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Abstract. We consider the lattice of all transfer systems on a given finite lattice L. We
prove that it is semidistributive and as a corollary, we deduce a bijection between the
transfer systems and the cliques of a graph whose vertices are the relations of L. As
an application we find a lower bound for the number of transfer systems on a boolean
lattice.

Résumé. On considère le treillis des systèmes de transferts sur un treillis fini L. On
démontre que c’est un treillis semi-distributif et on obtient ainsi une bijection entre les
systèmes de transferts et les cliques d’un graphe do not les sommets sont les relations
de l’ensemble ordonné L. Comme application, nous donnons une borne inférieure
pour le nombre de systèmes de transferts sur les treillis booléens.
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1 Introduction

A transfer system on a finite lattice pL, ďq is a combinatorial gadget which is the main
object of study of an emerging field sometimes called homotopical combinatorics (we refer
to [7] for recent survey on the topic). This field involves three a priori unrelated areas:
model structures in the sense of Quillen, G-equivariant topology and classical combinatorics
of binary trees. One of the main problem in this area is to classify, or to count the transfer
systems on natural lattices, in particular on lattices of subgroups. There have been
many interesting classification results for finite total orders ([1]), diamond lattices ([4]),
lattice of subgroups of the quaternion group Q8 and many others ([21]). There are also
many natural lattices where we do not know how to count the transfer systems. The
most striking example being the boolean lattices which are the lattices of subgroups of
square-free elementary abelian groups.

In this long abstract (based on [18]), instead of trying to count the transfer systems,
we study the abstract properties of the set of all transfer systems on a given lattice. It
is known (and easy to see) that this set is a lattice. Our main result is the following
theorem.

Theorem 1.1. Let pL, ďq be a finite lattice. Then the lattice of transfer systems on L is semidis-
tributive, trim and congruence uniform.
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These three notions of increasing technicalities are shared by other famous lattices
such as the Tamari lattice (see e.g. [14]), the cambrian lattices [19]. More generally the
lattice of torsion classes of the category of finite dimensional modules over a finite di-
mensional algebra (see [11]) is both semidistributive and congruence uniform. Trimness
occurs for example for path algebras of Dynkin type.

In this article, we will focus on the semidistributivity of the lattice because it has the
most interesting consequences for the problem of enumerating the transfer systems. We
define the elevating graph of a lattice L as the graph whose vertices are the non-trivial
relations pa, bq with a ă b of L. Two vertices pa, bq and pc, dq are conected by at most one
edge. There is exactly one edge if and only if pa, bq m pc, dq and pc, dq m pa, bq. (See Section 6.)

Then we have the following theorem:

Theorem 1.2. Let pL, ďq be a finite lattice. There is a bijection between the set of transfer systems
on L and the cliques of its elevating graph.

This theorem can also be used as the base of a rather efficient algorithm for enumer-
ating transfer systems.

The article is organized as follows. In the first three sections, we briefly give the three
motivations. In the next section, we prove the semidistributivity of the lattice of transfer
systems and we discuss the graph theoretical interpretation. The last section is devoted
to the boolean lattices. We refer to Figure 2 for an example that illustrates the different
concepts of this article.

2 Motivation 1: G-equivariant topology

In algebra and topology, there are various natural examples of multiplicative laws that
are only associative up to higher homotopies, such as the loop space of a topological
space, the Yoneda algebras etc. These algebras are called A8-algebras. The ‘commuta-
tive’ version of these algebras are called E8-algebras. As for all kinds of associativity
laws, it is useful to see these algebras as algebras over special operads called A8 and E8

operads.
There is a very recent notion of G ´ N8-operads associated with a finite group G.

They are equivariant generalization of E8-operads and the algebras over these operads
are equipped with a multiplication which is associative and commutative up to higher
homotopies (an E8 structure) and multiplicative norm maps. This notion appears in
the Hill–Hopkins–Ravenel [15] solution of the Kervaire invariant one problem and has
received a lot of attention since then. One of the key results, is that the homotopy
category of the G ´ N8-operads is equivalent to the finite poset of G-transfer systems,
viewed as a category. See [13, Theorem 3.6].

To explain this result, let us first recall that a poset pP, ďq can be viewed as a category
whose objects are the elements of P, and there is a unique morphism from x to y if and
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only if x ď y. Since the relation is reflexive, there is a unique morphism from x to x and
this is idx. The composition follows from the transitivity of the relation. For the notion
of G-transfer systems we have the following definition:

Definition 2.1. Let G be a finite group. We denote by SubpGq the poset of the subgroups
of G. Then a G-transfer system is a partial ordering ◁ on SubpGq such that:

1. If H ◁ K, then H Ď K.

2. If H ◁ K and g P G, then gHg´1 ◁ gKg´1.

3. If H ◁ K and M ď K, then M X H ◁ M.

The G-transfer systems are naturally ordered by refinement. This theorem on N8-
operads is the main motivation behind the classification of the G-transfer systems. By
classifying this relatively simple combinatorial object, we classify much more compli-
cated objects.

