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Abstract. Bender, Coley, Robbins, and Rumsey posed the problem of counting the
number of subspaces which have a given profile with respect to a linear endomorphism
defined on a finite vector space. We settle this problem in full generality by giving an
explicit counting formula in terms of a Hall scalar product involving dual q-Whittaker
functions and another symmetric function that is determined by conjugacy class invari-
ants of the endomorphism. As corollaries, we obtain new combinatorial interpretations
for the coefficients in the q-Whittaker expansions of several symmetric functions. These
include the power sum, complete homogeneous, products of modified Hall–Littlewood
polynomials, and certain products of q-Whittaker functions. These results are used to
derive a formula for the number of anti-invariant subspaces (as defined by Barría and
Halmos) with respect to an arbitrary operator. We also give an application to an open
problem in Krylov subspace theory.
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1 Introduction

Let Fq denote the finite field with q elements where q is a prime power. For each positive
integer n, write Mn(Fq) for the algebra of n × n matrices over Fq.

Definition 1.1. Given a matrix ∆ ∈ Mn(Fq), a subspace W of Fn
q has ∆-profile µ = (µ1, µ2, . . .)

if

dim(W + ∆W + · · ·+ ∆j−1W) = µ1 + µ2 + · · ·+ µj for j ≥ 1.

Let σ(µ, ∆) denote the number of subspaces with ∆-profile µ. The ∆-profile of a
subspace was referred to as ‘dimension sequence’ by Bender, Coley, Robbins and Rumsey
[5, p. 2] who proposed the following combinatorial problem in 1992.

Problem 1.2. Given µ and ∆, determine σ(µ, ∆).
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They showed, by a beautiful probabilistic argument involving Möbius inversion on
the lattice of subspaces, that the σ(µ, ∆) for µ varying satisfy a system of equations (see
Theorem 5.1). They solved these equations in two special cases to obtain elegant product
formulas. If ∆ is regular nilpotent (nilpotent with one-dimensional null space), then
σ(µ, ∆) = ∏i≥2 qµ2

i [µi−1
µi

]
q
. When ∆ is simple (has irreducible characteristic polynomial),

σ(µ, ∆) =
qn − 1
qµ1 − 1 ∏

i≥2
qµ2

i −µi

[
µi−1

µi

]
q
. (1.1)

They remarked that these formulas do not appear to have simple counting proofs. Sev-
eral special instances of Problem 1.2 have been solved in the literature [9, 10, 2, 3, 7, 19,
20, 18, 22]. The consideration of subspace profiles when ∆ is a regular diagonal oper-
ator has recently led to a new proof of the Touchard–Riordan formula concerned with
crossings of chord diagrams [18].

In this paper we solve Problem 1.2 in full generality by giving an explicit formula for
σ(µ, ∆) for arbitrary µ and ∆. The fact that the theory of symmetric functions can be
leveraged to answer the counting problem is a very recent development. We show that
Problem 1.2 admits a compact solution involving q-Whittaker functions which occur
as specializations of Macdonald polynomials. The following theorem (stated later as
Theorem 5.2) is our main result.

Theorem 1.3. For each partition µ,

σ(µ, ∆) = (−1)∑j≥2 µj q∑j≥2 (
µj
2
)⟨F∆(x), W̃µ(x; q) hn−|µ|⟩,

for each prime power q and each matrix ∆ ∈ Mn(Fq).

Here ⟨·, ·⟩ denotes the Hall scalar product while hλ and W̃λ denote the complete
homogeneous and dual (with respect to the Hall scalar product) q-Whittaker symmet-
ric functions respectively. In addition, F∆(x) is a symmetric function depending on
conjugacy class invariants of the matrix ∆ that can be expressed in terms of plethystic
substitutions involving modified Hall–Littlewood polynomials (see Proposition 2.10).

Several symmetric functions such as the power sum symmetric functions, the com-
plete homogeneous symmetric functions, products of modified Hall–Littlewood polyno-
mials, and certain products of q-Whittaker functions arise as F∆ for suitably chosen ∆
(see Section 2). In the case where µ is a partition of n, the theorem above entails new
combinatorial interpretations of the coefficients in the q-Whittaker expansion of each of
these symmetric functions (Corollary 4.2).

