstable configurations. They further generalized this model
by introducing an invertible matrix L, calling (L, M) a chip-firing pair, and extending the
definition of critical and superstable configurations to that model [13].

Our goal is to extend the duality between critical and superstable configurations to
(L, M)-chip firing pairs. This will answer Question 5.2 of [6] in a much more general
sense, since signed graphs are special cases of the chip-firing pair model. In Section 2
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we summarize the Guzmán–Klivans theory of chip-firing pairs and also review the pre-
viously known duality between superstable and critical configurations of M-matrices. In
Section 3 we provide our main result on extending the duality map to chip-firing pairs.
In Section 4 we study some properties of the map discussed in the main result.

2 Prerequisites

In this section we review the definition of chip-firing pairs. After that we review the du-
ality map between superstable configurations and critical configurations for M-matrices.
Then we will go over the tools developed in [6] that we will use to deal with the z-
superstable and critical configurations of chip-firing pairs.

2.1 Chip firing pairs

In [12], Guzmán and Klivans generalized the chip-firing on graphs to M-matrices. M-
matrices are used in various fields such as economics or scientific computing [4, 7, 16,
18]. Guzmán and Klivans further generalized this by introducing an invertible integer
matrix L in chip-firing pairs (L, M) introduced in [13].

Definition 2.1. Suppose M is an n × n matrix such that (M)ii > 0 for all i and (M)ij ≤ 0 for
all i ̸= j. Then M is called an (invertible) M-matrix if any of the following equivalent conditions
hold:

• M is avalanche finite;

• The real part of the eigenvalues of M are positive;

• The entries of M−1 are non-negative;

• There exists a vector x⃗ ∈ Rn with x⃗ ≥ 0⃗ such that Mx⃗ has all positive entries.

The pair (L, M), an M-matrix M together with an invertible integer matrix L, is called
a chip-firing pair. The relevant (chip) configurations c⃗ ∈ Zn are simply integer vectors with
n entries, and chip-firing is dictated by the matrix L. In particular, (M, M) recovers the
chip-firing on M-matrices and (LG, LG) when LG is the (reduced) Laplacian of a graph
recovers the classical chip-firing model on graphs.

Remark 2.2. In this paper, we only focus on integral M-matrices (since the duality map for
M-matrices given in [12] that we extend upon, is only given for integral matrices).

Definition 2.3. Suppose (L, M) is a chip-firing pair. A configuration c⃗ is valid if c⃗ ∈ S+, where

S+ = {LM−1x⃗ : LM−1x⃗ ∈ Zn, x⃗ ∈ Rn
≥0}.
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Equivalently, a configuration c⃗ is valid if ML−1⃗c ∈ R+, where

R+ = {x⃗ ∈ Rn
≥0 : LM−1x⃗ ∈ Zn}.

In particular, for (M, M), being valid is the same as being a nonnegative integer
vector.

Definition 2.4. Suppose (L, M) is a chip-firing pair, and suppose that c⃗ ∈ S+ is a valid config-
uration. A site i ∈ {1, . . . , n} is ready to fire if

c⃗ − L⃗ei ∈ S+,

so that the vector obtained by subtracting the ith row of L from c⃗ is also valid.
Similarly, suppose x⃗ ∈ R+. Then a site i ∈ {1, . . . , n} is ready to fire if

x⃗ − Me⃗i ∈ R+.

A configuration c⃗ (in S+ or R+) is stable if no site is ready to fire.

If i is ready to fire, we declare that b⃗ = c⃗ − L⃗ei ∈ S+ is derived from c⃗ through a
legal firing. Repeating this process, a vector a⃗ ∈ S+ is said to be derived from c⃗ through
a sequence of legal firings. For a configuration c⃗ ∈ S+ (or conversely, d⃗ ∈ R+), we define
stabS+ (⃗c) (and stabR+(d⃗)) as the resulting configuration after executing a series of legal
firings until no site remains eligible to fire. Adapting the proof presented in [15, Theorem
2.2.2], it can be established that both stabS+ (⃗c) and stabR+(d⃗) are uniquely determined.
When it is clear whether we are dealing with S+ or R+, we use stab(x⃗) to refer to the
stabilization of the configuration x⃗.

