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On e-positivity of trees and connected partitions
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Abstract. We prove that a tree with a vertex of degree at least five must be missing
a connected partition of some type and therefore its chromatic symmetric function
cannot be e-positive. We prove that this also holds for a tree with a vertex of degree
four as long as it is not adjacent to any leaf. This brings us very close to the conjecture
by Dahlberg, She, and van Willigenburg of non-e-positivity for all trees with a vertex of
degree at least four. We also prove that spiders with four legs cannot have an e-positive
chromatic symmetric function.
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1 Introduction

Stanley [20] defined the chromatic symmetric function of a graph G = (V, E) to be

XG = ∑
κ:V→{1,2,3,...}

if ij∈E, then κ(i) ̸=κ(j)

∏
v∈V

xκ(v). (1.1)

There are two major problems in the study of chromatic symmetric functions. The first
is the Stanley–Stembridge conjecture [21], which asserts that unit interval graphs G are
e-positive, meaning that XG is a positive sum of elementary symmetric functions. This
problem is connected to positivity of immanants of Jacobi–Trudi matrices [21], cohomol-
ogy of Hessenberg varieties [1, 5, 10, 11, 18], and characters of Hecke algebras [6, 19].
Hikita [13] announced a proof of the Stanley–Stembridge conjecture by finding a positive
e-expansion in terms of probabilities associated to standard Young tableaux. However, a
q-analogue of this problem proposed by Shareshian and Wachs [17] is still open.

The second is the tree isomorphism conjecture, which asserts that nonisomorphic
trees T and T′ must have XT ̸= XT′ . This is intriguing because all trees with n vertices
have the same chromatic polynomial. Many authors proved that XT determines certain
invariants of a tree and therefore it distinguishes particular subclasses of trees [4, 2, 3,
9, 12, 14, 15, 16]. For example, spiders S(λ), which consist of paths of lengths λ1, . . . , λℓ

joined at a single vertex, are distinguished by their chromatic symmetric function [15].
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Dahlberg, She, and van Willigenburg [7] considered a hybrid of these two ques-
tions by asking which trees T are e-positive. Many authors proved e-positivity or non-
e-positivity for particular subclasses of trees [8, 7, 23, 25, 27]. Dahlberg, She, and van
Willigenburg checked the following conjecture for all trees with at most 12 vertices.

Conjecture 1.1 ([7, Conjecture 6.1]). If T is a tree with a vertex of degree d ≥ 4, then it is not
e-positive.

Wolfgang found a powerful necessary condition for e-positivity. Let G = (V, E) be
an n-vertex graph and let λ ⊢ n be an integer partition of size n. A connected partition of
G of type λ is a set partition S = {S1, . . . , Sℓ} of V such that

• the induced subgraph G[Si] is connected for every 1 ≤ i ≤ ℓ, and

• |Si| = λi for every 1 ≤ i ≤ ℓ.

Lemma 1.2 ([26, Proposition 1.3.3]). A connected n-vertex graph G must have a connected
partition of type λ for every λ ⊢ n in order to be e-positive.

Example 1.3. Figure 1 shows some spiders and their chromatic symmetric functions. In partic-
ular, Wolfgang’s necessary condition for e-positivity is not sufficient.

Dahlberg, She, and van Willigenburg proved the following result.

Theorem 1.4 ([7, Theorem 4.1]). If G is an n-vertex connected graph with a cut vertex whose
deletion produces a graph with d ≥ log2 n + 1 connected components, then G is missing a
connected partition of some type and therefore is not e-positive.

In particular, if T is an n-vertex tree with a vertex of degree d ≥ log2 n + 1, then T is
not e-positive. Zheng strengthened this result considerably.

Theorem 1.5 ([27, Theorem 3.13]). If G is a connected graph with a cut vertex whose deletion
produces a graph with at least 6 connected components, then G is missing a connected partition
of some type.

Our main result lowers this bound further.

Theorem 1.6 ([24, Theorem 1.5]). Let G be a connected graph with a cut vertex whose deletion
produces a graph with either at least 5 connected components, or 4 connected components that
each have at least two vertices. Then G is missing a connected partition of some type.