In Section 6, we use our results to derive an explicit formula for the number of anti-
invariant subspaces with respect to a linear operator, a notion that goes back to Barría
and Halmos [4]. In Section 7 we give an application of our results to computing a
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certain probability which is important for understanding and evaluating the efficiency
of several algorithms called Krylov subspace methods. These algorithms have applica-
tions in many mathematical areas, including quadrature methods, the analytic theory of
continued fractions, expansions of infinite series, orthogonalization algorithms, and the
mathematical underpinnings of quantum mechanics (Liesen and Strakoš [16, p. 8]).

Detailed proofs of all results in this paper can be found in [21].

2 Generating function for flags of invariant subspaces

We begin with a brief overview of symmetric functions; our references are Macdon-
ald [17] and Stanley [24, Chapter 7]. A weak composition of an integer n is a sequence
α = (α1, α2, . . .) of nonnegative integers with sum n. A partition of n is a weak composi-
tion of n in which the sequence of integers is weakly decreasing. If λ is a partition of n,
we write λ ⊢ n. Nonzero terms in the sequence λ are called parts of λ and the number
of parts of λ is denoted ℓ(λ). We ignore trailing zeroes in weak compositions and par-
titions; thus, the weak compositions (3, 1, 2, 0, 1, 0, 0, . . .), (3, 1, 2, 0, 1, 0) and (3, 1, 2, 0, 1)
are all considered equivalent. For a weak composition α, write |α| for the sum ∑i≥1 αi.

Let Q(t) denote the field of rational functions in an indeterminate t. Denote by ΛQ(t)
the algebra of formal symmetric functions in infinitely many variables x = (x1, x2, . . .)
with coefficients in Q(t). The algebra ΛQ(t) admits several natural bases indexed by
integer partitions: monomial mλ, elementary eλ, power sum pλ, complete homogeneous
hλ and Schur sλ. The ring of symmetric functions is also equipped with an involutory
automorphism ω which satisfies

ωeλ = hλ; ωhλ = eλ; ωsλ = sλ′ .

Here λ′ denotes the partition conjugate to λ. The q-Whittaker functions Wλ(x; t) and
Hall–Littlewood polynomials Pλ(x; t) are two more bases of ΛQ(t). Both occur as special-
izations of a more general class of two-parameter symmetric functions, the Macdonald
polynomials. The ring of symmetric functions is endowed with the Hall scalar product
⟨·, ·⟩ with respect to which the bases mλ and hλ are dual. The dual basis of the Hall–
Littlewood polynomials Pλ(x; t) with respect to the Hall scalar product consists of the
transformed Hall–Littlewood polynomials Hλ(x; t). They are related to the q-Whittaker
functions by ωHλ′(x; t) = Wλ(x; t).

The modified Hall–Littlewood polynomials are indexed by integer partitions and are
defined by H̃λ(x; t) = tn(λ)Hλ(x; t−1), where n(λ) = ∑i≥1(i − 1)λi. The modified Hall–
Littlewood polynomial also satisfies H̃λ(x; t) = ∑µ K̃µλ(t)sµ, where sµ denotes a Schur
function and K̃µλ(t) is a modified Kostka–Foulkes polynomial.

For each nonnegative integer n, define the q-analogs [n]q := 1 + q + · · ·+ qn−1 and
[n]q! := [1]q[2]q · · · [n]q. For a weak composition α of n, the q-multinomial coefficient is
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defined by [
n
α

]
q

:=
[n]q!

∏i≥1[αi]q!
.

Definition 2.1. Given a matrix ∆ ∈ Mn(Fq) and a weak composition α = (α1, . . . , αℓ) of n, let
Xα(∆) denote the number of flags (0) = W0 ⊆ W1 ⊆ · · · ⊆ Wℓ = Fn

q of ∆-invariant subspaces
satisfying dim Wi/Wi−1 = αi for 1 ≤ i ≤ r.

Example 2.2. If ∆ = cI where I denotes the n × n identity matrix and c ∈ Fq, then Xα(∆) =
[nα]q, a q-multinomial coefficient.

Definition 2.3. For ∆ ∈ Mn(Fq) the invariant flag generating function F∆(x) is defined by

F∆(x) := ∑
α

Xα(∆)xα,

where the sum is taken over all weak compositions α of n and xα denotes the product xα1
1 xα2

2 · · · .

Proposition 2.4. For each matrix ∆ ∈ Mn(Fq), we have F∆(x) = ∑λ Xλ(∆)mλ, where the sum
is taken over all partitions λ of n and mλ denotes the monomial symmetric function.

Example 2.5. If ∆ ∈ Mn(Fq) is simple (it has irreducible characteristic polynomial), then the
only ∆-invariant subspaces are the zero subspace and Fn

q . Therefore F∆(x) = ∑i≥1 xn
i = pn, the

power sum symmetric function.

