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Abstract. We prove a bijection between the branching models of Kwon and Sun-
daram, conjectured previously by Lenart–Lecouvey. To do so, we use a symmetry
of Littlewood–Richardson coefficients in terms of the hive model. Along the way, we
introduce a new branching model in terms of flagged hives.
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1 Introduction

In the representation theory of Lie algebras, branching problems study the restriction
of a finite-dimensional irreducible highest-weight representation of a semisimple Lie al-
gebra to nice subalgebras. Let g be a semisimple Lie algebra and k be a semisimple
Lie subalgebra of g. Recall that the finite-dimensional irreducible highest-weight repre-
sentations of g are parametrized by dominant integral weights P+(g). Let V(ν) denote
the irreducible highest weight representation indexed by ν ∈ P+(g), and consider its
restriction to k:

resgkV(ν) =
⊕

µ∈P+(k)

V(µ)
⊕

cν
µ . (1.1)

The coefficients cλ
µ in (1.1) are called branching coefficients. A combinatorial rule

for computing these coefficients is called a branching rule. By a combinatorial rule, we
mean associating a combinatorial set (model) to each pair (ν, µ) whose cardinality is cν

µ.
Throughout this paper, we fix g to be the special linear Lie algebra sl(2n, C) and k

to be the symplectic Lie algebra sp(2n, C) (thought of as the fixed point subalgebra for
the non-trivial Dynkin diagram automorphism of sl(2n, C)). For the restriction problem
in this case, various combinatorial models based on tableaux are known. There is the
classical model by Littlewood, in terms of Littlewood–Richardson tableaux, for the stable

*vsathishkumar@hri.res.in
†jacinta.torres@uj.edu.pl. Supported by the grant SONATA NCN UMO-2021/43/D/ST1/02290 and

partially supported by the grant MAESTRO NCN UMO-2019/34/A/ST1/00263.

mailto:vsathishkumar@hri.res.in
mailto:jacinta.torres@uj.edu.pl


2 V. Sathish Kumar and Jacinta Torres

case [11, 12]. An elegant extension of that rule beyond the stable case was found by
Sundaram [16]. Later, a rule in terms of tableaux and Littelmann paths [14], which was
conjectured by Naito–Sagaki, was proven via its relationship to Sundaram’s rule. There
is another, more recent extension of the Littlewood branching rule by Kwon [8, 9], which
is formulated in a more general context, for all classical types, using a combinatorial
model for classical crystals known as the spinor model.

In [10], Lenart–Lecouvey use the branching models of Kwon and Sundaram to obtain
combinatorial descriptions of generalized exponents in type Cn. In this work, we prove a
bijection conjectured by them in [10] between these models. The main tool in our proof is
the hive model for the Littlewood–Richardson coefficients and Gelfand–Tsetlin patterns
[1, 4]. In fact, we use the flagged hive models studied in [7, 6] where they use the
same to study saturation property for some structure constants using their connections
to crystals. Another important element in our proof is a symmetry (denoted by U here)
of Littlewood–Richardson coefficients from [7].

Organization of the paper

In Section 2 we fix the basic notations to work with. In Section 3 we recall the branching
models of Kwon (in fact, an equivalent formulation from [10]) and Sundaram in [8] and
[16]. We also state the main theorem in this section. In Section 4 we recall and use
the combinatorics of hives to spell out the proof. The arguments are sketched to the
extent possible subject to the overall space restrictions. The detailed proofs are part of a
forthcoming publication [13].

2 Notation

A partition is a non-increasing sequence of non-negative integers ν := ν1 ≥ ν2 ≥ · · ·
such that νk = 0 for some k ≥ 1. The maximal j such that νj ̸= 0 is called the number
of parts or length of ν and will be denoted by ℓ(ν). We will abuse notation and denote
a partition by ν = (ν1, ..., νk) for k ≥ ℓ(ν). Given a partition ν we will often consider its
Young diagram which is a left and top justified collection of boxes with νk many boxes
in the kth row for all k ∈ Z>0. We will denote the Young diagram of ν again by ν.

