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Abstract. We present several results towards the problem of determining when a
chromatic quasisymmetric function (CQF) XG(x; q) of a graph G is symmetric. We first
prove the remarkable fact that if a product of two quasisymmetric functions f and g
in countably infinitely many variables is symmetric, then f and g must be symmetric.
This allows the problem to be reduced to the case of connected graphs.

We then show that any labeled graph having more than one source or sink has a
nonsymmetric CQF. As a corollary, we find that all trees other than a directed path have
a nonsymmetric CQF. We also show that a family of graphs we call “mixed mountain
graphs” always have symmetric CQF.
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1 Introduction

Chromatic symmetric functions of graphs are a topic of much recent study, especially
in light of the Stanley–Stembridge and Shareshian–Wachs Conjectures. The chromatic
symmetric function of a graph G on n vertices 1, 2, . . . , n is defined to be

XG(x) = XG(x1, x2, . . .) = ∑
κ:[n]→N

proper

xκ(1)xκ(2) · · · xκ(n)

where κ is a proper coloring of G with colors from N. The chromatic quasisymmetric
function (CQF) XG(x; q) is a q-analog of XG(x) defined as

XG(x; q) = ∑
κ

qasc(κ)xκ(1) · · · xκ(n)

where asc(κ) is the number of pairs (i, j) of vertices with i < j and κ(i) < κ(j) (such
pairs are called ascents of κ).
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In this extended abstract, which summarizes the results of [15], we provide several
new results towards classifying which graphs have a CQF that is in fact symmetric. We
make this more precise by recalling some definitions from symmetric function theory.

Definition 1.1. A quasisymmetric function (over Z) in n variables is a polynomial in
Z[x1, . . . , xn] such that for any composition α = (α1, . . . , αm) with m ≤ n, the coefficient
of xα1

1 · · · xαm
m is the same as that of xα1

i1
· · · xαm

im for any 1 ≤ i1 < i2 < · · · < im ≤ n.

We write QSymZ[x1, . . . , xn] for the ring of quasisymmetric functions in n variables,
and write QSymZ = QSymZ[x1, x2, . . .] for the inverse limit as n → ∞, under the restric-
tion maps formed by setting xn = 0. Thus, an element of QSymZ is a bounded-degree
sum of monomials such that the coefficient of xα1

i1
· · · xαm

im , for i1 < · · · < im, only depends
on the composition α.

One natural basis for QSymZ consists of the monomial quasisymmetric functions

Mα = ∑
i1<···<im

xα1
i1
· · · xαm

im .

Definition 1.2. A function f ∈ Z[x1, . . . , xn] is symmetric if for all permutations π ∈ Sn,

f (xπ(1), . . . , xπ(n)) = f (x1, . . . , xn).

We write SymZ[x1, . . . , xn] for the ring of symmetric polynomials in n variables, and
write SymZ = SymZ[x1, x2, . . .] for the inverse limit as above.

One natural basis of SymZ consists of the elementary symmetric functions eλ =
eλ1 · · · eλk for a partition λ of n, where ed is defined as the sum of all square-free mono-
mials of degree d. A symmetric function is e-positive if its expansion in the eλ basis has
all nonnegative integer coefficients. A final important basis is the Schur basis sλ, which
we do not define here; Schur positivity is always implied by e-positivity.

Example 1.3. The CQF of the path graph of length 1 shown in Figure 1 is

(1 + q)(x1x2 + x1x3 + x2x3 + · · · ) = (1 + q)e2.

The Stanley–Stembridge conjecture [26, 27] states that certain chromatic symmetric
functions are e-positive. In particular, the subset of graphs in this conjecture are the
incomparability graphs of posets that are “3+1–avoiding”, meaning they have no in-
duced subposet isomorphic to the disjoint union of a chain of length 3 and a singleton.
Gasharov [13] showed that for such graphs, XG(x) expands positively in the Schur basis,
and a large body of modern work has shown that special sub-families of such graphs
exhibit the desired e-positivity [1, 3, 5, 6, 7, 8, 9, 12, 14, 18, 21, 23, 26, 29, 30, 31]. Recently,
a proof of the Stanley–Stembridge conjecture was proposed by Hikita in [20].
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Figure 1: The labeled path graph of length 1 is shown at left; two colorings are shown
at middle and right, with the middle having one ascent and the right having none.
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Figure 2: A graph G shown at left, for which XG(x; q) is not symmetric. Three of its
colorings with maximal number of ascents are shown to the right.

