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Abstract. We prove that the Kazhdan–Lusztig basis of Specht modules is upper
triangular with respect to all generalized Gelfand–Tsetlin bases constructed from any
multiplicity-free tower of standard parabolic subgroups.
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1 Introduction

In their classical paper “Relations between Young’s natural and the Kazhdan–Lusztig
representations of Sn” [3], Garsia and MacLarnan show that Young’s natural basis of a
Specht module is unitriangular with respect to the Kazhdan–Lusztig (KL) basis. The aim
of this note is to prove an analogue of this theorem for all generalised Gelfand–Tsetlin
(GT) bases.

To explain more precisely, first note that Young’s natural basis is known to be upper-
triangular with respect to either Young’s seminormal or orthogonal bases [1]. These
bases are scalar multiples of each other, and are in fact examples of the standard GT
basis. Recall that the latter is the basis obtained by restricting a Specht module along the
tower of groups

1 < S2 < S3 < · · · < Sn. (1.1)

It is well-defined up to scalar multiplication. By combining the results of [3] and [1], one
can show that the GT basis is upper triangular with respect to the KL basis. Of course,
to make this statement precise one has to be careful about the orderings of the bases, but
we ignore that for the moment.

Now observe that, on the one hand, the GT basis depends on a choice of tower (1.1).
Indeed, there are many possible choices, and each one results in a different GT basis
which we call “generalised GT bases” (Definition 3.1). On the other hand, the KL basis
is canonical and so is independent of any choices. Therefore, it is reasonable to expect

*ali.haidar@sydney.edu.au
†oded.yacobi@sydney.edu.au. Oded Yacobi was partially supported by ARC Grant DP230100654.

mailto:ali.haidar@sydney.edu.au
mailto:oded.yacobi@sydney.edu.au


2 Ali Haidar and Oded Yacobi

that the KL basis is upper triangular with respect to any tower. This is exactly what we
prove (Theorem 4.3).

Our proof of Theorem 4.3 is independent of Garsia and MacLarnan’s work. More-
over, the generalised GT bases are not upper triangular with respect to each other (cf.
Example 4.6), so it is hopeless to try to bootstrap our result from the standard case to all
generalised GT bases in the obvious manner.

Instead, our argument is based on two important inputs: the classical result about
the action of the longest element on the KL basis (Theorem 2.1), and recent work of
the second author with Gossow on the compatibility of the KL basis with restriction
(Proposition 2.2). We also note that in order to formulate our theorem we introduce
variations of the evacuation operator and dominance order on standard Young tableaux
(Definition 4.1), which may be interesting in their own right.

2 Background

Throughout we work over the field of rational numbers Q. Let [a, b] = {a, a + 1, . . . , b},
for 1 ≤ a < b. Given a set X, SX = Aut(X) denotes the group of permutations of X and
Sn = S[1,n]. Let w0 ∈ Sn be the longest element, which interchanges i and n − i + 1 for
every i, and more generally for an interval I ⊆ [1, n], let wI ∈ SI be the longest element.
Given a subgroup H ≤ Sn set H = w0Hw0.

For groups H < G and a representation V of G, let ResG
H(V) denote the restriction of

V to H. Given an isomorphism class λ of an irreducible representation of G, let Isoλ(V)
denote the λ-isotypic component of V. The irreducible Specht module [9, Definition
2.3.4] of Sn indexed by a partition λ ⊢ n is denoted Vλ.

Recall that dim(Vλ) = #SYT(λ), where SYT(λ) denotes the set of standard Young
tableaux of shape λ. These are λ-shaped arrays of numbers which are increasing along
rows from left to right, and down columns. For example, 1 2 4

3 5
∈ SYT(3, 2). We number

the rows from top to bottom, and let εk(T) denote the row number containing k. For
example, for the tableau above, ε3(T) = 2 and ε4(T) = 1. Let sh(T) denote the shape of
the tableau T.

