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The Ehrhart h*-polynomials of positroid polytopes
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Abstract. A positroid is a matroid realized by a matrix such that all maximal minors
are non-negative. Positroid polytopes are matroid polytopes of positroids. In partic-
ular, they are lattice polytopes. The Ehrhart polynomial of a lattice polytope counts
the number of integer points in the dilation of that polytope. The Ehrhart series is the
generating function of the Ehrhart polynomial, which is a rational function with the
numerator called the h∗-polynomial. We compute the h∗-polynomial of an arbitrary
positroid polytope and an arbitrary half-open positroid polytope. Our result general-
izes that of Katzman, Early, Kim, and Li for hypersimplices.
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1 Introduction

A positroid is a matroid on an ordered set realized by a matrix such that all of its
maximal minors are non-negative. Postnikov [22] showed that positroids are in bijection
with several interesting classes of combinatorial objects, including Grassmann necklaces,
decorated permutations, L-diagrams, and equivalence classes of plabic graphs.

If P ⊆ Zn is a d-dimensional lattice polytope, its Ehrhart function/polynomial is defined
for every integer t ≥ 0 by

E(P, t) := #(t · P) ∩ Zn

where t · P is the dilation of P by a factor t, i.e., t · P = {t · v | v ∈ P}. It is well known
from Ehrhart [10] that E(P, t) is a polynomial function in t. The corresponding Ehrhart
series is defined as ∑∞

t=0 E(P, t)zt = h∗(P,z)
(1−z)d+1 where h∗(P, z) = h0 + h1z + · · ·+ hdzd is a

polynomial of degree at most d with non-negative coefficients [23], called the Ehrhart
h∗-polynomial of P. Ehrhart theory naturally extends to half-open polytopes, which are
polytopes with some facets removed. The Ehrhart h∗-polynomial of the whole polytope
can then be obtained by inclusion-exclusion on the faces.

In this paper, we give explicit formulas for the h∗-polynomials of positroid polytopes
and half-open positroid polytopes. Our work generalizes the work of Katzman [12],
Early [9], Kim [13], and Li [17] on hypersimplices, as the hypersimplex ∆k,n is the matroid
polytope of the uniform matroid Uk,n, which is also a positroid. Apart from the special
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case of the uniform matroid, no prior combinatorial formula for the h∗-polynomial of an
arbitrary positroid polytope was known.

Theorem 1.1. Let PJ be any connected positroid polytope (see Definition 2.8), where J is the
associated Grassmann necklace (see Definition 2.2). Let DJ ⊂ Sn be the subset of permutations
that label the circuit triangulation of PJ (see Theorem 3.7). For any w0 ∈ DJ , let (Pw0,J ,≺)
be the corresponding poset on DJ (see Definition 4.4). The cover statistic of Pw0,J gives the
h∗-polynomial of PJ , i.e.,

h∗(PJ , z) = ∑
w∈DJ

zcover(w)

where cover(w) is the number of elements w covers in the poset Pw0,J .

24135

21435 32415 42135 24315

32145 34215 42315

Figure 1: We show the graph of the circuit triangulation of the positroid polytope
PJ associated to the positroid with Grassmann necklace J = (123, 235, 345, 145, 125),
which coincides with the Hasse diagram of the poset P24135,J . The h∗-polynomial of
PJ is 1 + 4z + 3z2.

1.1 Organization

In Section 2, we introduce positroids and related combinatorial objects. We reduce the
problem to connected positroids; see Definition 2.8. In Section 3, we analyze the circuit
triangulation of connected positroid polytopes. In Section 4, we give a family of shellings
of connected positroid polytopes, which give formulas for the h∗-polynomial of an arbi-
trary connected positroid polytope, proving Theorem 1.1. In Section 5, we give a formula
for the h∗-polynomial of any connected positroid polytope with upper facets removed. In
Section 6, we apply our theorems to the special case of tree positroids and derive Corol-
lary 6.8 in terms of the circular extensions of partial cyclic orders.
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2 Positroids

In this section, we will start by defining matroids and positroids. We also define Post-
nikov’s notion of Grassmann necklace, and explain how each one naturally labels a posi-
troid. Then we introduce positroid polytopes and the notion of connected positroids, and
we reduce the problem to connected positroids.