Let ν, µ be partitions with µ ⊂ ν, (that is, the Young diagram of µ is a subset of the
Young diagram of ν, or equivalently, µj ≤ νj for all j ∈ Z>0). A semi-standard tableau
of skew shape ν/µ is a function assigning a natural number to each box of ν such that
it is weakly increasing along rows and strictly increasing along columns, and such that
it is constant and equal to 0 precisely on the boxes corresponding to µ. For aesthetic
purposes, when displaying a tableau, we will leave the boxes with a zero filling simply
blank. The image of a box will be simply referred to as the entry in the box. Usually, a
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positive integer k will be fixed and [0, k] := {0, 1, ..., k} will be used as co-domain for the
filling function. In this case, we will denote the set of semi-standard tableaux of skew
shape ν/µ by SSYTk(ν/µ). Whenever µ = (0), the set of semi-standard tableaux of skew
shape ν/µ are typically known as semi-standard Young tableaux of (straight) shape ν,
while semi-standard Young tableaux of skew shape (m)d/ν are typically referred to as
contretableux of shape ν′, where ν′ is the complement of ν in (m)d. A semistandard
Young tableau can be equivalently defined via a sequence of k partitions

ν(0) = µ ⊂ ν(1) ⊂ · · · ⊂ ν(k) = ν,

where ν(i) is defined to be the sub-shape of ν/µ which is the pre-image of [0, i].
The north western row word, a.k.a. the reverse row word of a semi-standard Young

tableau T is obtained by reading the entries of its rows from top to bottom and right to
left. We will denote this word by w(T). The content of a semi-standard tableau T is the
content of its reverse row word. The content of a word w is α = (α1, . . . , αn) such that αi
equals the number of times i appear in w. A Yamanouchi word is a word w = w1 · · ·wl
such that for each 1 ≤ k ≤ l, the content of the subword wk := w1 · · ·wk is a partition.

We now briefly recall the Schützenberger involution on the set of semi-standard
Young tableaux. For T ∈ SSYTk(λ), if w(T) = w1w2 . . . wm then the Schützenberger invo-
lution S(T) is the unique tableau in the plactic class of the word S(w(T)) := w′m . . . w′2w′1
where, w′t denotes k + 1− wt. It is a well-known fact that the tableau S(T) has shape
equal to λ and the map S is an involution on Tabk(λ). We remark here that the word
S(w(T)) is the reading word of a contretableau of shape λ. Thus S(T) can be defined
equivalently as the rectification of this contretableau.

3 The branching models of Kwon and Sundaram

Let ν, µ, λ be partitions, with λ, µ ⊂ ν. From now on we will fix a positive integer n, and
assume, unless otherwise stated, that ℓ(ν) ≤ 2n− 1. A semi-standard tableau of skew
shape ν/µ and content λ is said to be a Littlewood–Richardson (LR) tableau if its reverse
row reading word is a Yamanouchi word. We denote the set of LR tableaux of shape
ν/µ and content λ by LR(ν/µ, λ). The numbers cν

µ,λ := |LR(ν/µ, λ)| are called the LR
coefficients. Let Tµ be the unique semi-standard Young tableau of shape and content µ.
We say that a semi-standard Young tableau T is µ-dominant if it satisfies the following
condition:

w(Tµ) ∗ w(T) is a Yamanouchi word. (3.1)

We denote the set of all µ-dominant semi-standard Young tableau of shape λ and content
ν− µ by LRν

µ,λ.
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Example 3.1. Let ν = (5, 3, 1), µ = (3, 1), λ = (3, 1, 1), with n ≥ 3. In this case, there is a
unique Littlewood–Richardson tableau of shape ν/µ and content λ:

1 1
1 2

3
.

Now, from a Littlewood–Richardson tableau T of shape ν/µ and content λ one can
easily obtain its companion tableau c(T) by placing in the k-th row of the Young diagram
of λ the indices of the rows of T containing an entry k.

Example 3.2. For T as in Example 3.1, we have

c(T) =
1 1 2
2
3

and also Tµ =
1 1 1
2

, w(Tµ) = 1112, w(c(T)) = 21123.

Note that w(Tµ) ∗ w(T) = 111221123 is indeed a Yamanouchi word.