Recall Schützenberger’s evacuation operator ev : SYT(λ) → SYT(λ) is an involution
on the set of standard Young tableaux [10, Definition A1.2.8]. For convenience, we also
write T := ev(T). Most importantly for us, evacuation encodes the action of w0 on the
Kazhdan–Lusztig basis (cf. Theorem 2.1 below). For λ ⊢ n, set:

SYTk(λ) = {T ∈ SYT(λ) | εn(T) = k},

SYTk(λ) = {T ∈ SYT(λ) | εn(T) = k}.

Let d(T) denote the tableau obtained from T ∈ SYT(λ) by removing the n-box. Con-
versely, suppose µ ⊢ n − 1 is obtained by removing a box from λ. Then for S ∈ SYT(µ),
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S+ ∈ SYT(λ) is the tableau obtained by adding an n-box in the correct row. The notation
S+ is ambiguous, as it depends on λ, but this will always be clear from context.

Of central interest for us is the Kazhdan–Lusztig (KL) basis of Vλ, denoted {cT | T ∈
SYT(λ)}. This is a canonical basis obtained from the (left) KL cellular representation
of the Hecke algebra of Sn [6, 3]. The KL basis has close connections to the geometry
of Schubert varieties and the Kazhdan–Lusztig conjectures. It is difficult to compute
in general (it is precisely as difficult to compute as the Kazhdan–Lusztig polynomials),
and in particular the action of a generic permutation on basis elements cT is hard to
express. Nevertheless, we have the following remarkable classical result about the action
of the longest element, which is due separately to Berenstein–Zelevinsky, Mathas and
Stembridge:

Theorem 2.1 ([2, 8, 11]). Let λ ⊢ n and let T ∈ SYT(λ). Then w0 · cT = ±cT, and the sign
depends only on λ.

In recent work of the second author with Gossow, we generalised the above theorem
to the class of separable permutations [4, 5]. For present purposes, we recall a result
from these works that will play a central role.

Let λ ⊢ n and suppose λ has r removable boxes, which appear in rows 1 ≤ a1 <
a2 · · · < ar. Let µk ⊢ n − 1 be the partition obtained by removing the box in row ak, and
let Vλ

a := span{cT | εn(T) ≤ a}. This defines a filtration:

0 ⊂ Vλ
a1
⊂ Vλ

a2
⊂ · · · ⊂ Vλ

ar = Vλ.

Proposition 2.2 ([4, Theorem 1.2]). The subspaces Vλ
ak

are Sn−1 invariant, and the map

fk : Vλ
ak

/Vλ
ak−1

−→ Vµk , cT + Vλ
ak−1

7−→ cd(T)

is an isomorphism of Sn−1-modules.

Below we use binary sequences to label chains of subgroups. Let Bn be the set of
binary sequences of length n. Given b = b1 · · · bn ∈ Bn, set

b = b1 · · · bn,
b† = b2 · · · bn,

where 0 = 1 and vice-versa.

3 Generalised Gelfand–Tsetlin bases

A multiplicity-free chain of Sn is a sequence of groups (G1, G2, . . . , Gn−1) such that

Sn = G1 ⊃ G2 ⊃ · · · ⊃ Gn−1,
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and Gm is a standard parabolic subgroup of Sn isomorphic to Sn−m+1. The standard
chain is

(Sn, Sn−1, . . . , S2).

Writing Gm = SIm for Im an interval, Im+1 is obtained from Im by either removing the
smallest or largest element. We can thus index the multiplicity-free chains by binary
sequences b = b1 · · · bn−2, where bm+1 = 0 if Im+1 is obtained from Im by removing
the largest element, and is 1 otherwise. The standard chain corresponds to the zero
sequence.

For example, if n = 4 we have four multiplicity-free chains, corresponding to the four
two-step paths in the directed graph below:

[1, 4]

[1, 3] [2, 4]

[1, 2] [2, 3] [3, 4]

From left to right, these chains are labelled by 00, 01, 10 and 11. In general, Sn has
N := 2n−2 multiplicity-free chains. Note that our multiplicity-free chains stop at rank S2
since there is no “choice” of S1 at the next step.

