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Abstract. We β-deform the motivic Segre classes of Schubert cells in the d-step flag
variety, conjecturing that the β-deformations come from analogues of stable envelopes
in the equivariant connective K-ring of the cotangent bundle of the flag variety. Our
main result is a combinatorial formula for the structure constants in the β-deformed
basis in the d = 1 case using Knutson–Tao puzzles.
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1 Introduction

Consider the d-step flag variety Fln(i1, . . . , id) consisting of flags in Cn of the form

(0) ⊆ V1 ⊆ V2 ⊆ · · · ⊆ Vd−1 ⊆ Vd ⊆ Cn, dim(Vj) = ij.

When d = 1, the flag variety Fln(k) is the Grassmannian Gr(k, n) of k-planes in Cn.
The flag variety Fln(i1, . . . , id) has a distinguished cell decomposition called the Bruhat
decomposition, whose cells are indexed by 012 · · · d sequences λ = λ1 · · · λn, where d
appears i1 times, d − 1 appears i2 − i1 times, and so on. We will denote the set of such
sequences by Γ. The cells defining the Bruhat decomposition are called the Schubert cells
X◦

λ, λ ∈ Γ, and the closures of the Schubert cells are the Schubert varieties Xλ := X◦
λ.

There is a natural action of the n-dimensional complex torus T on Fln(i1, . . . , id), and
the Schubert varieties Xλ are invariant under this torus action. The varieties Xλ de-
fine natural classes Sλ, called Schubert classes, in the T-equivariant cohomology ring
HT(Fln(i1, . . . , id)). In fact, the Schubert classes form a basis for HT(Fln(i1, . . . , id)) over
HT(pt) ≃ Z[y1, . . . , yn], where pt denotes a point. The Littlewood–Richardson coeffi-
cients cν

λ,µ are the structure constants in the Schubert basis:

Sλ · Sµ = ∑
ν

cν
λ,µSν.

In the paper [6], Knutson and Tao introduced the first manifestly positive formula
for the Littlewood–Richardson coefficients cν

λ,µ in the T-equivariant cohomology ring
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HT(Gr(k, n)) of the Grassmannian Gr(k, n). The combinatorial objects they used to com-
pute the Littlewood–Richardson coefficients are called puzzles.

In [11] and [12], Maulik and Okounkov defined natural geometric classes, called stable
classes, in the (T × C×)-equivariant cohomology ring and the (T × C×)-equivariant K-
ring of the cotangent bundle T∗(Fln(i1, . . . , id)) of Fln(i1, . . . , id). Dividing the stable
classes in HT×C×(T∗(Fln(i1, . . . , id))) and KT×C×(T∗(Fln(i1, . . . , id))) by an appropriate
constant class gives the Segre–Schwartz–MacPherson (SSM) classes and motivic Segre classes
of Schubert cells, respectively. The SSM and motivic Segre classes of Schubert cells
are both indexed by Γ. In [7] and [8], Knutson and Zinn-Justin proved combinatorial
formulas for the structure constants in the bases of SSM classes and motivic Segre classes
when d = 1, 2 using puzzles by applying the theory of integrable systems.

In this paper, we define a one-parameter (β-)deformation of the motivic Segre classes
of Schubert cells for T∗(Fln(i1, . . . , id)). Evaluating our deformed classes at β = 1 recov-
ers the motivic Segre classes of Schubert cells, and evaluating at β = 0 recovers the SSM
classes of Schubert cells. Our main result is Theorem 4.1, which is a combinatorial for-
mula for the structure constants in the β-deformed basis in the case d = 1 using puzzles.
In Conjecture 5.4, we conjecture that our β-deformed classes arise as analogues of stable
classes in the (T × C×)-equivariant connective K-ring of T∗(Fln(i1, . . . , id)).

2 Preliminaries and notation

2.1 Flag varieties

Let G = GLn(C). Fix a Borel subgroup B in G, and a maximal torus T in B. Denote the
weight lattice of T by Λ := Hom(T, C×), and denote the root system of T by Σ := An−1.
We denote the set of simple roots of Σ by ∆ := {α1, . . . , αn−1}. The root system Σ
decomposes as Σ = Σ+ ⊔ Σ−, where Σ+ (resp. Σ−) is the set of positive (resp. negative)
roots of Σ. For a subset Θ := {αi1 , . . . , αid}, i1 < i2 < · · · < id, of the simple roots ∆, we
denote by PΘ a parabolic subgroup of G that contains B and has (negative) simple roots
∆ \ Θ. The d-step flag variety G/PΘ is the variety of (partial) flags of vector spaces,

(0) ⊆ V1 ⊆ V2 ⊆ · · · ⊆ Vd−1 ⊆ Vd ⊆ Cn, dim(Vj) = ij.