The companion c(T) of T is a µ-dominant semi-standard Young tableau of shape λ

and weight ν− µ. In fact, it is well known that the companion map induces a bijection

c : LR(ν/µ, λ) −̃→ LRν
µ,λ .

The set of dominant integral weights for the special linear Lie algebra sl(2n, C) is
in bijection with the set of integer partitions ν for which ℓ(ν) ≤ 2n− 1. Therefore, the
irreducible finite-dimensional highest weight representations of sl(2n, C) are indexed by
partitions ν for which ℓ(ν) ≤ 2n − 1. Let V(ν) be the finite-dimensional irreducible
sl(2n, C) module indexed by ν. For partitions λ and µ whose length is at most 2n− 1,
the Littlewood–Richardson coefficients are the tensor product multiplicities:

V(λ)⊗V(µ) =
⊕

ν

V(ν)
⊕

cν
µ,λ .

By the symmetry of tensor products, it is then clear that cν
µ,λ = cν

λ,µ; this property is
called the symmetry of Littlewood–Richardson coefficients. In this work, we will recurr to a

bijection LRν
µ,λ

U←→ LRν
λ,µ via the hive model (cf. Section 4) from [7].

The set of irreducible finite-dimensional highest weight representations for the sym-
plectic Lie algebra sp(2n, C) are indexed by partitions µ for which ℓ(µ) ≤ n. Let Vσ(µ)
be the simple sp(2n, C) module of highest weight µ. Consider the branching of V(ν)
after restriction to sp(2n, C):

ressl(2n,C)
sp(2n,C)

V(ν) =
⊕

µ

Vσ(µ)
⊕

cν
µ .
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We say that a LR tableau of shape ν/µ and content λ satisfies the Sundaram property,
if, for each i = 0, ..., 1

2ℓ(λ), the entry 2i + 1 appears in row n + i or above in the Young
diagram of ν. We denote the set of T ∈ LR(ν/µ, λ) satisfying the Sundaram property by
LRS(ν/µ, λ).

Example 3.3. Let n = 3. The tableau in Example 3.1 satisfies the Sundaram condition,

but
1
2

does not.

A partition λ is even if λ2i−1 = λ2i for each i ∈ Z≥0. The following theorem is due to
Sundaram.

Theorem 3.4 ([16, Theorem 12.1]). The branching coefficient cν
µ equals the cardinality of the

set
LRS(ν, µ) :=

⋃
LRS(ν/µ, λ),

where the union is taken over all even partitions λ.

A tableau of shape λ with ℓ(λ) ≤ n is said to satisfy the Kwon property if the entries in
row i are at least 2i− 1, for i = 1, ..., n. Denote the subset of LRν

λ,µ consisting of tableaux
T such that their evacuation S(T) satisfies the Kwon property by LRKν

λ,µ. The following
is the reformulation of Kwon’s branching rule by Lecouvey–Lenart [10, Lemma 6.11].

Theorem 3.5 ([8]). The branching coefficient cν
µ equals the cardinality of the set

LRK(ν, µ) :=
⋃

LRKν
λ,µ

where, the union is taken over even partitions λ ⊂ ν.

We state our main theorem below.

Theorem 3.6. The composition

LR(ν/µ, λ)
c−→ LRν

µ,λ
U←→ LRν

λ,µ
S−→ S(LRν

λ,µ)

restricts to a bijection

LRS(ν/µ, λ)←→ LRKν
λ,µ .

We prove Theorem 3.6 in Section 4. As a byproduct, we obtain a new branching
model in terms of the flagged hive model.
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4 The flagged hive model

In this section, we recollect the notions of Gelfand–Tsetlin patterns, hives and their con-
nections with tableaux.