The definition of critical and superstable configurations in this model are as follows.

Definition 2.5. Given an (L, M) pair, a configuration c⃗ ∈ S+ is reachable if there exists some
configuration d⃗ ∈ S+ satisfying:

• d⃗ − L⃗ei ∈ S+ for all 1 ≤ i ≤ n

• c⃗ = d⃗ − ∑k
j=1 L⃗ej and d⃗ − ∑ℓ

j=1 L⃗ej ∈ S+ for all ℓ < k.

Given an (L, M) pair, a configuration c⃗ ∈ S+ is critical if c⃗ is both stable and reachable.

Critical configurations are those that are both stable and reachable by chip-firing from
a sufficiently large configuration. They are useful because they index the equivalence
classes of the critical group.

Definition 2.6 ([12, Definition 4.3]). A vector f ∈ Zn with f ≥ 0 is z-superstable if for every
z ∈ Zn with z ≥ 0 and z ̸= 0 there exists 1 ≤ i ≤ n such that fi − (Lz)i < 0.



On z-superstable and critical configurations of chip-firing pairs 5

It turns out that in the equivalence class given by the matrix L in S+, we can al-
ways find a unique representative that is critical and a unique representative that is
z-superstable.

Theorem 2.7 ([13, Theorems 3.5, 4.3, 5.5]). Suppose (L, M) is a chip-firing pair. Then there
exists exactly one z-superstable configuration and one critical configuration in each equivalence
class [⃗c]L.

Remark 2.8. For chip-firing pairs, there is the notion of a χ-superstable configuration as well
as a z-superstable configuration. From Theorem 2.7, it is the z-superstable configurations that
have the same size as the critical configurations. For the remainder of the paper, we will focus
only on z-superstable configurations, and we will call them the superstable configurations of the
chip-firing pair, omitting the letter z.

In the next subsection, we go over the duality that is known to exist when L = M.

2.2 Duality for M-matrices

If we take a chip-firing pair (M, M), it recovers the chip-firing on M-matrices studied in
[12]. Chip-firing on M-matrices generalizes many properties and results of the classical
chip-firing on graphs, and one of them is the duality between superstable and critical
configurations.

Given an M-matrix, it turns out that there is a critical configuration that is a
coordinate-wise greater or equal to every other critical configuration. We call this config-
uration c⃗max, given by taking all diagonal entries of M minus one and forming a vector
(in the classical case, this corresponds to having deg(v)− 1 chips for each vertex v).

Theorem 2.9 ([12]). Let M be an M-matrix. Let c⃗max denote the vector where each entry is
coming from the corresponding diagonal entry Mii minus one. Then we have a bijection between
superstable and critical configurations by the map c⃗ → c⃗max − c⃗.

Example 2.10. Consider the following graph that has the reduced Laplacian to be

LG =

 3 −1 −1
−1 2 −1
−1 −1 3

 :

1 2

3q

The superstable configurations and critical configurations are given in the following table:

Superstables Criticals
(0, 0, 0) (2, 1, 2)
(0, 0, 1) (2, 1, 1)
(0, 0, 2) (2, 1, 0)
(0, 1, 0) (2, 0, 2)

Superstables Criticals
(0, 1, 1) (2, 0, 1)
(1, 0, 0) (1, 1, 2)
(1, 1, 0) (1, 0, 2)
(2, 0, 0) (0, 1, 2)
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Notice that in the above example, we have a bijection between superstable configura-
tions and critical configurations via the map c⃗ → (2, 1, 2)− c⃗.

Recall that our goal is to extend this to (L, M) chip-firing pairs. Next subsection will
show that the map c⃗ → c⃗max − c⃗ does not work for chip-firing pairs.

2.3 The usual duality map does not work for chip-firing pairs

Recall that the usual duality map between the superstable and critical configurations for
graphs (and also M-matrices) is given by the map c⃗ → c⃗max − c⃗ for some fixed c⃗max. As
can be seen in the example below, this does not work for (L, M)-pairs in general. The
examples from this point throughout will be using (L, M)-pairs coming from a signed
graph. The systematic study of signed graphs and their Laplacian was initiated by
Zaslavsky in [19] and also studied in [5, 17, 2].