In the special case Θ = ∆, the flag variety G/PΘ is the complete flag variety G/B. In the
special case Θ = {αk}, the group PΘ is a maximal parabolic subgroup of G, and G/PΘ
is the Grassmannian Gr(k, n) of k-planes in Cn. A negative root of G/PΘ is a root in Σ
that is not a root of PΘ. Let Σ−

Θ be the set of negative roots of G/PΘ, and let Σ+
Θ := −Σ−

Θ
be the set of positive roots of G/PΘ. Define ΣΘ := Σ+

Θ ⊔ Σ−
Θ. We will denote the Weyl

group Sn of G by W. Let ri be the simple transposition in W that swaps i and i + 1 and
fixes all other j. The subgroup WΘ of W generated by ⟨rj⟩αj∈∆\Θ is the Weyl group of PΘ.
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Let WΘ be the set of minimal coset representatives of W/WΘ in W. We will henceforth
identify the set WΘ with the quotient W/WΘ. Define pj := ij − ij−1. The set WΘ is in
bijection with the set Γ of lists of length n in the alphabet {0, . . . , d}, where d appears p1
times, d − 1 appears p2 times, and so on. Under this identification, the longest word w0
in WΘ is identified with the list dp1(d − 1)p2 · · · 1pd0pd+1 , and w · w0 ∈ WΘ is identified
with the list w(dp1(d − 1)p2 · · · 1pd0pd+1).

For each w ∈ WΘ, there is a Schubert cell X◦
w = BwPΘ/PΘ in G/PΘ. The Schubert

cells form a cell decomposition for G/PΘ. The closures of the Schubert cells Xw := X◦
w

are Schubert varieties. Let h∗(−) be one of the following (generalized) cohomology the-
ories: singular cohomology H∗(−), T-equivariant cohomology HT(−), K-theory K(−),
and T-equivariant K-theory KT(−). Let pt be a point, so that H∗(pt) ≃ Z, HT(pt) ≃
Z[y1, . . . , yn], K(pt) ≃ Z, and KT(pt) ≃ Z[e±y1 , . . . , e±yn ]. In h∗(G/PΘ) there are natural
classes Sw, known as Schubert classes, that form a basis for h∗(G/PΘ), when we view
h∗(G/PΘ) as a module over h∗(pt). In K(G/PΘ) and KT(G/PΘ), the Schubert class Sw is
the class of the structure sheaf [OXw ] of Xw. In H∗(G/PΘ) and HT(G/PΘ), the Schubert
class Sw is the class [Xw] defined by the Schubert variety Xw.

2.2 Cotangent bundles of flag varieties

The cotangent bundle T∗(G/PΘ) of G/PΘ has a natural action of T̂ := T × C×, where
(t, z) ∈ T̂ acts by (t, z) · (x, v⃗) := (t · x, (t−1)∗(z · v⃗)) for all (x, v⃗) ∈ T∗

x (G/PΘ). For any
symplectic resolution X → Y with an algebraic T̂-action subject to certain conditions,
Maulik and Okounkov defined natural geometric bases in H∗

T̂
(X) and KT̂(X) ([11], [12]),

which arise from T̂-invariant cycles in X. These bases are called the cohomological and
K-theoretic stable bases. When X = T∗(G/PΘ), the cohomological and K-theoretic stable
bases are indexed by WΘ, and we will denote the stable basis in either case by {Stλ}λ∈WΘ .
Consider the localizations Hloc

T̂
(pt) and Kloc

T̂
(pt) of the rings HT̂(pt) ≃ HT(pt)⊗Z Z[h̄]

and KT̂(pt) ≃ KT(pt)⊗Z Z[q±2] at {h̄ + α}α∈Σ and {1 − q2eα}α∈Σ, respectively. Here, h̄
and q2 denote the equivariant parameters coming from the C×-factor of T̂ that dilates the
cotangent fibres of T∗(G/PΘ). Set Hloc

T̂
(T∗(G/PΘ)) := Hloc

T̂
(pt)⊗HT̂(pt) H∗

T̂
(T∗(G/PΘ))

and Kloc
T̂
(T∗(G/PΘ)) := Kloc

T̂
(pt) ⊗KT̂(pt) KT̂(T

∗(G/PΘ)). Let κ be the class of the zero
section of T∗(G/PΘ) → G/PΘ in either HT̂(T

∗(G/PΘ)) or KT̂(T
∗(G/PΘ)). The elements

Sλ := Stλ
κ live in the localization Hloc

T̂
(T∗(G/PΘ)) or the localization Kloc

T̂
(T∗(G/PΘ)),

and {Sλ}λ∈WΘ forms a basis for Hloc
T̂

(T∗(G/PΘ)) or Kloc
T̂
(T∗(G/PΘ)) over the fraction

field Frac(HT̂(pt)) or the fraction field Frac(KT̂(pt)), respectively. The elements Sλ in
Hloc