The Shareshian–Wachs conjecture [25] refines this conjecture in a special case. An
important example of graphs coming from 3 + 1-free posets are unit interval graphs,
whose vertex set is a collection of unit length intervals on the real line, and whose edges
correspond to overlapping intervals. For such graphs, Shareshian and Wachs conjectured
that XG(x; q) is also e-positive, in the sense that its coefficients in the e basis are in Z+[q].
They also conjectured a connection to the cohomology rings of Hessenberg varieties, which
was later proven by Brosnan and Chow [4] and independently by Guay-Paquet [17].
Moreover, a result by Guay-Paquet [16] shows that the Shareshian–Wachs conjecture on
unit interval graphs implies the Stanley–Stembridge conjecture for all 3 + 1-free posets.

Both the Stanley–Stembridge conjecture and the Shareshian–Wachs conjecture have
been proven in a number of notable special cases, involving various infinite subfamilies
of graphs [1, 6, 7, 18, 21, 25]. There are also additional families of graphs whose CQF
is known to be e-positive, most notably the cycle graphs Cn consisting of n vertices
connected in a length n cycle [11]. However, not all CQF’s are e-positive, and in particular
they are not even necessarily symmetric functions, as shown in the following example.

Example 1.4. Consider the graph G on {1, 2, 3} shown in Figure 2. The coefficient of the
maximal power of q in XG(x; q), namely q2, is

2e3 + (x2
1x2 + x2

1x3 + x2
2x3 + · · · ) = 2e3 + M2,1

where M2,1 is the monomial quasisymmetric function, which is not symmetric.

Due to what is known about the cases of cycle graphs and unit interval graphs, we
pose the following question.
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Question 1.5. Is every CQF that is symmetric also e-positive?

In order to begin to address this question, here we explore the problem of determin-
ing when a CQF is symmetric. We first reduce the problem to the case of connected
graphs using our first main result:

Theorem 1.6. Suppose f and g are quasisymmetric functions in countably infinitely many vari-
ables and f · g is symmetric. Then both f and g are symmetric.

Note that this does not hold for finitely many variables; we have that x2
1x2 · x1x2

2 =
x3

1x3
2 is symmetric in two variables. Since CQF’s are multiplicative across disjoint union

of graphs, we immediately have the following.

Corollary 1.7. Suppose G is a graph with two or more connected components, and XG(x; q) is
symmetric. Then the CQF of each connected component is symmetric.

Some prior progress on the classification of symmetric CQF’s includes the observa-
tion in [25] that if a CQF is symmetric, then its coefficients in the basis of monomial
quasisymmetric functions Mα are palindromic polynomials in q (when reading off the
coefficients of each qi). More recently, in the preprint [2], Aliniaeifard, Asgarli, Esipova,
Shelburne, van Willigenburg, and Whitehead showed that for any non-standard orien-
tation of the path graph, the resulting CQF is not symmetric. Our second main result
generalizes this to all directed acyclic graphs with more than one sink or source.

Theorem 1.8. The CQF of any connected, directed acyclic graph with more than one sink or
source is not symmetric.

As a corollary, we obtain an answer to an open question posed by Aliniaeifard, As-
garli, Esipova, Shelburne, van Willigenburg, and Whitehead [2] of which oriented trees
have a symmetric CQF.

Corollary 1.9. The CQF of a tree is symmetric if and only if the tree is a directed path.

Our final main result is as follows. Define a k-mountain to be a complete k-clique,
and a bottomless k + 1-mountain to be a k + 1-clique with one edge removed. To make a
mixed mountain graph, we string together any sequence of k-mountains and bottomless
k + 1-mountains, where each pair of adjacent mountains shares a single vertex, and if
it is a bottomless mountain the shared vertex is one of the vertices of the missing edge.
Then we connect the final endpoints of the first and last mountains by a single extra
edge, as shown in Figure 3. We orient all edges from left to right, corresponding to the
left to right labeling of the vertices as shown with 1, 2, 3, . . . , n.

Theorem 1.10. The CQF of every mixed mountain graph is symmetric.
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Figure 3: A mixed mountain graph for k = 4.