Let (G1, . . . , Gn−1) be a multiplicity-free chain labelled by b, and let V be an irre-
ducible representation of Sn.

Definition 3.1. A nonzero vector v ∈ V is a b-Gelfand–Tsetlin (GT) vector if for 1 ≤ m < n,
there exist µm ⊢ n − m + 1 such that

v ∈ IsoµmResSn
Gm

(V).

In this case, we say v is of type T, where T ∈ SYT(λ) corresponds to the sequence of partitions
(µ1, µ2, . . . , µn−1, (1)). A basis {vb

T | T ∈ SYT(λ)} is a b-GT basis if for all T, vb
T is a b-GT

vector of type T. We call these generalised GT bases.

The following proposition is an immediate consequence of the classical fact that the
restriction of any irreducible representation of Gm to Gm+1 is multiplicity-free:

Proposition 3.2. Let λ ⊢ n and let b ∈ Bn−2. Then there exists a b-GT basis {vb
T | T ∈

SYT(λ)} of Vλ which is unique up to scalar factors.

The b-GT basis is related to the standard GT basis by the action of Sn, as we now
explain. First note that a permutation w ∈ Sn acts on a multiplicity-free chain by conju-
gation:

w · (G1, . . . , Gn−1) = (wG1w−1, . . . , wGn−1w−1).
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This may not be a multiplicity-free chain since the conjugate of a standard parabolic
subgroup is not necessarily a standard parabolic. But the multiplicity-free chains are
always related in this way. This is best explained by example.

Consider the two chains in S6 in the figure below. To simplify the picture we replaced
the intervals with nodes, so here the red path is the standard chain and the blue path is
the chain ([1, 6], [2, 6], [2, 5], [2, 4], [3, 4]). We’ll find a permutation u ∈ S6 that conjugates
the standard chain to the blue one.

•

• •

• • •

• • • •

• • • • •

The key point is that given a multiplicity-free chain, suppose the j-th group is the sym-
metric group on an interval I. Then the action of the long element wI reflects the chain
about the vertical ray pointed downwards from the node labelled by I. It doesn’t affect
the part of the chain above that node. For example, the action of the long element w[2,6]
flips the blue chain above to:

•

• •

• • •

• • • •

• • • • •

Now, if we begin with the red path and reflect at the first node, then at the second
node and then at the fourth node we obtain the blue path. These nodes correspond to the
intervals [1, 6], [2, 6] and [2, 4] respectively. Therefore the desired permutation is given by
u = w[2,4]w[2,6]w[1,6] ∈ S6, and is uniquely determined by the chain we started with. We
note that u is always a separable permutation, which is by definition a permutation that
avoids the patterns 2413 and 3142 [7].

Lemma 3.3. Let (G1, . . . , Gn−1) be a multiplicity-free chain labelled by b and corresponding to
the permutation u. Then for every T ∈ SYT(λ), u · v0

T = vb
T (up to scalar factors). Consequently,

w0 · vb
T = vb

T.

Proof. Let (µ1, . . . , µn) be the sequence of partitions corresponding to T. The vector v0
T is
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determined (up to scalar factors) by the containments v0
T ∈ Isoµm(ResSn

Sn−m+1
(Vλ)). Since

uSn−m+1u−1 = Gm, u · v0
T ∈ Isoµm(ResSn

Gm
(Vλ)), and so u · v0

T = vb
T (up to scalar factors).

Now, note that b labels the multiplicity-free chain (G1, . . . , Gn−1), and the correspond-
ing permutation for this chain is w0u. Therefore w0 · vb

T = w0u · v0
T = vb

T.

4 The main theorem

To state our main result we introduce a family of partial orders and bijections on SYT(λ)
labelled by binary sequences.