For a k × n-matrix A of rank k and a k-element subset I ⊂ [n], let AI denote the k × k-
submatrix of A in the column set I, and let ∆I(A) := det(AI) denote the corresponding
maximal minor of A. The set of k-subsets I ⊂ [n] such that ∆I(A) ̸= 0 form the bases of a
rank k matroid M(A).

Definition 2.1. Suppose A is a k × n matrix of rank k with real entries such that all its
maximal minors are nonnegative. The matroid M(A) associated to A is called a positroid.

Definition 2.2. Let k ≤ n be a positive integer. A Grassmann necklace of type (k, n) is a
sequence (J1, J2, . . . , Jn) of k-subsets Ji ∈ ([n]k ) such that for any i ∈ [n],

• if i ∈ Ji then Ji+1 = Ji − {i} ∪ {j} for some j ∈ [n],

• if i /∈ Ji then Ji+1 = Ji,

where Jn+1 = J1 by convention.

Towards the bijection between Grassmann necklaces and positroids, we need the
notion of i-order. The i-order <i on the set [n] is the total order

i <i i + 1 <i · · · <i n <i 1 <i · · · <i i − 2 <i i − 1.

Let i ∈ [n]. The Gale order on ([n]d ) (with respect to <i) is the partial order ≤i defined
as follows: for any two d-subsets S = {s1 <i · · · <i sd} ⊆ [n] and T = {t1 <i · · · <i
td} ⊆ [n], we have S ≤i T if and only if sj ≤i tj for all j ∈ [d].

Lemma 2.3 ([22, Lemma 16.3]). For a matroid M ⊆ ([n]k ) of rank k on the set [n], let JM =
(J1, . . . , Jn) be the sequence of subsets in [n] such that, for i ∈ [n], Ji is the minimal basis of M
with respect to the Gale order with respect to <i on [n]. The sequence J (M) is a Grassmann
necklace of type (k, n).

Theorem 2.4 ([22, 19]). Let J = (J1, . . . , Jn) be a Grassmann necklace of type (k, n). Then the
collection

B(J ) :=
{

B ∈
(
[n]
k

)
| B ≥i Ji for all i ∈ [n]

}
is the collection of bases of a rank k positroid M(J ) := ([n],B(J )). Moreover, for any positroid
M we have M(J (M)) = M.



4 Yuhan Jiang

Example 2.5. Let J be the Grassmann necklace (12, 23, 13, 14). The bases of the positroid
associated to J is {12, 13, 14, 23, 24}.

Definition 2.6. Given a matroid M = ([n],B), the (basis) matroid polytope

PM := convex{eB | B ∈ B} ⊂ Rn

of M is the convex hull of the indicator vectors of the bases of M, where eB = ∑i∈B ei
and {e1, . . . , en} is the standard basis of Rn.

The next proposition provides inequalities defining the matroid polytope of a positroid.

Proposition 2.7 ([1, 16]). Let J = (J1, J2, . . . , Jn) be a Grassmann necklace of type (k, n). For
any i ∈ [n], suppose the elements of Ji are ai

1 <i ai
2 <i · · · <i ai

k. Then the matroid polytope PI
of the positroid associated to J can be described by the inequalities xi ≥ 0 for all i ∈ [n] and

x1 + x2 + · · ·+ xn = k
xi + xi+1 + · · ·+ xai

j−1 ≤ j − 1

for all i ∈ [n] and j ∈ [k], where all the subindices are taken modulo n.

To write the inequalities more concisely, we will use the following notation. Given
i, j ∈ [n], we define the (cyclic) interval [i, j] to be the totally ordered set

[i, j] :=
{

{i <i i + 1 <i · · · <i j} if i ≤ j,
{i <i i + 1 <i · · · <i n <i 1 <i · · · <i j} if i > j,

and x[i,j) = xi + · · ·+ xj−1 with all indices modulo n.
We reduce the problem to connected positroids.