The poset
`

SubpGq, ď
˘

is a lattice and it will be useful to define the notion of transfer
system on a given lattice.

Definition 2.2. Let pL, ďq be a lattice. A transfer system ◁ for L is a relation of partial
ordering on L such that:

1. i ◁ j implies i ď j.

2. i ◁ k and j ď k implies pi ^ jq ◁ j.

Forgetting the second item in Definition 2.1 we see that a G-transfer system is in
particular a transfer system on

`

SubpGq, ď
˘

in the sense of Definition 2.2. Moreover,
when the group G is abelian or when all the subgroups of G are normal (e.g. Q8) a
G-transfer system in nothing but a transfer system.

Inclusion of relations naturally induces a poset structure on the set of transfer systems
on L and we denote this poset by TrspLq. Since the intersection of two transfer systems
is a transfer system, we have the following result.

Proposition 2.3. The poset of transfer systems on pL, ďq is a finite lattice.

Proof. This is [13, Proposition 3.7]. The join is the transitive closure of the union.

Let G be a finite group. A poset pX, ďq is called a G-poset if there is a monotone
G-action on it. That is X is a G-set and for every x ď y P X, and every g P G we have
g ¨ x ď g ¨ y. A lattice pL, ďq is a G-lattice if it is a G-poset and the action is compatible
with the meets and the joins of the lattice. That is g ¨ px ^ yq “ g ¨ x ^ g ¨ y and g ¨ px _ yq “

g ¨ x _ g ¨ y, for every x, y P L and g P G.
Our first result is
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Theorem 2.4. Let G be a finite group and L “ SubpGq be its lattice of subgroup. Then

1. The lattice of transfer systems on L is a G-lattice.

2. The sublattice of G-fixed points is isomorphic to the lattice of G-transfer systems.

Proof. See [18, Lemma 9.4].

This result is very useful since it implies that Theorem 1.1 holds also for the lattice of
G-transfer systems. Indeed semidistributivity and congruence uniformity are preserved
by taking sublattices and trimness is preserved by taking G-fixed points.

3 Motivation 2: model structures on finite lattices

Let C be a category. A morphism f of C is said to lift on the left a morphism g of C if for
every commutative square

A a //

f
��

X
g
��

B b // Y
there exists a lift B Ñ X P C making the resulting diagrams commute. In other words, if
ga “ b f , there is h : B Ñ X such that h f “ a and gh “ b. In this case, we write f m g. If
S is a class of morphisms in C, we use the following notation

mS “ t f P MorpCq | f m g @g P Su.

When S Ď mT , we write S m T .

Definition 3.1. A weak factorization system on C is a pair pL,Rq of subclasses of the mor-
phisms of C such that:

1. Every morphism f P C can be factored as f “ pi where i P L and p P R.

2. L m R.

3. L and R are closed under retracts ([18, Definition 2.1]).

Set theoretical issues aside, the class of weak factorization systems has a natural struc-
ture of partial order:

pL,Rq ĺ pL1,R1q if R Ď R1 and L1 Ď L.

Very surprisingly, when pL, ďq is a finite lattice viewed as a category we have the
following result [13, Theorem 4.13].

Theorem 3.2. Let pL, ďq be a lattice. The map sending a transfer system R to p mR,Rq is an
isomorphism between the poset of transfer systems and the poset of weak factorization systems.
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4 Motivation 3: tree combinatorics

In this section, we consider the case where pL, ďq is the total order 1 ď 2 ď ¨ ¨ ¨ ď n and we
will see how the transfer systems on this poset are related to very classical combinatorial
objects.

Let T be a binary tree with n inner vertices, we label its vertices by the integers
1, 2, ¨ ¨ ¨ , n in such a way that if x is a vertex in the left (right) subtree of y then the
label if x is strictly smaller (larger) than the label of y. A binary tree T with such a
labeling is called a binary search tree. We refer to Figure 1 for an illustration.

4

2

1 3

5

Figure 1: Binary search tree of size 5 labeled by the in-order algorithm.