We have used Sage [28] to test all labeled, connected graphs up to 8 vertices, and have
found that the mixed mountain graphs and unit interval orders describe all symmetric
CQF’s for these numbers. The mixed mountain graphs whose CQF we were able to
compute in Sage also all had e-positive CQF’s. We generally ask whether there are more
families of graphs that have a symmetric CQF.

In Sections 2 to 4 below, we respectively give brief ideas and outlines of the proofs
for each of the three main results (Theorems 1.6, 1.8 and 1.10).

2 Symmetric products of quasisymmetric functions

We begin with the following algebraic observation.

Lemma 2.1. Let R be any ring. If f ∈ R[x1, . . . , xn] is irreducible, then it is also irreducible in
R[x1, . . . , xn, xn+1, . . . , xm].

We now use a theorem of [19] that establishes generators for QSym using λ-ring
theory. A Lyndon word is a word α = α1, . . . , αn where α is strictly lexicographically
smaller than any cycling αi, . . . , αn, α1, . . . , αi−1. In [19], Hazewinkle defines quasisym-
metric functions λn(Mα) for each Lyndon word α and positive integer n, of degree
n (∑i αi).

Theorem 2.2 ([19, Theorem 3.1]). We have QSymZ = Z[λn(Mα)] where α ranges over all
Lyndon words with gcd(αi) = 1, and λn(M1) = en for all n.

Corollary 2.3. We have QSymZ = Z[e1, e2, . . . , f1, f2, . . .] for some functions fi such that there
are finitely many f ’s of each degree.

We can finally use the above corollary that QSymZ is freely generated to prove the
main result. The proof is by induction on the degree of h, which allows us to restrict to
a finite number of free generators and use properties of unique factorization domains.

Theorem 1.6. Suppose f · g = h where f and g are quasisymmetric and h is symmetric.
Then f and g are symmetric.
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Corollary 2.4. Suppose G is a graph with multiple connected components G1, . . . , Gk. Then
its chromatic quasisymmetric function XG(x; q) is symmetric if and only if each XGi(x; q) is
symmetric.

We now use the following theorem from [22] to obtain a more general result. We
follow their definition of the full ring K of bounded-degree formal sums of monomials
in infinitely many variables:

Definition 2.5. We define K = Z[[x1, x2, . . .]] to be the ring of formal power series of
bounded degree in infinitely many variables xi.

Lam and Pylyavskyy showed that K is a unique factorization domain, as well as
showing the following theorem.

Theorem 2.6 ([22, Theorem 8.1]). Suppose f ∈ QSym and f = ∏i fi is a factorization of f
into irreducibles in K. Then fi ∈ QSym for each i.

We can use this and our results above to conclude the following.

Corollary 2.7. If h is a symmetric function and factors as h = f · g where f , g are both arbitrary
power series in K, then f and g are both symmetric functions.

3 Nonsymmetry of certain families of graphs

The proof of Theorem 1.8 relies on establishing some general results on conditions for
nonsymmetry for CQF’s. We work with vertex-labeled graphs G, with vertices labeled
1, 2, . . . , n, and we write [n] = {1, 2, . . . , n}. The labeling induces an acyclic orientation
on the edges of G, where an edge points from the smaller vertex label to the larger.
Moreover, any directed acyclic graph admits a labeling that respects the orientation of the
edges. Thus, it equivalent to define the CQF on a directed acyclic graph G where given
a proper coloring κ of G, a directed edge (u, v) is said to have an ascent if κ(u) < κ(v).

3.1 General results for directed acyclic graphs

Given a directed acyclic graph G, let Grev denote the acyclic graph obtained from G by
reversing the orientation of all of the edges.

Lemma 3.1. Let G be a directed acyclic graph. Then XG(x; q) is symmetric if and only if
XGrev(x; q) is symmetric.

Any vertex of a directed acyclic G that only has edges exiting the vertex is called
a source. Likewise, any vertex with only incoming edges is said to be a sink. The
following observation is due to Liu [24].
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Lemma 3.2. If G has a different number of sources and sinks, then XG(x; q) is not symmetric.

Definition 3.3. An antichain in a directed acyclic graph is a set of vertices {v1, . . . , vk}
such that there is not a directed path from any vi to vj.