Definition 2.8. A matroid which cannot be written as the direct sum of two nonempty
matroids is called connected.

Lemma 2.9 ([1, Lemma 7.3]). Let M be a positroid on [n] and write it as a direct sum of
connected matroids M = M1 ⊕ · · · ⊕ Mm. Then each Mi is a positroid.

Remark 2.10. The matroid polytope of a connected positroid on [n] has dimension n − 1
[1, Theorem 8.2]. If a matroid M is equal to the direct sum of matroids M = M1 ⊕ · · · ⊕
Mm, then the matroid polytope PM of M is equal to the direct product PM = PM1 × · · · ×
PMm . The Ehrhart polynomial of PM is equal to E(PM) = E(PM1) · · · E(PMm). Thus, to
know the h∗-polynomial of all positroid polytopes, it suffices to give formulas for all
connected positroid polytopes. From now on, we will focus on connected positroids.



The Ehrhart h*-polynomials of positroid polytopes 5

3 Circuit triangulation of connected positroid polytopes

In this section, we analyze the triangulation of connected positroid polytopes in terms of
(w)-simplices, defined by Parisi, Sherman-Bennett, Tessler, and Williams, and follow their
conventions. We now introduce several definitions regarding descents/permutations
that lead up to the characterization of (w)-simplices.

Definition 3.1. Let w ∈ Sn. A letter i < n is a left descent of w if i occurs to the right of
i + 1 in w. In other words, w−1(i) > w−1(i + 1). We say that i ∈ [n] is a cyclic left descent
of w if either i < n is a left descent of w or if i = n and 1 occurs to the left of n in w, that
is, w−1(1) < w−1(n). We let cDesL(w) denote the set of cyclic left descents of w and let
cdesL(w) = |cDesL(w)|.

Definition 3.2. Choose 0 ≤ k ≤ n − 2. We let Dn be the set of permutations w ∈ Sn
with wn = n, and let Dk+1,n to be the set of permutations w ∈ Dn with k + 1 cyclic left
descents. Let (w) denote the cycle (w1, · · · , wn).

The definition of cyclic left descent only depends on the total order on [n]. That is,
given any permutation of any totally ordered set that is not a singleton or empty set,
the cyclic left descent of such a permutation can be defined analogously. This definition
coincides with [15, Definition 6.2] in type A.

Definition 3.3. Let w = w1 · · ·wn ∈ Sn and i, j ∈ [n]. Let [i, j] denote the cyclic interval
defined in Section 2. Let w|[i,j] be the restriction of w to the totally ordered set [i, j], and
let cdesL(w|[i,j]) be the number of cyclic left descents of w|[i,j].

Example 3.4. Let w = 32415. Then w|[1,3] = 321 and w|[3,1] = 3415. Then cDesL(w|[1,3]) =
{1, 2} and cDesL(w|[3,1]) = {5, 1}.

Definition 3.5. For w = w1w2 · · ·wn ∈ Sn, let w(a) denote the cyclic rotation of w ending
at a. We define

Ir(w) := cDesL(w(r)).

Note that Ir only depends on the cycle (w), and |I1(w)| = · · · = |In(w)|.
We define the (w)-simplex ∆(w) to be the convex hull of the points eI1(w), . . . , eIn(w);

this is an (n − 1)-dimensional simplex. We call

Iw1 → Iw2 → · · · → Iwn → Iw1

the circuit of ∆(w).

Triangulations by (w)-simplices are often called circuit triangulations [14].

Example 3.6. The circuit of 32415 is 135 → 235 → 245 → 124 → 125 → 135. The vertices
of ∆(32415) are 11001, 10101, 01101, 01011, 11010.
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Figure 2: The positroid polytope associated to the Grassmann necklace (12, 23, 13, 14),
with bases {12, 13, 14, 23, 24}, consisting of the (1324)-simplex on the left and the
(2134)-simplex on the right.

We now characterize the set of (w)-simplices in a positroid polytope.

Theorem 3.7. Let PJ be any connected positroid polytope, where J = (J1, . . . , Jn) is the asso-
ciated Grassmann necklace.