Fix a positive integer m. A Gelfand–Tsetlin (GT) pattern P is a triangular array of
numbers (pi,j) 1≤i≤m,

1≤j≤i
such that

pi+1,j ≥ pij ≥ pi+1,j+1 (4.1)

for all appropriate values of i and j.

p4,1 p4,2 p4,3 p4,4

p3,1 p3,2 p3,3

p2,1 p2,2

p1,1

6 3 2 0

4 3 0

3 1

1

Figure 1: Gelfand–Tsetlin patterns

The inequalities in (4.1) imply that Pk := (pk,1, pk,2, . . . , pk,k, 0, 0, . . . , 0) is weakly de-
creasing (1 ≤ k ≤ m) and hence an integral GT pattern P (i.e., pi,j ∈ Z≥0) is in fact a
sequence of partitions (0) ⊂ P1 ⊂ P2 ⊂ . . . ⊂ Pm such that the length of Pk is at most k
and the successive quotients Pk+1/Pk are horizontal strips (1 ≤ k ≤ m− 1). Recall that
this defines a semi-standard Young tableau of shape Pm which we denote by T(P). Also,
this map defines a bijection between GT patterns and semi-standard Young tableaux.
Given a semi-standard Young tableau R, we denote the associated GT pattern by GT(R).

Given an integral GT pattern P, one could also define a contretableau C(P) as follows:
First, let k denote the largest part of Pm (i.e., k = pm,1). Then the sequence of partitions
k− rev(Pm) ⊂ k− rev(Pm−1) ⊂ · · · ⊂ k− rev(P1) ⊂ k defines a contretableau, where
rev(γ) denotes (γm, . . . , γ1), the reverse of γ = (γ1, . . . , γm) and k denotes the partition
(k, . . . , k) with m parts. This is because, if λ and µ are partitions with µ ⊂ λ then and
if k ≥ λ1 then k− rev(λ) ⊂ k− rev(µ); moreover, it is easy to see with help of Young
diagrams that if λ/µ is a horizontal strip, then so is k− rev(µ)/k− rev(λ).

Example 4.1. Let P be the GT pattern appearing in Figure 1. We have m = 4, and
P4 = (6, 3, 2, 0), P3 = (4, 3, 0, 0), P2 = (3, 1, 0, 0), P1 = (1, 0, 0, 0). Then

T(P) =
1 2 2 3 4 4
2 3 3
4 4

and C(P) =
1 1

2 2 3
1 1 2 3 3 4

.
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Recall the Schützenberger involution on semi-standard Young tableaux defined in
Section 2. It is well-known that this operation coincides with the Lusztig–Schützenberger
involution in the context of crystals [15, 3, 1]. Then if rect(T) denotes the rectification of
a skew semi-standard Young tableau, we have:

Proposition 4.2. Given a GT pattern P, the tableau and contretableau associated with it are
swapped by the Schützenberger involution, that is, S(T(P)) = rect(C(P)).

Proof. Let P be a GT pattern with fixed m. It follows from the definitions of T(P) and
C(P) that the reverse reading word of T(P), respectively the reading word of C(P), are
obtained from the NE diagonals of P in the following way. The i-th NE diagonal of P,
namely, pm,i, ..., pi,i determines the entries in the i-th row of T(P) read from right to left,
respectively the entries in the m− i-th row of C(P) read from left to right. This is done
very simply: the number of j′s in row i, respectively the number of m− j′s in row m− i,
is given by pj,i − pj−1,i, working with the convention that pi,j = 0 whenever j < i.

Fix a positive integer m. A m + 1-triangular grid as in Figure 2 is a m-hive triangle.

• • • • •

• • • •

• • •

• •

•

Figure 2: The 4-hive triangle

Observe that the unit rhombi in a m-hive triangle are of three kinds based on their
orientation:

Northeast (NE): • •
• •

Southeast (SE): • •
• •

Vertical:

•
•

•
•

A m-hive is a labelling of the m + 1-hive triangle such that the content of each small
rhombus is positive. Here, the content of a small rhombus is the sum of the labels on its
obtuse-angled nodes minus the sum of the labels on its acute-angled nodes (in Figure 5,
the content of the displayed NE rhombus would be hi,j + hi+1,j+1− hi+1,j − hi,j+1). Given
partitions λ, µ and ν with at most m non-zero parts, the hive polytope Hive(λ, µ, ν) is
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• • • • •
|λ| |λ|

+µ1

|λ|
+µ1
+µ2

· · · |λ|+ |µ| = |ν|

• • • •..
.

λ1 + λ2

λ1

0

ν1

ν1 + ν2

...