Note that this matches the definition of antichain where we consider the directed
acyclic graph as a poset. The following is a key lemma in our proofs.

Lemma 3.4. Let G be a directed acyclic graph. If G has an antichain whose size is larger than
the number of sinks (and the number of sources), then XG(x; q) is not symmetric.

3.2 Directed acyclic graphs and trees

Consider a connected, directed acyclic graph G with at least two sources. We show that
the chromatic quasisymmetric function of G is not symmetric. As before, we will view G
as a poset where a vertex w is less than v if and only if there is a directed path from w to
v. Let n be the number of vertices in G and a ≥ 2 be its number of sources (and therefore
its number of sinks by Lemma 3.2). Let S(G) be the set of all vertices v having at least
two sources that are smaller than v. As G has at least two sources, S(G) is nonempty.

Given v ∈ S(G), define stat(v) to be the number of nonsource vertices smaller than
v. Let k = 1 + minv∈S(G) stat(v). Denote by K|E|

α the set of proper colorings of G having

weight α and |E| ascents. We will construct a strictly injective map from K|E|
(1k,a,1n−k−a)

to

K|E|
(a,1n−a)

. Before defining this map, we recall Dilworth’s Theorem.

Theorem 3.5 (Dilworth’s Theorem, [10]). Let P be a finite poset. Then the largest antichain of
P is equal to the minimum number of disjoint chains needed to cover P.

By Lemma 3.4, we may assume that the largest antichain of G has size a. Thus, G can
be covered by a disjoint chains, each of which contains exactly one source and sink. Fix
such a minimal chain decomposition R of the graph G.

Definition 3.6. Let φG,R : K|E|
(1k,a,1n−k−a)

→ K|E|
(a,1n−a)

where φG,R(κ) is the coloring obtained
by iterating over every chain in R that does not contain a vertex colored 1 as follows:
Recolor the vertex colored k + 1 with the color 1. Then sort the colors in the chain such
that they are increasing from the chain’s source to the chain’s sink.

Lemma 3.7. The map φG,R is well-defined and injective, but not surjective.

Lemma 3.7 gives us the desired result on directed acyclic graphs.

Theorem 1.8. Let G be a connected, directed acyclic graph. If G has at least two sources
(or sinks), then XG(x; q) is not symmetric.
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As a corollary, we obtain the following characterization of all directed trees with
symmetric chromatic quasisymmetric functions, thereby settling an open question in [2].

Corollary 3.8. Let T be a directed tree. Then XT(x; q) is symmetric if and only if T is a directed
path.

We can also characterize which directed acyclic cycles have a symmetric chromatic
quasisymmetric function. A directed acyclic cycle is said to be naturally oriented if the
cycle has exactly one source and sink with an edge going from its source to sink.

Corollary 3.9. Let C be a directed acyclic cycle. Then XC(q; t) is symmetric if and only if C is
naturally oriented.

4 Symmetry of mixed mountain graphs

We define the (p, k)-mountain graph Mp,k by replacing all but one edge in a cycle of
length p + 1 with a k-clique (we require p ≥ 2 and k ≥ 2). We call each of the k-cliques
the mountains of Mp,k. We draw the graph so that the unchanged edge connects the
leftmost and rightmost vertices - we call this edge the bottom edge. Then we order the
vertices from left to right, as seen in Figure 4.

Mountain graphs are not natural unit interval graphs unless p = 2 and k = 2 (or a
relabeling of this graph when p = 2 and k = 3). In the case of (p, 2)-mountain graphs,
our work recovers the result that the chromatic quasisymmetric functions of naturally
labeled cycles are symmetric [11]. We further generalize this definition as follows.

Definition 4.1. A (p, k)-mixed mountain graph is a (p, k)-mountain graph where some
number of the k-cliques are replaced with k + 1-cliques with the edge between the two
bottom vertices removed (“bottomless mountains”). See Figure 3.

Given a proper coloring κ : V(G) → N, define the (a, a + 1)-colored subgraph to
be the induced subgraph on the vertex set κ−1({a, a + 1}). To show that XG(x; q) is
symmetric, we wish to show that for all colors a, there is an ascent-preserving bijection
on colorings of G that swaps the number of instances of a and a + 1, but preserves the
number of instances of all other colors. We do so via a number of composite bijections
that apply in different cases. Our proof outline is as follows.