For any i ∈ [n], suppose the elements of Ji are ai
1 <i · · · <i ai

k. Then the positroid polytope
associated to π is triangulated by (w)-simplices for w in the set

DJ := {w ∈ Dk+1,n | cdesL(w|[i,ai
j]
) ≤ j − 1 for all i ∈ [n], j ∈ [k]}

= {w ∈ Dk+1,n | Iwi ≥j Jj for all i, j ∈ [n]},

where Iw1 → Iw2 → · · · → Iwn → Iw1 is the circuit of w. The normalized volume of PJ is
vol(PJ ) = |DJ | the cardinality of DJ .

Example 3.8. Consider the Grassmann necklace J = (12, 23, 13, 14). Then DJ consists
of permutations in S4 that end with 4 such that cdesL(w) = 2 and cdesL(w|[3,4]) ≤ 1,
so DJ = {1324, 2134}. The positroid polytope PJ is a pyramid, as in Figure 2. The
(1324)-simplex has vertices 1100, 0101, 0110, 1010, and the (2134)-simplex has vertices
1100, 0101, 1001, 1010.

4 The h*-polynomial of connected positroid polytopes

In this section, we prove Theorem 1.1, which gives the h∗-polynomial of an arbitrary
connected positroid polytope.

Definition 4.1. A shelling of a simplicial complex Γ is a linear order on its maximal faces
G1, G2, . . . , Gs such that, for each i ∈ [2, s], the set Gi ∩ (G1 ∪ · · · ∪ Gi−1) is a union of
facets of Gi.
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Lemma 4.2 ([23, Corollary 2.6]). Let Γ be a unimodular triangulation of a polytope P and let
G1, . . . , Gs be a shelling of Γ. Then the h∗-polynomial of P is equal to h∗(P, z) = ∑s

i=1 zαi where
αi is the number of facets of Gi in the intersection Gi ∩ (G1 ∪ · · · ∪ Gi−1).

Definition 4.3. Consider a connected positroid polytope PJ with Grassmann necklace
J . Let ΓJ be the graph whose vertices are w ∈ DJ and there is an edge between w and
u if and only if ∆(w) and ∆(u) share a common facet. We call ΓJ the graph of the circuit
triangulation of PJ .

In the special case of the hypersimplex ∆k,n, the graph Γk,n is defined in [14, Section
2.5]. For a generic connected positroid with Grassmann necklace J of type (k, n), the
graph ΓJ is a connected subgraph of Γk,n.

Definition 4.4. Let Γ = (V, E) be an undirected graph, and let v0 ∈ V be an arbitrary
vertex of Γ. Define a partial order (Pv0,Γ,≺) on V with minimal element v0 such that, for
two distinct vertices u, v ∈ V, u ≺ v if and only if there exists a shortest path from v0 to
v passing through u.

In particular, the above definition applies to ΓJ and w0 ∈ DJ for any Grassmann
necklace J . In this case, we will simplify our notation and denote Pw0,ΓJ by Pw0,J .
We can embed any connected positroid polytope into an affine Coxeter arrangement. The
partial order Pw0,J is identified with the restriction of the weak order on a subset of the
affine symmetric group S̃n.

Benedetti–Knauer–Valencia-Porras proved the following for general type A alcoved
polytopes in [5, Proposition 2.5]. In the spirit of [6, Theorem 2.1], Proposition 4.5 can be
generalized to any other Coxeter group, studied by the author and Bullock in [7].

Proposition 4.5. Consider a connected positroid polytope PJ with Grassmann necklace J . Let
ΓJ be the graph of the circuit triangulation of PJ . For any w0 ∈ DJ , any linear extension of
Pw0,J is a shelling of the circuit triangulation of PJ .

Theorem 1.1 follows naturally from Proposition 4.5.

5 The h*-polynomial of half-open connected positroid
polytopes

In this section, we give a combinatorial formula for the h∗-polynomials of half-open
connected positroid polytopes in terms of descents of permutations. We then compute
the h∗-polynomial of a whole closed polytope by inclusion-exclusion on its half-open
subpolytopes of smaller dimension. Our result generalizes [17] and [4].