• • •

• •

•

• • • • •
h5,1 h5,2 h5,3 h5,4 h5,5

• • • •
h4,1 h4,2 h4,3 h4,4

h3,1 h3,2 h3,3

h2,1 h2,2

h1,1

• • •

• •

•

Figure 3

the set of all labellings of the m-hive triangle with the boundaries labelled as in Figure 3.

Theorem 4.3 ([2, 5]). The LR coefficient cν
λ,µ is given by the number of integral points in the

hive polytope Hive(λ, µ, ν).

We present here the bijection φ : LRν
λ,µ −→ Hive(λ, µ, ν) for the comfort of the

reader. For R ∈ LRν
λ,µ we compute its GT pattern GT(R). Next, we obtain a new

triangular arrangement of numbers GT(R)p defined by taking partial sums along the
rows of GT(R). More precisely, this arrangement is defined by ai,i = 0 and ai,j :=

∑
j
k=1 pi,k, where (pi,j) are the entries of the GT pattern GT(R). Now let λp = (λ

p
1 , ..., λ

p
n)

denote the n vector consisting of partial sums for λ, that is λ
p
j = ∑

j
i=1 λ

p
i . The hive φ(R)

is obtained from GT(R)p by adding λ
p
j to each entry of GT(R)p that has the form p′i,j.

A flag ϕ = (ϕ1, . . . , ϕm) is a weakly increasing m-tuple of positive integers such that
i ≤ ϕi ≤ m for all 1 ≤ i ≤ m. The flagged hive polytope corresponding to a flag ϕ is the
set of all hives in Hive(λ, µ, ν) for which given any k, the first m− ϕk northeast rhombi
in the kth (slanted) column are flat, i.e., their contents are 0. We will denote flagged hive
polytopes by Hive(λ, µ, ν, ϕ). See Figure 4 for an illustration of the set of all northeast
rhombi determined by the flag (2, 3, 3, 4) whose contents are all required to be 0.

Given a partition ν and a flag ϕ, we define the set of flagged tableaux SSYT(ν, ϕ) to be
the set of all semi-standard tableaux of shape ν such that each entry in the kth row is at
most ϕk for all k.

Proposition 4.4 ([7]). The set of λ-dominant flagged tableaux of shape µ with flag ϕ and weight
ν− λ is enumerated by the number of integral points in Hive(λ, µ, ν, ϕ).
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• • • • •

• • • •

• • •

• •

•

Figure 4: The region corresponding to the flag ϕ = (2, 3, 3, 4) and n = 4.

Given a hive h = (hi,j), one can obtain a GT pattern P(h) := p = (pi,j) by taking the
successive differences along the rows (i.e., pi,j := hi+1,j+1 − hi+1,j). The assumption that
the contents of the northeast rhombi of h are non-negative translates exactly to the GT
inequality in (4.1). One could also take the northeast differences and get a GT pattern
P̂(h) out of it in a similar fashion (i.e., p̂i,j := hm−i+j,m−i − hm−i+j−1,m−i).

Proposition 4.5 ([7, Proposition 4], [2, Appendix A]). Let h ∈ Hive(λ, µ, ν) be an integral
hive. Then,

1. T(P(h)) is a λ-dominant tableau of shape µ and weight ν− λ.

2. C(P̂(h)) is a µ-dominant contretableau of shape λ (i.e., a skew tableau of shape m −
rev(λ)).

In fact, the map T ◦ P (resp. C ◦ P̂) is a bijection from Hive(λ, µ, ν) onto LRν
λ,µ (resp. the set of

µ-dominant contretableaux of shape λ and weight ν− µ).

Example 4.6. Let n = 3, m = 6, ν = (5, 4, 3, 3), λ = (2, 1, 1) and µ = (4, 3, 2, 2), and let

T =

1 1 1
2 2 2
3 3

1 4 4

∈ LR(ν/λ, µ), whose companion tableau is c(T) =

1 1 1 4
2 2 2
3 3
4 4

.

The first triangular grid is the GT pattern corresponding to c(T). The partial sums
vector for λ is (0, 2, 3, 4, 4). Therefore, to construct the hive ϕ(c(T)) we first obtain the
partial sums pattern, which is the second triangular grid.