Step 1. Reduce to the case that a, a + 1 label the bottom edge. If the two vertices on
the bottom edge are not colored a and a + 1, then the (a, a + 1)-colored subgraph does
not include the bottom edge. In this case, the work of Shareshian and Wachs [25] on unit
interval graphs determines the map on the coloring that swaps a, a + 1. In particular we
can reduce to the case that the two vertices on the bottom edge have consecutive colors.

Step 2. Reduce to a = 1. We define a map cycle for a > 1 that cycles the color labels
as follows (see Figure 4). Starting with a coloring κ, change all vertices colored 1 to color
c + 1 where c is the largest color appearing in κ. Then, for each vertex colored c + 1:
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Figure 4: Above, a coloring κ of G, and below, the output cycle(κ).

• If the vertex is a common vertex between two cliques, do nothing.

• Otherwise, suppose that it is the i-th upper vertex from the left in its clique. Then
reorder the upper vertices in the clique so that this vertex is the i-th upper vertex
from the right, while the relative order of the other vertices is preserved.

Finally, reduce the value of all colors by 1. We call the output cycle(κ), and note that the
bottom edge of cycle(κ) has vertices labeled a − 1 and a. After applying the cycle map
a − 1 times, the vertices on the bottom edge are colored 1 and 2.

Lemma 4.2. The colorings κ and cycle(κ) have the same number of ascents.

Step 3: Reflect. We next define a map reflect that gives a proper coloring on Grev. We
do not give the full definition here, but instead list its key properties.

Lemma 4.3. Let G be a mixed mountain graph, and let κ be a coloring of G with maximal color
c such that the vertices on the bottom edge are colored 1 and 2. Then reflect(κ) is a coloring of
Grev with the following properties (see Figure 5):

• The map reflect swaps the number of 1’s and 2’s, and swaps the number of 3’s and c’s, 4’s
and (c − 1)’s, and so on.

• The colorings κ and reflect(κ) have the same number of ascents.

For ordinary mountain graphs, the above two maps are sufficient to prove that
XG(x; q) is symmetric. For mixed mountain graphs, we need one more.

Step 4. Swap. For a mixed mountain graph, the k-cliques and bottomless k + 1-
cliques appear in reverse order in Grev, so reflect does not preserve the graph. We remedy
this issue by showing that the CQF is independent of the ordering of the k-cliques and
bottomless k + 1-cliques, and instead only depends on the number of each.
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Figure 5: The output reflect(cycle(κ)) for κ as in Figure 4.
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Figure 6: An example of swap, showing that we can swap a k-clique with an adjacent
bottomless k + 1-clique without changing its chromatic quasisymmetric function.

Indeed, let G be a mixed mountain graph, with a k-clique A to the left of a bottomless
(k + 1)-clique B. Let G′ be the graph obtained by swapping A and B. For a proper
coloring κ of G, we define a proper coloring swap(κ) of G′ with the following properties:

• The colors on vertices outside of A and B are unchanged.

• The colorings κ and swap(κ) have the same number of instances of each color, and
asc(κ) = asc(swap(κ)).

• The map κ 7→ swap(κ) is a bijection between colorings of G and G′.

See Figure 6 for an example of the swap map, and [15] for the full definition.

Corollary 4.4. If G is a (p, k)-mixed mountain graph, and G′ is the (p, k)-mixed mountain
graph obtained by swapping an adjacent k-clique and bottomless k + 1-clique, then XG(x; q) =
XG′(x; q).

As a consequence of the above result, it suffices to show that chromatic quasisymmet-
ric functions of (p, k)-mixed mountain graphs are symmetric where every k-mountain is
to the left of every (k + 1)-bottomless mountain. Using the properties of cycle, reflect,
and swap, we have the following:

Proposition 4.5. There is an ascent-preserving automorphism on the set of colorings of κ, which
color vertices on the bottom edge a and a + 1, and this automorphism swaps the number of
occurrences of the colors a and a + 1.
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Proposition 4.5 and Corollary 4.4 imply the desired symmetry of the chromatic qua-
sisymmetric function of (p, k)-mixed mountain graphs.

Theorem 1.10. Let G be a (p, k)-mixed mountain graph. Then XG(x; q) is symmetric.
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