The facets of these (w)-simplices and positroid polytopes are all in the form x[i,j) = k
for some i, j ∈ [n] and k ∈ Z. We will call a facet of a positroid polytope or (w)-simplex
upper if it is of the form x[i,j) = k such that the polytope satisfies x[i,j) ≤ k.
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Figure 3: We draw the graph Γ2,5 of the circuit triangulation of the hypersimplex
∆2,5. The vertices of Γ2,5 are labeled by permutations in one-line notation. The arrows
represent cover relations in the poset P31425,J for J = (12, 23, 34, 45, 51), pointing from
a smaller element to a bigger element. We have h∗(∆2,5, z) = 1 + 5z + 5z2.

Theorem 5.1. Let PJ be a connected positroid polytope, where J is the associated Grassmann
necklace. Consider the half-open positroid polytope P̃J ⊂ [0, 1)n−1 which is the projection of PJ
onto the first (n − 1) coordinates with all upper facets removed. Then the h∗-polynomial of P̃J is
equal to h∗(P̃J , z) = ∑w∈DJ zdes(w)+1.

To compute the h∗-polynomial of a polytope from the h∗-polynomials of its facets
and the half-open polytope with those facets removed, we use the inclusion-exclusion
principle. Let P be a polytope and let F1, . . . , Fℓ be a collection of facets of P. Consider the
restriction of the face poset of P to have coatoms F1, . . . , Fℓ. This poset PF1,...,Fℓ describes
all the faces of P in the intersections of F1, . . . , Fℓ. Let µF1,...,Fℓ be the Möbius function of
this poset.

The next proposition follows from inclusion-exclusion on the face poset and additiv-
ity of Ehrhart polynomials.

Example 5.2. Consider the Grassmann necklace J = (12, 23, 13, 14). Then DJ consists
of permutations in S4 that end with 4 such that cdesL(w|[3,4]) ≤ 1 so DJ = {1324, 2134}.
Now des(132) = des(213) = 1, so h∗(P̃J , z) = 2z2. To compute the h∗-polynomial of
the whole positroid polytope P, which is a pyramid, we use inclusion-exclusion. The
upper facets we removed are F1 : x1 = 1, F2 : x2 = 1, F3 : x1 + x2 + x3 = 2. We depict the
poset PF1,F2,F3 and the value of its Möbius function in Figure 4. Therefore, by inclusion-
exclusion, the h∗-polynomial of PJ is h∗(PJ , z) = 2z2 + 3(1 − z)− 2(1 − z)2 = 1 + z.
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Figure 4: The positroid polytope associated to the Grassmann necklace J =

(12, 23, 13, 14) is a pyramid. The red facet corresponds to F1 : x1 = 1; the yellow
facet corresponds to F2 : x2 = 1; the blue facet corresponds to F3 : x1 + x2 + x3 = 2.
These are all the upper facets of this positroid polytope. The poset PF1,F2,F3 and the
value of its Möbius function µF1,F2,F3(−, PJ ).

6 Tree positroids

When the plabic graph of a positroid is acyclic, we call it a tree positroid. In this section,
we apply Theorem 1.1 to the special case of a tree positroid. To each plabic graph, one
can associate a plabic tiling [20]. Tree positroids are positroids whose plabic tilings are
bicolored subdivision. We start with several defintions, following the conventions of [21].

Definition 6.1. Let Pn be a convex n-gon with vertices labeled from 1 to n in clockwise
order. A bicolored subdivision τ is a partition of Pn into black and white polygons such
that two polygons sharing an edge have different colors. We say that τ has type (k, n) if
any triangulation of the black polygons consists of exactly k black triangles.

Remark 6.2. Given a Grassmann necklace J = (J1, . . . , Jn), we can define a graph GJ
on [n] such that {i, j} is an edge if and only if |Ji \ Jj| = |Jj \ Ji| = 1. The positroid PJ
associated with the Grassmann necklace J is a tree positroid if and only if the graph
GJ is a subdivision of a convex n-gon into polygons by diagonals.