Corollary 1.7. If T is a tree with a vertex of degree at least 5, or with a vertex of degree 4 that is
not adjacent to any leaf, then T is missing a connected partition of some type and therefore is not
e-positive.
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Figure 1: S(1, 1, 1): missing a connected partition of type (2, 2), not e-positive.
S(3, 2, 1): has a connected partition of every type λ ⊢ 7 and is e-positive. aaaaaaaaaaaa
S(4, 1, 1): has a connected partition of every type λ ⊢ 7 but is not e-positive.

S(1, 1, 1) S(3, 2, 1) S(4, 1, 1)

XS(1,1,1) = e211−2e22 + 5e31 + 4e4

XS(3,2,1) = e2221 + 2e3211 + 5e322 + 4e331 + 12e421 + 5e43 + 4e511 + 13e52 + 11e61 + 7e7

XS(4,1,1) = e2221 + 4e3211−3e322 + 10e331 + 10e421 + 17e43 + 4e511 + 3e52 + 11e61 + 7e7

It turns out that there exists a tree T with a vertex of degree 4 that is adjacent to a leaf,
and which has a connected partition of every type. Therefore, in this sense, Theorem 1.6
cannot be improved. Specifically, for every m ≥ 1 the spider graph S(6m, 6m− 2, 1, 1) has
a connected partition of every type [24, Proposition 3.19], so there are infinitely many
examples. This means that to prove non-e-positivity of trees with a vertex of degree 4 in
general, we need to know more about the tree to calculate particular coefficients. In the
specific case of spiders, we will prove that Conjecture 1.1 holds.

Theorem 1.8 ([24, Theorem 1.6]). If S is a spider with four legs, then it is not e-positive.

In the next section, we discuss how Theorem 1.6 and Theorem 1.8 can be proven by
cleverly choosing the parts of our integer partitions.

2 Proof of main result

We first fix notation that we will use for the remainder of this extended abstract. Let
G be an n-vertex connected graph with a cut vertex v whose deletion produces a graph
with at least 3 connected components A, B, C1, . . . , Ck, which have sizes

a ≥ b ≥ c1 ≥ · · · ≥ ck ≥ 1, where k ≥ 1.

This situation is illustrated in Figure 2. Let c = c1 + · · ·+ ck. We will always assume that
c ≥ 2. We cannot say much when c = 1 because there are infinite families of e-positive
spiders of the form S(a, b, 1) [8, 23, 25]. Note that

n = a + b + c + 1 ≥ 2b + c + 1.

We now state our main result using this notation.
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Figure 2: A graph G with a cut vertex v joining at least 3 connected components.

v b

c1 . . . ck

a

c

G =

Theorem 2.1. Suppose that c ≥ 2. If any of the following hold, then G is missing a connected
partition of some type λ ⊢ n.

1. We have b ≤ 2c − 2.

2. We have b = 2c − 1 and c ≥ c1 + 1.

3. We have 2c ≤ b ≤ c2

2 .

4. We have b ≥ c2

2 and c ≥ c1 + 2.

In particular, if c ≥ c1 + 2, then G is missing a connected partition of some type λ ⊢ n.

Remark 2.2. The condition that c ≥ c1 + 2 is precisely that the deletion of v produces either at
least 5 connected components, or 4 connected components that each have at least two vertices, so
Theorem 2.1 implies Theorem 1.6. We cannot remove this hypothesis because for every m ≥ 1 the
spider graph S(6m, 6m − 2, 1, 1) has a connected partition of every type λ ⊢ 12m + 3.

Remark 2.3. The condition that c ≥ c1 + 1 is precisely that the deletion of v produces at least 4
connected components. We cannot remove this hypothesis because the spider graph S(5, 3, 2) has
a connected partition of every type λ ⊢ 11 and is in fact e-positive.

Remark 2.4. We cannot remove the hypothesis that c ≥ 2 because for every m ≥ 1 the spider
graph S(m + 1, m, 1) has a connected partition of every type λ ⊢ 2m + 3 and is in fact e-positive.

The rest of this abstract is dedicated to proving Theorem 2.1. It turns out that Part 4
is the easiest to prove because the total number of vertices n is large compared to c.

Proposition 2.5. If c ≥ c1 + 2 and b ≥ c2

2 , then G is missing a connected partition of some type
λ ⊢ n.