Example 2.6. If ∆ ∈ Mn(Fq) is regular nilpotent (nilpotent with one-dimensional null space),
then there is precisely one ∆-invariant subspace of dimension k for each 0 ≤ k ≤ n. In this case
F∆(x) = ∑α xα = hn, the complete homogeneous symmetric function.

Our objective now is to determine the invariant flag generating function for an ar-
bitrary matrix ∆ ∈ Mn(Fq). Recall that the action of ∆ on Fn

q defines an Fq[t]-module
structure on Fn

q . By the structure theorem for finitely generated modules over a principal
ideal domain, this module is isomorphic to a direct sum

k⊕
i=1

ℓi⊕
j=1

Fq[t]

(g
λi,j
i )

, (2.1)

where gi(t) ∈ Fq[t] are distinct monic irreducible polynomials and the sequence λi =
(λi,1, λi,2, . . . , λi,ℓi) is an integer partition for each 1 ≤ i ≤ k. Let di denote the degree of
gi for 1 ≤ i ≤ k.

Definition 2.7. With di and λi as above, the similarity class type of the matrix ∆ is the multiset
τ = {(d1, λ1), (d2, λ2), . . . , (dk, λk)}. The size of τ is the integer ∑k

i=1 di|λi|.
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The notion of similarity class type can be traced back to the work of Green [11] who
studied the characters of the finite general linear groups. Considering similarity class
types allows for a q-independent classification of conjugacy classes in these groups.

Example 2.8. Consider n × n matrices over Fq. A simple matrix has type {(n, (1))} while
a scalar multiple of the identity has type {(1, (1n))}. A regular nilpotent matrix has type
{(1, (n))}.

Remark 2.9. For arbitrary τ and q, there may be no matrix of similarity class type τ over Fq.
For a fixed τ, a matrix of type τ over Fq always exists for sufficiently large prime powers q.

It is not difficult to see that F∆(x) is multiplicative over the primary components of
∆. In general we have the following result.

Proposition 2.10. If ∆ ∈ Mn(Fq) is a matrix of similarity class type τ = {(di, λi)}1≤i≤k, then

F∆(x) =
k

∏
i=1

H̃λi(xdi
1 , xdi

2 , . . . ; qdi) =
k

∏
i=1

pdi [H̃λi(x; t)]|t=q, (2.2)

where H̃λ denotes a modified Hall–Littlewood polynomial. Here, the plethystic substitution
pdi [H̃λi(x; t)] is performed before evaluating at t = q.

The expression for F∆ in Proposition 2.10 is a product of symmetric functions where
the parameter t is specialized to a prime power q. Rather than specialize the parameter,
one can work directly with the parametric versions H̃λ(x; t) by considering similarity
class types instead of matrices. For a similarity class type τ = {(di, λi)}1≤i≤k, define

Fτ(x; t) :=
k

∏
i=1

pdi [H̃λi(x; t)]. (2.3)

Given a prime power q and a matrix ∆ ∈ Mn(Fq) with similarity class type τ, it is clear
that F∆(x) = Fτ(x; q). We now give examples of symmetric functions which arise as F∆
for some ∆. In Section 4 we will see that a combinatorial interpretation can be given for
the coefficients in the q-Whittaker expansions of each of these functions.

Example 2.11. A matrix is regular semisimple if its characteristic polynomial is a product of
distinct irreducible polynomials gi(t)(1 ≤ i ≤ k) over Fq. Let λ = (λ1, . . . , λk) denote the
integer partition obtained by arranging the degrees of the gi in weakly decreasing order. The
invariant flag generating function is given by ∏k

i=1 pλi = pλ.

Example 2.12. A matrix is regular split if its minimal polynomial is equal to its characteristic
polynomial and each is a product of linear factors: ∏k

i=1(x − ai)
λi . In this case the invariant flag

generating function is ∏k
i=1 hλi = hλ.
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The following is a simultaneous generalization of Examples 2.6 and 2.12.

Example 2.13. A matrix is triangulable if it is similar to an upper triangular matrix. For such
a matrix ∆ ∈ Mn(Fq), we have di = 1 in the decomposition (2.1) above for 1 ≤ i ≤ k. It follows
from Proposition 2.10 that F∆ = ∏i≥1 H̃λi(x; q).