Example 2.11. We take L to be the (reduced) Laplacian of the following signed graph and M to
be the (reduced) Laplacian of the underlying unsigned graph. The Laplacian of the signed graph
is simply obtained from the Laplacian of the underlying graph, by changing the signs of entries
corresponding to negative edges.

1 2

3q

−

M =

 3 −1 −1
−1 2 −1
−1 −1 3

 L =

 3 1 −1
1 2 −1
−1 −1 3



Configurations in S+

Superstables Criticals
(0, 0, 0) (6, 4, 2)
(1, 1, 0) (7, 5, 2)
(4, 3, 2) (8, 6, 0)
(5, 4, 2) (9, 7, 0)

Superstables Criticals
(2, 2, 0) (8, 6, 2)
(3, 3, 0) (9, 7, 2)
(3, 2, 0) (6, 4, 1)
(4, 3, 0) (7, 5, 1)

Superstables Criticals
(5, 4, 0) (8, 6, 1)
(6, 5, 0) (9, 7, 1)
(6, 4, 0) (6, 5, 2)
(7, 5, 0) (7, 6, 2)

Notice that in the table of superstable and critical configurations of the chip-firing
pair, the coordinate-wise maximal critical configuration is (9, 7, 2). However if we take
the superstable configuration (5, 4, 2), the vector we get by applying the traditional du-
ality map (9, 7, 2)− (5, 4, 2) = (4, 3, 0) is not a critical configuration.

Even worse, there are many cases where cmax, the critical configuration that has
coordinate-wise maximal entries does not even exist.
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1

23

4

5 q

−

−

−

−

Critical configurations

(9, 15, 17, 15, 9)
(12, 20, 23, 21, 13)
(13, 21, 23, 20, 12)
(7, 11, 12, 11, 7)

(10, 16, 18, 17, 11)
(11, 17, 18, 16, 10)

Example 2.12. Consider the (L, M)-pair coming from the signed graph below. The underlying
graph is C6, the cycle on six vertices.

As can be checked from the table of critical configurations above, there is no critical configu-
ration that is the maximal in all coordinates.

2.4 Finding the superstable/critical configurations of chip firing pairs.

In this subsection, we discuss an alternative way to find the superstable and critical
configurations of (L, M) chip-firing pairs, developed in [6].

Let sstab(M) denote the set of superstable configurations of a M-matrix M and let
crit(M) denote the set of critical configurations. However, beware that we are not going
to be using sstab(L, M) to denote the set of superstable configurations of (L, M) and the
same for crit(L, M). It turns out that for configurations in S+, it is important to look at
their preimages in R+. Given any vector f⃗ , we use

⌊
f⃗
⌋

to denote the vector obtained
from f by taking the floor at every coordinate.

Theorem 2.13 ([6, Theorem 3.2]). Given an (L, M) pair, a configuration c⃗ ∈ S+ is super-
stable/critical if and only if

⌊
ML−1⃗c

⌋
is a superstable/critical configuration of M.

For example, we look at our running example coming from a signed graph.

Example 2.14. Consider the signed graph studied in Example 2.11. The table lists all superstable
and critical configurations in S+, their preimage in R+, and the floor of the preimage. We
can notice that the floor of the preimages are the superstable and critical configurations of the
underlying graph we saw in Example 2.10 (however, not all superstable/critical configurations of
the underlying graph are used).