Proof. The idea is to take a partition λ ⊢ n with parts equal to (c − 1) or c. We first check
that this is possible. The well-known Frobenius coin problem [22] tells us that given
integers x and y with gcd(x, y) = 1, every integer n ≥ (x − 1)(y − 1) can be written in
the form n = a1x + a2y for some integers a1, a2 ≥ 0. Because b ≥ c2

2 , we have

n ≥ 2b + c + 1 ≥ c2 + c + 1 ≥ (c − 1)(c − 2), (2.1)
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so we can write n = a1c + a2(c − 1) and take λ consisting of a1 c’s and a2 (c − 1)’s. We
now show that G is missing a connected partition of type λ.

Suppose that S is a connected partition of G of type λ and let S ∈ S be the subset
with v ∈ S. If there is any vertex u ∈ Ci with u /∈ S, then the subset U ∈ S with u ∈ U
would have U ⊆ Ci because v is a cut vertex of G, and therefore

|U| ≤ |Ci| ≤ ci ≤ c1 ≤ c − 2, (2.2)

which is impossible because every subset in S must have size (c − 1) or c. Therefore
every Ci ⊆ S. However, this is also impossible because v ∈ S and therefore

|S| ≥ |C1|+ · · ·+ |Ck|+ 1 = c + 1, (2.3)

and again every subset in S must have size (c − 1) or c. So G is missing a connected
partition of type λ.

We now describe another way to choose the parts of λ so that G is missing such a
connected partition.

Lemma 2.6. Let q be a positive integer and let J = {x, x + 1, . . . , y − 1, y}, where

x =

⌈
b + 1

q

⌉
and y =

⌊
b + c

q

⌋
. (2.4)

Also suppose that x ≥ c + 1. If λ ⊢ n is a partition with all parts in the interval J, then G is
missing a connected partition of type λ.

Proof. Suppose that S is a connected partition of G of type λ and let S ∈ S be the subset
with v ∈ S. As before, because |S| ≥ x ≥ c + 1 ≥ c1 + 1, we must have every Ci ⊆ S.
Thus S is of the form

S = {A1, . . . , Ai, S, B1, . . . , Bj},

where every Ai′ ⊆ A and every Bj′ ⊆ B. But now, if j ≥ q, we would have

|B| ≥ |B1|+ · · ·+ |Bj| ≥ jx ≥ q
⌈

b + 1
q

⌉
≥ b + 1,

which is a contradiction. Similarly, if j ≤ q − 1, we would have

|B|+ |C1|+ · · ·+ |Ck|+ 1 ≤ |S|+ |B1|+ · · ·+ |Bj| ≤ (j + 1)y ≤ q
⌊

b + c
q

⌋
≤ b + c,

again a contradiction. So G is missing a connected partition of type λ.

To apply Lemma 2.6, it will be useful to generalize the result of the Frobenius coin
problem by seeing which numbers can be written as a sum of numbers in an interval J.
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Lemma 2.7. Let x and y be positive integers with x < y. Then there exists a partition λ ⊢ n
with all parts in the interval J = {x, . . . , y} as long as

n ≥
⌈

x − 1
y − x

⌉
x. (2.5)

Proof. For a positive integer t, let tJ = {tx, tx + 1, . . . , ty − 1, ty}. First note that every
integer n ∈ tJ has a partition λ ⊢ n consisting of t integers in J. Indeed, for n = ty we
can take λ to be t y’s, and for tx ≤ n ≤ ty − 1 we can write n = tq + r for some integers
x ≤ q ≤ y − 1 and 0 ≤ r ≤ t − 1, and take λ consisting of r (q + 1)’s and (t − r) q’s.

We now see that as t increases, the intervals tJ become closer to each other. Specifi-
cally, for t ≥

⌈
x−1
y−x

⌉
≥ x−1

y−x , we have ty + 1 ≥ (t + 1)x, which means that as soon as we
exit the interval tJ, we are already in the interval (t + 1)J. This means that every integer
n satisfying (2.5) is in some interval tJ and has a partition λ ⊢ n with all parts in J.

In fact, this argument shows that we can find an equitable partition λ ⊢ n, which
means that all of the parts of λ are i or (i + 1) for some i.

Example 2.8. Let x = 6 and y = 9, so that J = {6, 7, 8, 9} and we can write the numbers

{6, 7, 8, 9︸ ︷︷ ︸
J

} ∪ {12, 13, 14, 15, 16, 17, 18}︸ ︷︷ ︸
2J

∪{18, 19, 20, 21, 22, 23, 24, 25, 26, 27︸ ︷︷ ︸
3J

} ∪ · · ·

as a sum of numbers in J. We see that once t ≥
⌈

x−1
y−x

⌉
= 2, we no longer have a gap between the

intervals tJ and (t + 1)J, so we are able to express any integer n ≥ 2x = 12.