Example 2.14. Let ∆ ∈ Mn(Fq) be a diagonalizable matrix with characteristic polynomial
∏k

i=1(x − ai)
νi for some partition ν of n and distinct elements ai ∈ Fq(1 ≤ i ≤ k). Since

∆ acts by a scalar multiple of the identity on each eigenspace, it follows from Example 2.2, that
F∆ = ∏i≥1 Fνi where, for each positive integer m, we have Fm := ∑λ⊢m [mλ]qmλ = W(m)(x; q), a
q-Whittaker function. Therefore F∆ = ∏i≥1 W(νi)

(x; q).

3 Diagonal operators and q-Whittaker functions

As noted earlier, the q-Whittaker functions Wλ(x; t) form a basis for ΛQ(t). They occur as
joint eigenfunctions of q-deformed Toda chain Hamiltonians with support in the positive
Weyl chamber (see Etingof [8] or Ruijsenaars [23]). They interpolate between the Schur
and elementary symmetric functions: Wλ(x; 0) = sλ(x), and Wλ(x; 1) = eλ′(x). They
also expand positively in the Schur basis Wµ = ∑λ Kλ′µ′(t)sλ where Kλµ(t) denotes
a Kostka–Foulkes polynomial. In a representation theoretic context, the q-Whittaker
functions arise in the setting of the graded Frobenius characteristic of the cohomology
ring of Springer fibers. Diagonalizable operators play a central role in the proof of the
main theorem. In this section we relate them to monomial coefficients of q-Whittaker
functions.

Definition 3.1. The type of a diagonalizable matrix is the integer partition obtained by sorting
the dimensions of its eigenspaces in weakly decreasing order.

Note that a diagonalizable matrix of type ν over Fq exists if and only if the number
of parts of ν is at most q. The following result was proved in [22, Theorem 4.21].

Theorem 3.2. For each pair µ, ν of integer partitions of n, there exist polynomials bµν(t) ∈ Z[t]
such that

σ(µ, ∆) = (q − 1)∑j≥2 µj q∑j≥2 (
µj
2
)bµν(q),

for each prime power q and each diagonal matrix ∆ ∈ Mn(Fq) of type ν.

The following result was derived from a decomposition of the open Schubert cells of
the Grassmanian according to subspace profiles with respect to a diagonal operator.

Proposition 3.3 ([22, Theorem 5.3]). For partitions µ and ν,

bµν(t) =
∏i≥1[νi]t!

∏i≥1[µi − µi+1]t!
⟨Wµ, hν⟩.
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The polynomials bµν(t) can also be obtained by summing a statistic on a suitably
defined class of set partitions. In fact, the expressions for these polynomials in terms
of both set partition statistics and semistandard tableaux has led to an elementary cor-
respondence between these two classical combinatorial objects. This correspondence
yields a way to associate a set partition statistic to each Mahonian statistic on multiset
permutations. The polynomials bµν(t) also have several interesting specializations. In
particular, when µ = (m, m) and ν = (12m) the polynomial bµν(t) coincides with the
Touchard–Riordan generating polynomial for chord diagrams by their number of cross-
ings. For more on this topic and some connections with q-rook theory, the reader is
referred to [22].

4 Full profiles

In this section we obtain an explicit formula for σ(µ, ∆) when µ is a partition of n. Let
aµλ(t) and ãµλ(t) denote the transition coefficients between the Hall–Littlewood func-
tions and the elementary symmetric functions:

eµ = ∑
λ

aµλ(t)Pλ(x; t) and Pµ(x; t) = ∑
λ

ãµλ(t)eλ.

One can view the polynomials aµλ(t) as the generating polynomial for a suitably de-
fined combinatorial statistic on (0, 1)-matrices with row sums µ and colums sums λ

(Macdonald [17, p. 211]). On the other hand, the polynomials ãµλ(t) do not have non-
negative coefficients in general and do not appear to have a nice combinatorial descrip-
tion. A very intricate explicit formula for ãµλ(t) was found by Lassalle and Schlosser
[14, Theorem 7.5] who gave an expression for the more general two-parameter coeffi-
cients in the elementary expansion of Macdonald polynomials. For each partition λ, let
ϵλ = (−1)|λ|−ℓ(λ), where ℓ(λ) denotes the number of parts of λ. The symmetric func-
tions W̃λ defined by W̃λ = ωPλ′ are dual to the q-Whittaker functions with respect to the
Hall scalar product. The following theorem is the main result of this section.

Theorem 4.1. For each partition µ of n,

σ(µ, ∆) = ϵµ′ q∑j≥2 (
µj
2
)⟨F∆, W̃µ(x; q)⟩,

for every prime power q and every matrix ∆ ∈ Mn(Fq).