If T is such a binary search tree, it induces a partial order ◁T on rns by setting i ◁T j
if the vertex labelled by i is in the subtree with root the vertex labelled by j. Moreover,
it is easy to classify the posets coming from such a binary tree. See for example [9,
Proposition 2.21]. Surprisingly, this classification is much better explained in terms of
weak factorization systems. If ◁ is a poset of rns, the relations of ◁ can be splitted into
two sets: the increasing relations (i ◁ j such that i ď j) and the decreasing relations (i ◁ j
such that j ď i). The result of Châtel, Pilaud and Pons is easily rephrased as follows:

Proposition 4.1. There is a binary tree T such that ◁ “ ◁T if and only if pIncp◁q, Decp◁qopq

is a weak factorization system on rns.

It is also classical that for two binary trees, we have T ď T1 in the Tamari lattice if
and only if IncpT1q Ď IncpTq holds, or alternatively, if DecpTq Ď DecpT1q holds. Hence,
we obtain an alternative proof of [1, Theorem 25].

Theorem 4.2. Let L be the usual total ordering on rns. The poset of weak factorization systems
of L is isomorphic to the Tamari lattice on the binary trees with n inner vertices.

Remark 4.3. The intervals of the Tamari lattice have received a lot of attention since
their enumeration by Chapoton [8] and their relation with simple triangulations. Several
families of intervals have been enumerated and several interesting bijections have been
found ([12] and the references in these articles). With the point of view of transfer
systems, there are natural families of intervals: for example the model structures, the
composition closed intervals and the compatible intervals.

The model structures and the composition closed intervals have been described in
[3]. It turns out that the composition closed intervals are exactly the exceptional intervals
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in the sense of [20] and they are counted by the ternary trees. The compatible intervals
have been counted in [16] are also counted by ternary trees. As this article is being
written, there is no bijective proof of this fact.

5 Lattice of transfer systems

In this section we fix pL, ďq a finite lattice, and we illustrate in Figure 2 the various
notions in the special case where L is a commutative square.

Semidistributive lattices are a generalization of the distributive lattices introduced by
Jónsson [17] who was inspired by Whitman’s solution to the word problem for free
lattices involving the existence of a nice canonical form. We say that a lattice pL, ^, _q is
semidistributive if @a, b, c P L

a _ pb ^ cq “ pa _ bq ^ pa _ cq whenever a _ b “ a _ c,

and
a ^ pb _ cq “ pa ^ bq _ pa ^ cq whenever a ^ b “ a ^ c.

Theorem 5.1. Let pL, ďq be a finite lattice. Then the lattice of transfer systems on L is a semidis-
tributive lattice.

Proof. Let R1,R2,R3 be three transfer systems on L such that R1 _ R2 “ R1 _ R3.
Note that R1 _ pR2 ^ R3q ď R1 _ R2 holds in any lattice. Conversely, we consider
px, yq P P “ R1 _ R2. We assume that px, yq is a cover relation in the poset P. Note
that the P “ R1 _ R2 “ pR1 Y R2qtc, the transitive closure of R1 Y R2. Hence, the cover
relation px, yq is either in R1 or in R2. Since P “ R1 _ R3 “ pR1 Y R3qtc, the relation
px, yq is also in R1 or in R3. It follows that px, yq is either in R1 or in R2 X R3 and we
have:

R1 _ R2 Ď
`

R1 Y pR2 X R3q
˘tc

“ R1 _
`

R2 ^ R3
˘

.

The other identity is obtained by playing with the duality between transfer systems on
pL, ďq and ‘co-transfer systems’ on pL, ďqop.

In semidistributive lattices we have the existence of a so-called canonical join decompo-
sition for their elements. Loosely speaking any element of a semidistributive lattice can
be written in a unique minimal way as a join of join-irreducible elements (i.e. an element
that covers a unique element). This is a lattice version of the fundamental theorem of
arithmetic which says that any integer can be written in a unique way as product of
prime numbers. Hence for any finite semidistributive lattice, there is a bijection between
the elements of L and the subsets of the set of join-irreducible elements which appear as
canonical join decomposition. To use this bijection it is therefore crucial to start by un-
derstanding the join-irreducible elements (the prime numbers of our lattice). For transfer
systems, this boils down to the following.



Lattice of transfer systems 7

3

1 2

0

3

1 2

0

^^

3

1 2

0

@@

3

1 2

0

@@^^

3

1 2

^^

0

^^

3

1

@@

2

0

@@

3

1 2

0

@@^^

OO

3

1 2

^^

0

@@^^

OO 3

1

@@

2

0

@@^^

OO

3

1

@@

2

^^

0

@@^^

OO

p0, 1q

p0, 2qp2, 3q p1, 3qp0, 1q

p0, 2q

p0, 3q

p2, 3q p1, 3q

p0, 2q p0, 1q

p2, 3qp1, 3q

Figure 2: Lattice of transfer systems of the commutative square. The five transfer sys-
tems in circle blue are join-irreducible. The labelling of the edges is the join labelling.