Definition 4.1. Let λ ⊢ n and b ∈ Bn−2.

1. Define a bijection φb = φλ,b ∈ Aut(SYT(λ)) recursively:

φλ,b(T) =

{
φµ,b†(d(T))

+ if b1 = 0,
φµ,b†

(d(T))+ if b1 = 1,

where µ = sh(d(T)) or sh(d(T)).

2. Define a linear order ≤b=≤λ,b recursively: S ≤λ,b T if and only if:{
εn(S) < εn(T) or εn(S) = εn(T) and d(S) ≤µ,b† d(T) if b1 = 0,
εn(S) < εn(T) or εn(S) = εn(T) and d(S) ≤µ,b†

d(T) if b1 = 1,

where µ = sh(d(T)) or sh(d(T)).

In the table below we describe the bijection and lienar order in some examples. The
order is described by associating a sequence of numbers sigb(T) to a tableau T, and
ordering the sequences reverse lexicographically.

b φb(T) sigb(T)

00 · · · 0 id
(
ε1(T), . . . , εn(T)

)
11 · · · 1 T

(
ε1(T), . . . , εn(T)

)
01 · · · 1 (d(T))+

(
ε1(T), . . . , εn−1(T), εn(T)

)
10 · · · 0 (d(T))+

(
ε1
(
d(T)

)
, . . . , εn−1

(
d(T)

)
, εn

(
T
))

Remark 4.2. As pointed out to us by Fern Gossow, there is an alternate way to describe the
linear order ≤b. For example, suppose b corresponds to the chain ([1, 5], [1, 4], [2, 4], [3, 4], [3, 3]).
Rewrite this as a sequence (3, 4, 2, 1, 5), describing which element gets added moving up the chain,
and proceed as follows:
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1. Begin with a tableau of a single box labelled 3. Make this the root of an ordered tree.

2. Next insert 4. There are two rows to put this box. Make two branches of the tree for these
two choices, where the small branch is the higher row.

3. Next insert 2. Again we order the outcomes by the inserted rows. Since 2 is small, we
jeu-de-taquin slide the 2 into each tableaux.

4. Continue in this way. For large values, just place by rows. For small values, place by rows
and then jeu-de-taquin slide them in. Don’t place a box in rows that make the tableaux
bigger than your desired shape.

In the end we get the ordering ≤b on standard Young tableaux.

We can now state our main result, and make a few remarks immediately following:

Theorem 4.3. Let λ ⊢ n and b ∈ Bn−2. Then for any T ∈ SYT(λ),

cT = aTvb
φb(T)

+ ∑
S<bT

aSvb
φb(S)

, (4.1)

where aT ̸= 0. Moreover, the b-GT basis can be normalised so that the coefficients aT, aS ∈ Z.

Remark 4.4. The coefficients aT, aS that appear in (4.1) depend on b. This is perhaps not clear
from our notation, which we chose to declutter the formula. Note, the set of b-GT bases can be
normalised so that the coefficients aT, aS are minimally integral in the following sense: {aS |
S ≤b T} is integral and at least one pair of elements are coprime. In this case, the leading
term coefficient aT is independent (up to sign) of b ∈ Bn−2. We are not aware of an interesting
(geometric) interpretation of these coefficients.

Remark 4.5. If b = 0 · · · 0, i.e. we consider the standard GT basis, then this result can be
deduced from [3, 1]. Indeed, Garsia and MacLarnan prove that the KL basis is integral and
unitriangular with respect to Young’s natural basis. The latter is not the standard GT basis, but
Armon and Halverson prove that it is upper triangular with respect to the seminormal basis,
which is the standard GT basis. Moreover, the relevant orderings are compatible, from which
the desired result follows. From this argument we lose integral unitriangularity, and indeed in
general we cannot impose that the leading coefficient aT = 1 and the other coefficients are integral
in (4.1).