T̂
(T∗(G/PΘ)) are called Segre–Schwartz–MacPherson (SSM) classes, and the ele-

ments Sλ in Kloc
T̂
(T∗(G/PΘ)) are called motivic Segre classes.
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2.3 Equivariant localization and divided difference operators

Let X be a smooth complex algebraic variety, and suppose E is a complex linear algebraic
group acting on X algebraically with finitely many fixed points F. For both h∗E(−) =
H∗

E(−) and h∗E(−) = KE(−), the localization map

ι : h∗E(X) →
⊕
f∈F

h∗E(pt),

defined by restricting h∗E(X) to the corresponding fixed point f on each component, is
injective. We will consider the case X = G/PΘ and E = T, or the case X = T∗(G/PΘ) and
E = T̂. In either case, the E-fixed points of X are indexed by WΘ. We will now describe
how to obtain the images of the classes Sλ in the rings H∗

T(G/PΘ), Hloc
T̂

(T∗(G/PΘ)),
KT(G/PΘ), and Kloc

T̂
(T∗(G/PΘ)) under the localization map.

Given αi ∈ ∆, there is a Z-linear operator ∂i that acts on
⊕

λ∈WΘ h∗E(pt), which we will
define explicitly below. Any w ∈ WΘ can be expressed as the reduced product of simple
transpositions w = rj1 · · · rjk . The operator ∂w := ∂j1 ◦ · · · ◦ ∂jk also acts on

⊕
λ∈WΘ h∗E(pt)

and is independent of the choice of reduced expression for w. We have ι(Sw·w0) =
∂w(ι(Sw0)), where w0 is the longest word in WΘ. We will now explicitly describe the
restrictions Sw0 |λ of Sw0 to each fixed point λ ∈ WΘ, and we will give an explicit for-
mula defining the operator ∂i in each of the four cases H∗

T(G/PΘ), Hloc
T̂

(T∗(G/PΘ)),
KT(G/PΘ), and Kloc

T̂
(T∗(G/PΘ)). Given α = c1α1 + · · ·+ cn−1αn−1 ∈ Σ, we denote by yα

the element c1(y1 − y2) + c2(y2 − y3) + · · ·+ cn−1(yn−1 − yn) ∈ Z[y1, . . . , yn].

1. H∗
T(G/PΘ). Below are the formulas for Sw0 restricted to fixed points λ ∈ WΘ:

Sw0 |λ =

{
∏α∈Σ+

Θ
y−α, λ = w0;

0, λ ̸= w0.

There is a natural action of W on the ring H∗
T(pt) ≃ Z[y1, . . . , yn], defined on

generators by w(yi) := yw(i) for all w ∈ W. This W-action extends to the ring⊕
λ∈WΘ H∗

T(pt) by w( fλ)λ := (w( fλ))w(λ) for all w ∈ W. Consider the Z-linear
operators on H∗

T(pt):

∂i( f ) =
f − ri( f )

yαi

, f ∈ H∗
T(pt), αi ∈ ∆.

The operators ∂i naturally define Z-linear operators on
⊕

λ∈WΘ H∗
T(pt).

2. Hloc
T̂

(T∗(G/PΘ)). Below are the formulas for Sw0 restricted to fixed points λ ∈ WΘ:

Sw0 |λ =

{
∏α∈Σ+

Θ

y−α

y−α−h̄ , λ = w0;

0, λ ̸= w0.
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There is a natural action of W on the ring H∗
T̂
(pt) ≃ Z[y1, . . . , yn, h̄], defined on

generators by w(yi) := yw(i) and w(h̄) = h̄ for all w ∈ W. This W-action extends
to the ring

⊕
λ∈WΘ Hloc

T̂
(pt) by w( fλ)λ := (w( fλ))w(λ) for all w ∈ W. Consider the

Z[h̄]-linear operators on Hloc
T̂

(pt):

∂i( f ) =
h̄

yαi

f +
yαi − h̄

yαi

ri( f ), f ∈ Hloc
T̂

(pt), αi ∈ ∆.

The operators ∂i naturally define Z[h̄]-linear operators on
⊕

λ∈WΘ Hloc
T̂

(pt).

3. KT(G/PΘ). Below are the formulas for Sw0 restricted to fixed points λ ∈ WΘ:

Sw0 |λ =

{
∏α∈Σ+

Θ
(1 − ey−α), λ = w0;

0, λ ̸= w0.

There is a natural action of W on the ring KT(pt) ≃ Z[e±y1 , . . . , e±yn ], defined on
generators by w(e±yi) := e±yw(i) for all w ∈ W. This W-action extends to the ring⊕

λ∈WΘ KT(pt) by w( fλ)λ := (w( fλ))w(λ) for all w ∈ W. Consider the Z-linear
operators on KT(pt):

∂i( f ) =
f

1 − e−yαi
+

ri( f )
1 − eyαi

, f ∈ KT(pt), αi ∈ ∆.