By considering the special case of q = 1 in Lemma 2.6, we can now prove Part 1 of
Theorem 2.1. The proof of Part 2 is similar, instead using q = 2, and is omitted.

Proposition 2.9. If c ≥ 2 and b ≤ 2c − 2, then G is missing a connected partition of some type
λ ⊢ n.

Proof. Because b ≤ 2c − 2, we have⌈
b

c − 1

⌉
(b + 1) ≤ 2(b + 1) ≤ 2b + c + 1 ≤ n,

so Lemma 2.7 tells us that there exists a partition λ ⊢ n with all parts in the interval
J = {b + 1, . . . , b + c}. By Lemma 2.6 with q = 1 and noting that x = b + 1 ≥ c + 1, G is
missing a connected partition of type λ.

Now it remains to prove Part 3, so we assume that 2c ≤ b ≤ c2

2 . Our goal is to find a
positive integer q such that x ≥ c + 1 and there exists a partition λ ⊢ n with all parts in
the interval J, so that we can apply Lemma 2.6. By Lemma 2.7, this will happen if⌈

x − 1
y − x

⌉
x ≤ 2b + c + 1. (2.6)
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Example 2.10. Let b = 75 and c = 14, so that n ≥ 2b + c + 1 = 165. We will try to find a
value of q for which we can apply Lemma 2.6.

• For q ≥ 6, we have x ≤
⌈76

6

⌉
= 13 ≤ c, so this will not work.

• For q = 5, we have x =
⌈76

5

⌉
= 16 and y =

⌊89
5

⌋
= 17. We have x ≥ c + 1, but⌈

x − 1
y − x

⌉
x = 240 > 165,

so this will not work. For example, we cannot write n = 239 as a sum of 16’s and 17’s.

• For q = 4, we have x =
⌈76

4

⌉
= 19 and y =

⌊89
4

⌋
= 22. We have x ≥ c + 1 and⌈

x − 1
y − x

⌉
x = 114 ≤ 165,

so this will work. Lemma 2.7 tells us that there exists a partition λ ⊢ n with all parts in
the interval J = {19, 20, 21, 22} and Lemma 2.6 tells us that G will be missing a connected
partition of type λ.

The next example will show that there may be no single value of q for which the
inequality (2.6) holds. However, for every value of n ≥ 2b + c + 1, there will exist some
q such that there exists a partition λ ⊢ n with all parts in the corresponding interval J.

Example 2.11. Let b = 24 and c = 7, so that n ≥ 2b + c + 1 = 56.

• For q ≥ 4, we have x ≤ 7 ≤ c, so this will not work.

• For q = 3, we have x = 9, y = 10, and
⌈

x−1
y−x

⌉
x = 72 > 56, so this will not work.

• For q = 2, we have x = 13, y = 15, and
⌈

x−1
y−x

⌉
x = 78 > 56, so this will not work.

• For q = 1, we have x = 25, y = 31, and
⌈

x−1
y−x

⌉
x = 100 > 56, so this will not work.

We find that no single value of q satisfies (2.6). For n ≥ 72, we can take q = 3, but this will not
work for every n ≥ 56. Nevertheless, for each 56 ≤ n ≤ 71, there is some value of q such that
we can find a partition λ ⊢ n with all parts in the corresponding interval J.

q = 3 : {54, 55, 56, 57, 58, 59, 60︸ ︷︷ ︸
6J

} ∪ {63, 64, 65, 66, 67, 68, 69, 70︸ ︷︷ ︸
7J

} ∪ {72, 73, 74, . . .︸ ︷︷ ︸
8J

} ∪ · · ·

q = 2 : {52, 53, 54, 55, 56, 57, 58, 59, 60︸ ︷︷ ︸
4J

} ∪ {65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75︸ ︷︷ ︸
5J

} ∪ · · ·

q = 1 : {50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62︸ ︷︷ ︸
2J

} ∪ {75, 76, 77, . . .︸ ︷︷ ︸
3J

} ∪ · · ·
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It turns out that there exist exactly 65 (b, c) pairs with 2 ≤ c ≤ 40 and 2c ≤ b ≤ c2

2
for which we cannot find a single value of q such that x ≥ c + 1 and the inequality (2.6)
holds. Nevertheless, we checked by computer that in each case, for every n ≥ 2b + c + 1
there is some value of q such that we can find a partition λ ⊢ n with all parts in the
corresponding interval J.