1 2

3q

−
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LM−1(sstab) sstab ⌊sstab⌋ LM−1(crit) crit ⌊crit⌋
(0, 0, 0) (0, 0, 0) (0, 0, 0) (6, 4, 2) (2, 0, 2) (2, 0, 2)
(1, 1, 0) (0, 1/2, 0) (0, 0, 0) (7, 5, 2) (2, 1/2, 2) (2, 0, 2)
(4, 3, 2) (2/3, 1/3, 2) (0, 0, 2) (8, 6, 0) (8/3, 4/3, 0) (2, 1, 0)
(5, 4, 2) (2/3, 5/6, 2) (0, 0, 2) (9, 7, 0) (8/3, 11/6, 0) (2, 1, 0)
(2, 2, 0) (0, 1, 0) (0, 1, 0) (8, 6, 2) (2, 1, 2) (2, 1, 2)
(3, 3, 0) (0, 3/2, 0) (0, 1, 0) (9, 7, 2) (2, 3/2, 2) (2, 1, 2)
(3, 2, 0) (4/3, 1/6, 0) (1, 0, 0) (6, 4, 1) (7/3, 1/6, 1) (2, 0, 1)
(4, 3, 0) (4/3, 2/3, 0) (1, 0, 0) (7, 5, 1) (7/3, 2/3, 1) (2, 0, 1)
(5, 4, 0) (4/3, 7/6, 0) (1, 1, 0) (8, 6, 1) (7/3, 7/6, 1) (2, 1, 1)
(6, 5, 0) (4/3, 5/3, 0) (1, 1, 0) (9, 7, 1) (7/3, 5/3, 1) (2, 1, 1)
(6, 4, 0) (8/3, 1/3, 0) (2, 0, 0) (6, 5, 2) (2/3, 4/3, 2) (0, 1, 2)
(7, 5, 0) (8/3, 5/6, 0) (2, 0, 0) (7, 6, 2) (2/3, 11/6, 2) (0, 1, 2)

Thanks to Theorem 2.13, it is much more convenient to deal with the preimages
of configurations, especially when trying to check if it is superstable or critical. Given a
superstable configuration in S+, we will denote its preimage in R+ as superstable preimage
and for a critical configuration in S+, we are going to denote its preimage in R+ as critical
preimage. We are also going to use sstab(L, M) to denote the set of superstable preimages
of a (L, M) chip-firing pair and use crit(L, M) to denote the set of critical preimages.

3 The Central Duality

In this section we establish the duality between the superstable configurations and criti-
cal configurations of (L, M)-pairs, that extends the canonical duality between superstable
and critical configurations of M-matrices. We are mainly going to be dealing with the
pre-images of the configurations in R+.

3.1 The involution µ and the duality map.

We define an involution on the set of superstable configurations of M. Given any vector
f⃗ , recall that we used

⌊
f⃗
⌋

to denote the vector obtained from f by taking the floor at

every coordinate. We are going to let { f⃗ } denote f −
⌊

f⃗
⌋

.

Definition 3.1. For any chip-firing pair (L, M), we define the map µ : sstab(M) → sstab(M):

µ(⃗s) =

{⃗
s if {LM−12⃗s } = {LM−1⃗cmax},
sstab(⃗cmax − s⃗) otherwise.
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It is clear from definition that the above map is indeed an involution:

Proposition 3.2. The map µ is an involution.

In the special case where L = M (this recovers the usual chip-firing on M-matrices,
and in particular when M is the Laplacian of a graph, the classical chip-firing) the above
involution is simply the identity map: since all superstable and critical preimages are
integer vectors.

Lemma 3.3. Let a⃗, b⃗ be integer vectors such that they are equivalent under M. Let f⃗ be a vector
such that every entry fi satisfies 0 ≤ fi < 1. Then a⃗ + f⃗ ∈ R+ if and only if b⃗ + f⃗ ∈ R+.

Example 3.4. We use the same (L, M) pair coming from a signed graph studied in previous
examples. From the configuration a⃗ = (1, 2, 0), we can fire vertex 2 to obtain the configuration
b⃗ = (2, 0, 1), so these configurations are firing-equivalent under M. Take some non-negative
rational vectors where the entries are bounded above by 1, say f⃗1 = (1

3 , 2
3 , 0) and f⃗2 = (2

3 , 1
3 , 0).

Preimage Image under LM−1

a⃗ + f⃗1 = (4
3 , 8

3 , 0) (8, 7, 0)
b⃗ + f⃗1 = (7

3 , 2
3 , 1) (7, 5, 1)

a⃗ + f⃗2 = (5
3 , 7

3 , 0) (8, 27
4 , 0)

b⃗ + f⃗2 = (8
3 , 1

3 , 1) (7, 19
4 , 1)

Notice from the table that we have a⃗+ f⃗1 and b⃗+ f⃗1 are both in R+ whereas a⃗+ f⃗2 and b⃗+ f⃗2
are both not in R+, which is consistent with Lemma 3.3.