Example 4.6. Consider the first non-trivial case: λ = (2, 1) ⊢ 3. We realise Vλ as the
subspace in C3 of vectors whose entries sum to zero. Set S = 1 3

2
and T = 1 2

3
. Then

cS = (1,−1, 0) and cT = (0, 1,−1).
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If b = 0 then φ0 = id and S <0 T. The 0-GT basis is v0
S = 1

2 cS and v0
T = 1

2(1, 1,−2)
(we choose the normalisation so that the change of basis matrix is integral). The upper-
triangularity result is simply

cS = 2v0
S,

cT = v0
T − v0

S.

On the other hand, if b = 1 then φ1 interchanges S and T and T <1 S. The 1-GT basis
is v1

S = 1
2(0, 1,−1) and v1

T = 1
2(2,−1,−1). The upper-triangularity in this case is

cT = 2v1
φ1(T)

,

cS = v1
φ1(S)

− v1
φ1(T)

.

5 Proof of Theorem 4.3

The remainder of the paper is devoted to the proof of Theorem 4.3. Let b = b1 · · · bn−2 ∈
Bn−2 label the multiplicity-free chain (G1, . . . , Gn−1). First note that the second part of
the theorem is a trivial consequence of the first: if two bases are related by a rational
matrix, then one can rationally rescale one of the bases so that the matrix is integral. We
now proceed to prove Theorem 4.3(1) by induction on n ≥ 2.

If n = 2 the result is trivial, and we normalise the GT basis in this case to equal the
KL basis. Suppose now that n > 2 and the result holds for Sn−1. Let λ ⊢ n and suppose
λ has r removable boxes, which appear in rows 1 ≤ a1 < a2 · · · < ar. Let µk ⊢ n − 1
be the partition obtained by removing the box in row ak. Then, for any 1 ≤ k ≤ r and
T ∈ SYT(µk), by induction we have an equality in Vµk :

cd(T) = ad(T)v
b†
φµk ,b†

(d(T)) + ∑
S∈SYT(µk)
S<µk ,b†

d(T)

aSvb†
φµk ,b†

(S), (5.1)

with rational coefficients.
Recall from Proposition 2.2 we have a filtration

0 ⊂ Vλ
a1
⊂ · · · ⊂ Vλ

ar = Vλ,

and an isomorphism of Sn−1-modules fk : Vλ
ak

/Vλ
ak−1

→ Vµk given by cT +Vλ
ak−1

7−→ cd(T).
Therefore, in the unique decomposition Vλ = V1 ⊕ · · · ⊕ Vr, where Vr ∼= Vµk as Sn−1-
modules, Vλ

ak
= V1 ⊕ · · · ⊕ Vk. The induction now breaks into two cases depending on

the value of b1.
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5.1 Case 1

We first consider the case b1 = 0.

Lemma 5.1. For any T ∈ SYT(λ), fk(vb
T + Vλ

ak−1
) = vb†

d(T) (up to nonzero scalar factors).

Proof. Suppose T ∈ SYTak(λ). Then, by definition, vb
T ∈ Vk, and for 1 < m < n − 1 there

exist λm ⊢ n − m + 1 such that

vb
T ∈ IsoλmRes

Sn−1
Gm

(Vk).

This shows that {vb
T | T ∈ SYTak(λ)} is a b†-GT basis of Vk, and moreover vb

T is of type
d(T). Since fk is an isomorphism of Sn−1 modules, the result follows.

We normalize the b-GT basis of Vλ so that Lemma 5.1 is an equality on the nose.
Now we induct on 1 ≤ k ≤ r. Let k = 1. Applying f−1

1 to (5.1) we obtain

cT = ad(T)v
b
φµ1,b†

(d(T))+ + ∑
S∈SYT(µ1)
S<µ1,b†

d(T)

aSvb
φµ1,b†

(S)+ .

By Definition 4.1, and setting aP := ad(P) for all P ∈ SYTa1(λ), the right hand side can be
rewritten as

aTvb
φλ,b(T)

+ ∑
Q∈SYTa1 (λ)

Q<λ,bT

aQvb
φλ,b(Q).