The tree positroid polytopes are triangulated by (w)-simplices where w extends a
partial cyclic order [21].

Definition 6.3. A (partial) cyclic order on a finite set X is a ternary relation C ⊂ (X
3) such

that for all a, b, c, d ∈ X:

(a, b, c) ∈ C =⇒ (c, a, b) ∈ C (cyclicity)
(a, b, c) ∈ C =⇒ (c, b, a) /∈ C (asymmetry)

(a, b, c) ∈ C and (a, c, d) ∈ C =⇒ (a, b, d) ∈ C (transitivity)
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A cyclic order C is total if for all a, b, c ∈ X, either (a, b, c) ∈ C or (a, c, b) ∈ C. A total
cyclic order C′ is a circular extension of C if C ⊆ C′. The set of total cyclic orders on
[n] is in bijection with the set Dn (see Definition 3.2). We denote the set of all circular
extensions of C by Ext(C).

Definition 6.4. Let x1, . . . , xm be a sequence of m distinct elements of [n] (for 3 ≤ m ≤ n).
We let C = C(x1,x2...,xm) denote the partial cyclic order on [n] in which for each triple
1 ≤ i < j < ℓ ≤ m we have (xi, xj, xℓ) ∈ C (which implies by cyclicity that also (xj, xℓ, xi)
and (xℓ, xi, xj) lie in C). We call this partial cyclic order a chain.

Definition 6.5. Let τ be a bicolored subdivision of Pn with q polygons P1, . . . , Pq which
are black or white. If Pa is white (respectively, black), we let v1, . . . , vr denote its list
of vertices read in clockwise (respectively, counterclockwise) order. We then associate
the chain Ca = C(v1,...,vr) to Pa. Finally we define the τ-order to be the partial cyclic order
which is the union of the partial cyclic orders associated to the black and white polygons:

Cτ := C1 ∪ · · · ∪ Cq.

Remark 6.6. Not all cyclic orders have a circular extension [18], that is, Ext(C) could
be empty. Moreover, the problem of determining whether a cyclic order has a circular
extension is NP-complete [18], which implies that it is NP-complete to test if two partial
cyclic order C, C′ has a common circular extension Ext(C ∪ C′), and it is in general hard
to tell if two positroid polytopes intersect or not.

Proposition 6.7 ([21, Corollary 4.8]). Let σ be a bicolored subdivision of type (k, n). Let Jσ

be the Grassmann necklace associated with the tree positroid of σ. Then the positroid polytope
associated with Jσ is a union of (w)-simplices for (w) that cyclically extends Cσ:

PJσ
=

⋃
(w)∈Ext(Cσ)

∆(w).

Corollary 6.8. Let σ be a bicolored subdivision of type (k, n). Let Jσ be the Grassmann necklace
associated with the tree positroid of σ. Then we have Ext(Cσ) = DJσ

.

7 Future work

The polypositroid is a polymatroid, or equivalently, generalized permutohedron, that is also
alcoved [16]. They are parametrized by Coxeter necklaces and membranes, as analogies to
Grassmann necklaces and plabic graphs. How much does the positroid results generalize
to polypositroids?

Early gave a formula for the h∗-polynomial of any dilated hypersimplices in terms
of the decorated ordered set partitions [9]. Is there a bijection between his formula and our
shelling formula? Bullock and the author conjectured a bijection for ∆2,n [7].
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Figure 5: The tree plabic graph and bicolored subdivision associated to the Grass-
mann necklace J = (124, 234, 134, 145, 125). We have that Cτ consists of the chains
(3, 2, 1), (1, 3, 4) and (5, 4, 1).

Elias–Kim–Supina [11] and Clarke–Kölbl [8] studied the equivariant Ehrhart H∗ of
the hypersimplices and showed that they are related to the Sn-representation on the dec-
orated ordered set partitions. Ardila–Supina–Vindas-Meléndez and Ardila–Schindler–
Vindas-Meléndez [3, 2] studied the equivariant Ehrhart theory of the regular permuto-
hedron. Is there a relation between the equivariant Ehrhart H∗ of the permutohedron
and decorated ordered set partitions?
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