Proposition 2.12 ( [24, Proposition 3.13]). If 2 ≤ c ≤ 40 and 2c ≤ b ≤ c2

2 , then G is missing
a connected partition of some type λ ⊢ n.

When c ≥ 41, we can always find a single value of q that works. We make precise
estimates, the details of which are omitted. The argument is technical but elementary.

Lemma 2.13 ([24, Lemma 3.17]). Fix positive integers b and c with c ≥ 41 and 2c ≤ b ≤ c2

2 .
There exists a positive integer q such that, letting x and y be as in (2.4), we have x ≥ c + 1 and
the inequality (2.6) holds.

Remark 2.14. We have a rough approximation⌈
x − 1
y − x

⌉
x ≈ b/q

c/q
b
q
=

b2

cq
.

To minimize this, we want q to be large, but to have x ≥ c + 1, we must have q ≤ b+1
c ≈ b

c . For

q ≈ b
c , we have

⌈
x−1
y−x

⌉
x ≈ b, so this is promising. However, the floors and ceilings mean that

the denominator (y − x) may in fact be closer to ( c
q − 2), and this (−2) term can really hurt us

if q is close to c
2 . Therefore, when b is close to c2

2 , we will need to make a clever choice of q and
perform careful estimates.

Proof sketch. There are finitely many cases where 41 ≤ c ≤ 499, which we checked by
computer, so we may now assume that c ≥ 500. If 2c ≤ b ≤ c2

4.2 , we can take q =
⌊

b
c

⌋
and

we will have x ≥ c + 1 and⌊
x − 1
y − x

⌋
x ≤ 1.955b + c ≤ 2b + c + 1.

If c2

4.2 ≤ b ≤ c2

3.4 , we can take q = ⌊0.46
√

b⌋ and we will have x ≥ c + 1 and⌊
x − 1
y − x

⌋
x ≤ 1.997b ≤ 2b + c + 1.

If c2

3.4 ≤ b ≤ c2

2 , then one of q =
⌊ √

b√
3.5

⌋
or q =

⌊ √
b√

3.5

⌋
− 1 will have x ≥ c + 1 and⌊

x − 1
y − x

⌋
x ≤ 1.92b ≤ 2b + c + 1.
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Now the remaining Part 3 of Theorem 2.1 follows from Proposition 2.12, Lemma 2.13,
Lemma 2.6, and Lemma 2.7.

Proposition 2.15. If c ≥ 2 and 2c ≤ b ≤ c2

2 , then G is missing a connected partition of some
type λ ⊢ n.

We can also prove that spiders with four legs are not e-positive.

Proof of Theorem 1.8. Because S has four legs, we have c ≥ c1 + 1 ≥ 2. If b ≤ c2

2 , the result
follows from Parts 1, 2, and 3 of Theorem 2.1. If b ≥ c2

2 , then

n ≥ 2b + c + 1 ≥ c2 + c + 1,

and Zheng showed [27, Corollary 4.6] that such a spider S is not e-positive.

Because a spider with two legs is a path and is well-known to be e-positive [20,
Proposition 5.3], the problem of classifying e-positive spiders is now reduced to classify-
ing e-positivity of spiders S(a, b, c) with exactly three legs.

For c = 1, there are infinite families of e-positive and non-e-positive spiders of the
form S(a, b, 1) [8, 23, 25]. Although some necessary and sufficient conditions are known
in terms of divisibility properties of a and b, Figure 3 suggests that a full classification
would be difficult.

For c ≥ 2, we can use Theorem 2.1 to rule out many cases and by calculating specific
coefficients, we can check many cases by computer. We conjecture that there are in fact
only finitely many e-positive spiders of the form S(a, b, c) where c ≥ 2.

Conjecture 2.16. Let S = S(a, b, c) be a spider with three legs and suppose that c ≥ 2. Then S
is e-positive if and only if

(a, b, c) ∈ {(5, 3, 2), (6, 4, 2), (8, 6, 2), (9, 7, 2), (12, 4, 2), (8, 5, 3), (14, 9, 5)}.

We checked Conjecture 2.16 up to n = 95 vertices.
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Figure 3: The e-positivity of spiders S(a, b, 1). Blue: e-positive. Red: not e-positive.
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