This completes the base case of the induction on k.
Now let k > 1. Applying f−1

k to (5.1), and using Definition 4.1 as in the base case, we
obtain a congruence:

cT ≡ aTvb
φλ,b(T)

+ ∑
Q∈SYTak (λ)

Q<λ,bT

aQvb
φλ,b(Q)

(
modulo Vλ

ak−1

)
.

Therefore, there exists some x ∈ Vλ
ak−1

such that

cT = aTvb
φλ,b(T)

+ ∑
Q∈SYTak (λ)

Q<λ,bT

aQvb
φλ,b(Q) + x.

Now, x = ∑R aRcR, the sum ranging over R ∈ SYT(λ) such that εn(R) ≤ ak−1. By
induction (on k), Theorem 4.3 holds for cR. Since R <λ,b T this completes the induction
in this case.
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5.2 Case 2

We now consider the case b1 = 1. The proof here follows a similar strategy, but requires
some subtle changes. For any k ∈ N define,

Vλ
k = span{cT | T ∈ SYT(λ), εn(T) ≤ k},

fk : Vλ
ak

/Vλ
ak−1

→ Vµk , cT + Vλ
ak−1

7−→ ±cd(T).

where the sign in the definition of fk agrees with the one appearing in w0 · cT = ±cT (cf.
Theorem 2.1), and in particular it only depends on λ. First note:

Lemma 5.2. For any a, w0(Vλ
a ) = Vλ

a , and hence Vλ
a is Sn−1-invariant.

Proof. The first statement is an immediate consequence of that fact that evacuation is an
involution and Theorem 2.1. The second now follows since Vλ

a is Sn−1-invariant.

By this lemma we can regard Vλ
a as and Sn−1-module by twisting the action with w0,

i.e. by transferring the structure via the isomorphism w0 : Vλ
a → Vλ

a .

Lemma 5.3. The map fk is an isomorphism of Sn−1-modules.

Proof. Consider the diagram

Vλ
ak

/Vλ
ak−1

Vλ
ak

/Vλ
ak−1

Vµk

w0

fk

fk

We claim this commutes. Indeed, following the diagram right and down we get:

cT + Vλ
ak−1

7→ w0(cT) + Vλ
ak−1

= ±cT + Vλ
ak−1

7→ ±cd(T),

agreeing with the value of cT + Vλ
ak−1

under fk. Therefore fk is a composition of Sn−1-
module isomorphisms.

Lemma 5.4. For any T ∈ SYT(λ), fk(v
b
T + Vλ

ak−1
) = ±vb†

d(T) (up to nonzero scalar factors).

Proof. By Lemma 3.3, vb
T = w0 · vb

T. Hence

fk(v
b
T + Vλ

ak−1
) = fk(w0 · vb

T + Vλ
ak−1

)

= fk(vb
T + Vλ

ak−1
)

= vb†
d(T)
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Note the second equality uses the commutative diagram in Lemma 5.3 and the third
equality uses Lemma 5.1.

To continue the proof, now we induct on 1 ≤ k ≤ r in the filtration:

0 ⊂ Vλ
a1
⊂ · · · ⊂ Vλ

ar
= Vλ.

Let k = 1. Consider (5.1) with T replaced by T, and b by b. Applying f−1
1

to this, we
obtain

cT = ±ad(T)v
b
φµ1,b†

(d(T))+ + ∑
S∈SYT(µ1)
S<µ1,b†

d(T)

aSvb
φµ1,b†

(S)+ .

As in the previous case, the right hand side can be rewritten as

aTvb
φλ,b(T)

+ ∑
Q∈SYTa1 (λ)

Q<λ,bT

aQvb
φλ,b(Q),

proving the base case of the induction on k. One can similarly complete the inductive
step as in the previous case, and thus the proof of part (1) of Theorem 4.3 is done.
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