We denote by Rel˚pLq “ tpa, bq P L2 | a ď b and a ‰ bu the set of non-trivial relations
in L. For pa, bq P Rel˚pLq, we denote by Trpa, bq the smallest transfer system containing the
relation pa, bq.

Proposition 5.2. Let pL, ďq be a finite lattice. The map pa, bq ÞÑ Trpa, bq is a bijection between
Rel˚pLq and the join-irreducible elements of the lattice of transfer systems on L.

The next step is to explain how to find the canonical join decomposition of a given el-
ement. For this purpose we use the so-called join-labelling of the edges of the lattice (a
consequence of semidistributivity). If x is an element of L, then its canonical decompo-
sition is j1 _ ¨ ¨ ¨ _ jn where j1, ¨ ¨ ¨ , jn are the join-label of all arrows with target x.

Proposition 5.3. Let pL, ďq be a finite lattice. Then the join label of a cover relation R1 Ì R is
Trpa, bq where pa, bq is the unique non trivial relation in R X mR1.

To simplify the pictures, we will simply label R1 Ì R by pa, bq instead of Trpa, bq.
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6 Graph theoretical interpretation of transfer systems

For two relations pa, bq and pc, dq in Rel˚pLq, we write pa, bq m pc, dq if pa, bq lifts on the left
pc, dq. Concretely, we have:

pa, bq m pc, dq if and only if
`

a ď c and b ď d
˘

ùñ b ď c.

For every S Ď Rel˚pLq we say that S is an elevating set if for every pa, bq P S and
pc, dq P S we have pa, bq m pc, dq and pc, dq m pa, bq. The bijection discussed in the previous
paragraph boils down to the following result.

Theorem 6.1. Let pL, ďq be a finite lattice. There is a bijection between the set of weak factoriza-
tion systems on L and the set of elevating subsets of Rel˚pLq.

The bijection is moreover explicit: if S is an elevating set, then the corresponding
transfer system is the smallest transfer system containing S. Given a transfer system R,
the corresponding elevating set is the set consisting of the join-labels of all the arrows
with target R.

The set of elevating subsets (more generally, the set of all the canonical join-
representations of the elements of a semidistributive lattice L) can be naturally viewed as
a simplicial complex. It has been proved by Emily Barnard [5] that this simplicial complex
is flag. This means that it is the clique complex of its 1-skeleton. In our setting we call it
the elevating graph of the lattice L.

Definition 6.2. Let pL, ďq be a finite lattice. The elevating graph of L is the graph with
vertices Rel˚pLq and there is an edge between pa, bq and pc, dq if and only if pa, bq m pc, dq

and pc, dq m pa, bq.

For the commutative square this graph is illustrated in Figure 3.
Recall that a clique is a complete (induced) subgraph. It follows that there are as

many transfer systems on L as there are cliques in the elevating graph of L. For example,
there are 10 cliques in the elevating graph of the commutative square: the empty graph,
5 vertices and 4 edges, so there are 10 transfer systems on this lattice.

We deduce from this result a relatively efficient algorithm for counting the weak factor-
ization systems on a (not too big) lattice. It is known that counting cliques in a graph
is a difficult task (it is 7P-complete) however the elevating graph is much smaller than
the lattice of transfer systems. For example if L “ Ppr4sq is the boolean lattice with 16
elements, there are 5389480 transfer systems but the elevating graph of L has only 65
vertices and 1474 edges.

This approach is particularly good for lattices with few relations. For example, it is



Lattice of transfer systems 9

0

1 2

3

0, 1

0, 2

1, 3

2, 3

0, 3

Figure 3: From left to right: the lattice L and its elevating graph. One can check that
each clique of the graph corresponds to the set of labelings of the lower covers of a
transfer system and conversely.

easy to describe the elevating graph of the diamond lattice

n ` 1

1

<<

¨ ¨ ¨

OO

n

bb

0

<<bb OO

It follows that there are 2n`1 ` n transfer systems for this lattice. This gives an alternative
proof of [4, Theorem 5.4].

7 A lower bound in the case of the boolean lattice

The boolean lattices of subsets of rns for n “ 0, 1, 2 are respectively total orders and a
diamond lattice. The case n “ 3 has been treated in [2] and is already quite complicated.
With our approach counting transfer systems is equivalent to counting cliques in the
elevating graph. We denote by Bn the boolean lattice of the subsets of rns. The vertices of
the elevating graph are the pairs of subsets pA, Bq such that A Ď B and A ‰ B.