Theorem 4.1 gives the following combinatorial interpretation for the coefficients in
the q-Whittaker expansion of the invariant flag generating function Fτ(x; t) (see Equation
(2.3)) associated to a similarity class type τ.
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Corollary 4.2. For each similarity class type τ = {(d1, λ1), (d2, λ2), . . . , (dk, λk)} of size n,

k

∏
i=1

pdi [H̃λi(x; t)] = ∑
µ⊢n

ϵµ′ t−∑j≥2 (
µj
2
)σ(µ, τ)Wµ(x; t),

where σ(µ, τ) denotes the number of subspaces which have profile µ with respect to a matrix of
similarity class type τ over the finite field Ft for sufficiently large prime powers t.

In view of the examples in Section 2, Corollary 4.2 gives a combinatorial finite-field
interpretation for the coefficients in the q-Whittaker expansion of several symmetric
functions which arise as invariant flag generating functions.

Example 4.3. Specializing Corollary 4.2 to the regular nilpotent and simple similarity class
types, we obtain the following expansions for homogeneous and power sum symmetric functions:

hn = ∑
µ⊢n

(−1)n−µ1

(
∏
i≥2

t(
µi+1

2 )

[
µi−1

µi

]
t

)
Wµ(x; t),

pn = ∑
µ⊢n

(−1)n−µ1
tn − 1
tµ1 − 1

(
∏
i≥2

t(
µi
2 )

[
µi−1

µi

]
t

)
Wµ(x; t).

The q-Whittaker functions have recently arisen in the work of Karp and Thomas
[13] in the context of counting certain partial flags compatible with a nilpotent endo-
morphism over a finite field. They also obtain an elegant probabilistic bijection between
nonnegative integer matrices and pairs of semistandard tableaux. It would be interesting
to relate their work to the counting problem considered in this paper.

5 Arbitrary profiles

An explicit formula for σ(µ, ∆) when µ is a partition of the ambient vector space di-
mension was obtained in Theorem 4.1. In this section we extend the result to arbitrary
partitions µ. The following result of Bender, Coley, Robbins and Rumsey shows that
σ(µ, ∆) satisfies a remarkably simple system of equations.

Theorem 5.1 ([5, Equation 4]). Let n be a positive integer and suppose ν is a partition with
|ν| < n. For each matrix ∆ ∈ Mn(Fq),

∑
µ:|µ|≤n

(−1)µ1q−µ·ν+(
µ1
2 )σ(µ, ∆) = 0,

where the sum is taken over all partitions µ of size at most n (including the empty partition) and
µ · ν := ∑j≥1 µjνj.
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Bender, Coley, Robbins and Rumsey used Theorem 5.1 to derive an explicit formula
for σ(µ, ∆) in the cases where ∆ is simple or regular nilpotent. The following theorem is
our main result.

Theorem 5.2. For each partition µ,

σ(µ, ∆) = ϵµ′ q∑j≥2 (
µj
2
)⟨F∆, W̃µ(x; q) hn−|µ|⟩,

for each prime power q and each matrix ∆ ∈ Mn(Fq).

6 Partial profiles and anti-invariant subspaces

Definition 6.1. Given a matrix ∆ ∈ Mn(Fq), a subspace W ⊆ Fn
q has partial ∆-profile ρ =

(ρ1, ρ2, . . . , ρr) if

dim(W + ∆W + · · ·+ ∆j−1W) = ρ1 + ρ2 + · · ·+ ρj for 1 ≤ j ≤ r.

Let π(ρ, ∆) denote the number of subspaces with partial ∆-profile ρ.

Example 6.2. We have π((m), ∆) = [n
m]q for each ∆ ∈ Mn(Fq) and m ≥ 0.

Note that π((m, 0), ∆) is the number of m dimensional ∆-invariant subspaces which
is distinct from π((m), ∆) in general. Therefore, we think of ρ as a tuple rather than
as an integer partition. It is evident that the number of subspaces with ∆-profile µ =
(µ1, . . . , µk) equals the number of subspaces with partial ∆-profile (µ1, . . . , µk, 0).

Definition 6.3. Given ∆ ∈ Mn(Fq) and a positive integer t, a subspace W of Fn
q is said to be

t-fold ∆-anti-invariant if

dim(W + ∆W + · · ·+ ∆tW) = (t + 1)dim W.