We then proceed to add the entries of the partial sums vector to the partial sums
pattern to get the hive φ(c(T)), that is, we add 0 to the first row, 2 to the second row, 3
to the third row, and 4 to the 4-th to 7-th rows.
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4 3 2 2 0 0
4 3 2 2 0

4 3 2 2

3 3 2

3 3

3

0 4 7 9 11 11 11

0 4 7 9 11 11

0 4 7 9 11.

0 3 6 8

0 3 6

0 3

0

4 8 11 13 15 15 15

4 8 11 13 15 15

4 8 11 13 15

4 7 10 12

3 6 9

2 5

0

Proposition 4.7. The image of LRS(ν/µ, λ) under the companion map c is the set of µ-dominant
tableaux in SSYT(λ, ϕ) of weight ν − µ where ϕ = (ϕ1, . . . , ϕ2n) is a flag for which ϕk =
n + ⌊k/2⌋.

Proof. The image is a µ-dominant tableau of shape λ and weight ν− µ is known already
(see Section 3). The description of the companion map c implies that ϕk = n + ⌊k/2⌋
for all odd positive integers k. The remaining bounds follow from the fact that c(T) is
µ-dominant and µ has at most n parts.

By Proposition 4.4, we see that LRS(ν/µ, λ) is in one-to-one correspondence with
Hive(µ, λ, ν, ϕ) where ϕ is as in Proposition 4.7.

Proposition 4.8. Given any h ∈ Hive(µ, λ, ν, ϕ), we have rect(C(P̂(h))) ∈ LRKν
λ,µ.

Proof. Combine Propositions 4.2 and 4.5 while keeping in mind that Knuth equivalence
preserves µ-dominance. It is enough to prove that the image satisfies the Kwon prop-
erty. Observe that a flat NE rhombus like the one in Figure 5 gives rise to the equality

• •hi+1,j hi+1,j+1

• •
hi,j hi,j+1

Figure 5

p̂n−j,i−j = p̂n−j+1,i−j+1 because the content of the NE rhombus is hi,j − hi+1,j − (hi,j+1 −
hi+1,j+1) = p̂n−j,i−j − p̂n−j+1,i−j+1 = 0). These precisely translate to the Kwon condi-
tion.

Theorem 4.9. The following map is a bijection:

rect ◦ C ◦ P̂ ◦ h ◦ c : LRS(ν/µ, λ) −→ LRK(ν/λ, µ). (4.2)
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• • • • • • •

• • • • • •

• • • • •

• • • •

• • •

• •

•

p̂6,1 p̂6,2 p̂6,3 p̂6,4 p̂6,5

0 0

p̂6,6

0

p̂5,1 p̂5,2 p̂5,3 p̂5,4 p̂5,5

p̂4,1 p̂4,2 p̂4,3 p̂4,4

p̂3,1 p̂3,2 p̂3,3

p̂2,1 p̂2,2

p̂1,1

Figure 6: A flagged hive h and the corresponding GT pattern P̂(h)

Proof. By Proposition 4.7 the companion map c induces a bijection between LRS(ν/µ, λ)
and SSYT(ν, ϕ). By Proposition 4.4, the map φ induces a bijection between SSYT(ν, ϕ)
and Hive(λ, µ, ν, ϕ). Finally, apply Proposition 4.8.

The map is Theorem 4.9 is the LR symmetry map U described in [7]. Theorem 3.6
follows from Theorem 4.9 combined with Proposition 4.2.

Example 4.10. Let n = 3, m = 6 and

T =

1 1 1
1 2 2
2 3

2 3 4

∈ LRS(ν/µ, λ)

where ν = (5, 4, 3, 3), µ = (2, 1, 1), and λ = (4, 4, 2, 1). Let h := φ(c(T)) be the corre-
sponding hive. Then

c(T) =

1 1 1 2
2 2 3 4
3 4
4

, T(P̂(h)) =
3 3
4
6

, C(P̂(h)) =
1
3

4 4
and rect(C(P̂(h)))) =

1 4
3
4

.
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