What the above lemma suggests is that we should group up the superstable/critical
preimages having the same floor (which we call a bucket), and try to map the superstable
configurations of M to critical configurations of M where the bucket structure is the
same.

Theorem 3.5. Let (L, M) be any chip-firing pair. The map χ : sstab(L, M) → crit(L, M) given
by s⃗ 7→ c⃗max − µ(⌊⃗s⌋) + {⃗s} is a bijection.

Example 3.6. Consider the signed graph from Example 2.14. Start with the superstable config-
uration (5, 4, 0) ∈ S+ of the chip-firing pair. Then the corresponding superstable preimage is
s⃗ = (4

3 , 7
6 , 0).

We can check that {LM−12 ⌊⃗s⌋} = (0, 1
2 , 0) ̸= (0, 0, 0) = {LM−1⃗cmax}, so µ(⌊⃗s⌋) =

sstab(⃗cmax − ⌊⃗s⌋). For this graph, we have c⃗max = (2, 1, 2), so µ(⌊⃗s⌋) = (0, 0, 1) as
M−1(⃗cmax − ⌊⃗s⌋ − (0, 0, 1)) ∈ Z.

Then

χ(⃗s) = c⃗max − µ(⌊⃗s⌋) + {⃗s} = (2, 1, 2)− (0, 0, 1) +
(

1
3

,
1
6

, 0
)
=

(
7
3

,
7
6

, 1
)
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gives a critical preimage in R+. Its image in S+ is (8, 6, 1), so we have mapped the superstable
configuration (5, 4, 0) to the critical configuration (8, 6, 1).

It can be verified that χ recovers all of the critical preimages (and hence the critical configura-
tions) in the table from Example 2.14 starting from all superstable preimages.

Remark 3.7. The duality χ recovers the classical duality for chip-firing on graphs when L is
the (reduced) Laplacian of a signed graph and M is the (reduced) Laplacian of the underlying
unsigned graph. It also recovers the duality for M-matrices when L = M.

Example 3.8. Take the M-matrix coming from the unsigned graph in Example 2.10. Now let
us study the (M, M) chip-firing pair. We have that (0, 0, 1) and (1, 1, 0) are superstable config-
urations of M. Since the preimages of all superstable and critical configurations are obviously
integral (MM−1 is the identity matrix), they are fixed points in our involution µ.

Then

χ(0, 0, 1) = c⃗max − µ(⌊(0, 0, 1)⌋) + {(0, 0, 1)} = (2, 1, 2)− (0, 0, 1) + (0, 0, 0) = (2, 1, 1)

χ(1, 1, 0) = c⃗max − µ(⌊(1, 1, 0)⌋) + {(1, 1, 0)} = (2, 1, 2)− (1, 1, 0) + (0, 0, 0) = (1, 0, 2)

This aligns with the usual duality between superstable and critical configurations on graphs.

3.2 Counting the number of fixed points of µ.

Let FM
0 stand for the set of superstable preimages of an (L, M) chip-firing pair such that

the all entires are integers. Then this turns out to be a subgroup of the critical group of
M. Then from this we can compute the number of fixed points of µ:

Theorem 3.9. The number of fixed points of the involution map µ is equal to either 0 or |FM
0 |d,

where d is the number of elements of K(M)/FM
0 with order at most 2.

Example 3.10. Let’s revisit the running example of a (L, M)-pair coming from a signed graph.

sstab(M) Its image (under LM−1) Is it a fixed point of µ?
(0, 0, 0) (0, 0, 0) Yes
(0, 0, 1) (1, 3

4 , 1) No
(0, 0, 2) (2, 3

2 , 2) Yes
(0, 1, 0) (2, 2, 0) Yes
(0, 1, 1) (3, 11

4 , 1) No
(1, 0, 0) (2, 5

4 , 1) No
(1, 1, 0) (4, 13

4 , 1) No
(2, 0, 0) (4, 5

2 , 2) Yes
c⃗max = (2, 1, 2) (8, 6, 4)

We have K(M) = Z8 and |FM
0 | = 2. Therefore, K(M)/FM

0
∼= Z4, which has 2 elements of

order at most 2. Using Theorem 3.9 with d = 2 and |FM
0 | = 2, we get 4 fixed points in µ.
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