Thus an m-dimensional ∆-anti-invariant subspace is precisely one with partial ∆-
profile (mt+1). Anti-invariant subspaces were originally defined (for t = 1) by Barría and
Halmos [4], motivated by earlier work of Hadwin, Nordgren, Radjavi and Rosenthal [12]
on the weak density of certain sets of operators on Banach spaces. Barría and Halmos
determined the maximum possible dimension of an anti-invariant subspace.

Theorem 6.4. Given ρ = (ρ1, . . . , ρr) with ρr ̸= 0 and ∆ ∈ Mn(Fq), the number of subspaces
with partial ∆-profile ρ is given by π(ρ, ∆) = ⟨ωF∆, Gρ⟩, where

Gρ = (−1)∑j≥2 ρj q∑j≥2 (
ρj
2
) ∑

η⊢n
ℓ(η)=r

Pη′(x; q)∏
i≥1

[
ηi − ηi+1

ηi − ρi

]
q
.

Corollary 6.5. Given ∆ ∈ Mn(Fq) and a positive integer t, the number of t-fold ∆-anti-invariant
subspaces of dimension m is given by

(−1)mtqt(m
2 )⟨ωF∆, P((t+1)m,1n−m(t+1))(x; q)⟩.
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7 Application to Krylov subspace methods

Let ∆ ∈ Mn(Fq) and consider a subset S = {v1, . . . , vk} of column vectors in Fn
q . The

truncated Krylov subspace of order ℓ generated by S is defined by

Kry(∆, S, ℓ) :=

{
k

∑
i=1

fi(∆)vi : fi(x) ∈ Fq[x] and deg fi < ℓ

}
.

Let ψk,ℓ(∆) denote the probability of selecting a k-tuple of vectors uniformly at random
from Fn

q such that the truncated Krylov subspace of order ℓ spanned by them is all of
Fn

q . Thus

ψk,ℓ(∆) :=
1

qnk |{(v1, . . . , vk) ∈ (Fn
q )

k : Kry(∆, {v1, . . . , vk}; ℓ) = Fn
q}|. (7.1)

Computing ψk,ℓ(∆) is crucial for analyzing a class of algorithms that solve large, sparse
linear systems over finite fields, commonly encountered in number theory and com-
puter algebra (Watkins [25]). These algorithms, collectively referred to as Krylov sub-
space methods, have origins that can be traced back to contributions by Lagrange, Euler,
Gauss, Hilbert and von Neumann, among others (Liesen and Strakoš [16, p. 8]). For
instance, the linear algebra step in the Number Field Sieve, a well-known algorithm
for large integer factorization, depends on Krylov subspace methods (Lenstra, Lenstra,
Manasse and Pollard [15]). Another example is Wiedemann’s algorithm, which is em-
ployed to determine the minimal polynomials of large matrices over finite fields (Liesen
and Strakoš [16, p. 19]). The quantity ψk,ℓ(∆) plays a key role in evaluating the effec-
tiveness of these algorithms, and determining bounds on this probability represents a
challenging and crucial task in the field (Brent, Gao and Lauder [6, p. 277]). We give an
explicit formula for this probability.

Theorem 7.1. For each matrix ∆ ∈ Mn(Fq), we have ψk,ℓ(∆) = ⟨F∆, G(n, k, ℓ)⟩, where

G(n, k, ℓ) = q−nk ∑
µ⊢n

ℓ(µ)≤ℓ

(−1)n−µ1(q − 1)µ1q∑j≥1 (
µj
2
)
[

k
µ1

]
q
[µ1]q!W̃µ(x; q).

8 Recent developments

Denote by [n] the set of the first n positive integers. A Hessenberg function is a weakly
increasing function m : [n] → [n] satisfying m(i) ≥ i for each i ∈ [n]. For a linear operator
∆ on Fn

q , the Hessenberg variety is defined by

H (m, ∆) := {complete flags V1 ⊆ V2 ⊆ · · · ⊆ Vn = Fn
q : ∆Vi ⊆ Vm(i) for i ∈ [n]}.

The following theorem was proved in joint work with Abreu and Nigro [1].
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Theorem 8.1. For each operator ∆, the number of Fq-rational points on the Hessenberg variety
H (m, ∆) is given by

|H (m, ∆)| = ⟨F∆, ωXG(m)(x; q)⟩,

where XG(m)(x; t) denotes the chromatic quasisymmetric function of the unit interval graph
G(m) associated to m.

This result entails an expression for the Poincaré polynomials of complex Hessenberg
varieties involving modified Hall–Littlewood polynomials.
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