Lemma 7.1. The elevating graph of Bn has 3n ´ 2n vertices and
`3n´2n

2

˘

´
`

6n ´ 5n ´ 3n ` 2n˘

edges.

This sequence for the number of edges starts with 0, 0, 4, 99, 1474, 17715, 190414, . . .
and since 6n ´ 5n ´ 3n ` 2n is small against

`3n´2n

2

˘

, when n is large enough the graph
has almost all the possible edges. So we can expect a very large number of cliques, so a
very large number of transfer systems. Since a subgraph of a clique is a clique, if a graph
has a clique of size k, then it has at least 2k cliques. Here the maximal size of a clique
is denoted by mcovÓpLq, and it is largest indegree of the Hasse diagram of the lattice of
transfer systems.
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Proposition 7.2. Let pL, ďq be a finite lattice. Then 2mcovÓpLq ď | TrspLq|.

For 0 ď k ď 2n ´ 1, we consider the relation Rk on Bn defined by

X ďRk Y if and only if X “ Y or X Ď Y and |X| ` |Y| ď k.

Lemma 7.3. Let Bn be the boolean lattice of the subsets of rns.

1. The relation Rk is a transfer system for the boolean lattice Bn.

2. The number of arrows with target Rk in the lattice of transfer systems is

n
ÿ

j“0,j‰ k
2

ˆ

n
j

˙ˆ

n ´ j
k ´ 2j

˙

.

Removing R0, these numbers naturally form a triangle, see Figure 4. Note that the

1
2 1 2

3 3 7 3 3
4 6 16 13 16 6 4

5 10 30 35 51 35 30 10 5
6 15 50 75 126 121 126 75 50 15 6

7 21 77 140 266 322 393 322 266 140 77 21 7

Figure 4: Triangle of the number of lower cover relations of the Rk for k “ 1, . . . , 2n ´ 1.

maximal numbers in each row (in red) appear in the expansion of p1 ` x ` x2qn. When
n is odd, this is the coefficient of xn and when n is even, it is the coefficient of xn´1 or
xn`1.

Proposition 7.4. Let n P N and L “ Bn the boolean lattice of the subsets of rns. Then

1. If n is odd, mcovÓpLq ě
ř

n´1
2

j“0

`n
j
˘` n´j

n´2j

˘

.

2. If n is even, mcovÓpLq ě
ř

n
2
j“1

`n
j
˘` n´j

n`1´2j

˘

.

Question 7.5. Let L “ Bn be the boolean lattice of the subsets of rns. Is mcovÓpTrspLqq given
by Proposition 7.4 ?
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Using the computer and the software SageMath, we were are able to check that Ques-
tion 7.5 has a positive answer for n ď 6.

n 1 2 3 4 5 6 7
mcovÓ 1 2 7 16 51 126 ě 393

2mcovÓ « 2 4 128 65536 2.2 ¨ 1015 8.5 ¨ 1037 ě 2 ¨ 10118

| TrspBnq| 2 10 450 5389480 ? ?

8 Perspectives

1. Look for a bijective proof for the number of compatible intervals of the Tamari lat-
tice. The compatible intervals are easily described using the interval-posets of [10].
There is a simple bijection between interval-posets and blossoming trees (see [12])
which seems well-suited for this problem.

2. By a famous theorem of Day, a lattice is congruence unform if and only if it is
obtained from a singleton lattice by a sequence of ‘interval doublings’. Can we
obtain a nice description of such a sequence for lattices of transfer systems?

3. With our approach we obtained an easy lower bound for the number of transfer
systems for the boolean lattices. Can we find more information about the elevating
graph of the boolean lattice and can we hope for a closed formula ?

4. The number mcovÓpLq is crucial in our approach. When L is a total order, the
lattice of transfer systems is isomorphic to the Tamari lattice which is a regular
lattice. However, the lattice of transfer system is not regular in general and this
number seems rather difficult to compute. Can we compute mcovÓpLq for natural
families of lattices?

5. The transfer systems on finite lattices and the torsion classes of finite dimensional
algebras share the same lattice properties. We refer to [18, Section 11] for more
details. It remains to understand if this is only a combinatorial coincidence or if
there is more behind it.

6. The topology of the simplicial complex consisting of the canonical join represen-
tations of the Tamari lattice has been studied by Barnard in [6]. Can we find
interesting topological properties the canonical complex of the lattice of transfer
systems?
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