The operators ∂i naturally define Z-linear operators on
⊕

λ∈WΘ KT(pt).

4. Kloc
T̂
(T∗(G/PΘ)). Below are the formulas for Sw0 restricted to fixed points λ ∈ WΘ:

Sw0 |λ =

{
∏α∈Σ+

Θ

1−ey−α

1−q2ey−α , λ = w0;

0, λ ̸= w0.

There is a natural action of W on the ring KT̂(pt) ≃ Z[e±y1 , . . . , e±yn , q±2], defined
on generators by w(e±yi) := e±yw(i) and w(q±2) = q±2 for all w ∈ W. This W-
action extends to the ring

⊕
λ∈WΘ Kloc

T̂
(pt) by w( fλ)λ := (w( fλ))w(λ) for all w ∈ W.

Consider the Z[q±2]-linear operators on Kloc
T̂
(pt):

∂i( f ) =
1 − q2

1 − e−yαi
f +

1 − q2eyαi

1 − eyαi
ri( f ), f ∈ Kloc

T̂
(pt), αi ∈ ∆.

The operators ∂i naturally define Z[q±2]-linear operators on
⊕

λ∈WΘ Kloc
T̂
(pt).
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3 Deformation of the motivic Segre classes

3.1 The Rees ring

Consider the polynomial ring (Z[β])[xλ]λ∈Λ over Z[β] in variables xλ with λ ∈ Λ. Let
JΛ be the ideal (x0, xλ+µ − xλ − xµ + βxλxµ, λ, µ ∈ Λ) in (Z[β])[xλ]λ∈Λ. The definition
of Rees ring below is analogous to the definition in [10, Example 2.1].

Definition 3.1. Set SΛ := ((Z[β])[xλ]λ∈Λ)/JΛ. The Rees ring RΛ is the ring

RΛ := Z[q±2]⊗Z SΛ.

Lemma 3.2. The ring RΛ is an integral domain.

Proof. As RΛ = Z[q±2]⊗Z SΛ, it is enough to show that SΛ is an integral domain. Let
p : (Z[β])[xλ]λ∈Λ → SΛ be the projection onto the quotient. Consider the ideal IΛ of
(Z[β])[xλ]λ∈Λ generated by the elements xλ with λ ∈ Λ. Set I0

Λ := SΛ. Then we have
∩i≥0 Ii

Λ = (0). The ideal JΛ is contained in IΛ. Therefore, ∩i≥0p(IΛ)
i = (0) as well.

Form the associated graded ring G := ⊕i≥0p(IΛ)
i/p(IΛ)

i+1. Let H be HT(pt)[β], the
T-equivariant cohomology ring of a point extended by β. The argument in [1, Lemma
4.2] implies there is a ring isomorphism H → G. As G is isomorphic to the integral
domain H and ∩i≥0p(IΛ)

i = (0), it follows that SΛ is an integral domain.

It follows from Lemma 3.2 that the localization (RΛ)β of RΛ at β is an integral domain.
There is an isomorphism (RΛ)β → KT̂(pt)[β, β−1] given by the following map:

(RΛ)β → KT̂(pt)[β, β−1], xλ 7→ β−1(1 − eλ), q2 7→ q2, β 7→ β, λ ∈ Λ. (3.1)

The inverse sends eλ 7→ 1 − βxλ for all λ ∈ Λ. Interestingly, there is an isomorphism of
RΛ/(βRΛ) with HT̂(pt)[(1 + h̄)−1] induced by the map

RΛ/(βRΛ) → H∗
T̂(pt)[(1 + h̄)−1], xλ 7→ λ, q2 7→ 1 + h̄, λ ∈ Λ. (3.2)

There is an action of W on RΛ defined by generators by w · q2 = q2, w · β = β, and
w · xλ = xw(λ) for w ∈ W and λ ∈ Λ, which intertwines the isomorphisms (3.1) and (3.2).

3.2 Deformed divided difference operators

Definition 3.3. For a simple root α ∈ ∆, we define the following Z[q±2][β]-linear operator on
RΛ:

∂α =
1 − q2

x−α
+

1 − q2(1 − xα)

xα
rα.
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Remark 3.4. A similar “Demazure–Lusztig" operator is defined in [14, p. 61] (for more general
oriented cohomology theories). The authors denote their operators by TF

α .

Write w ∈ W as a reduced product of simple transpositions w = rj1 · · · rjk . We use
the notation ∂w := ∂αj1

◦ · · · ◦ ∂αjk
. The lemma below shows that ∂w is independent of the

choice of reduced decomposition for w.

Lemma 3.5. The operators ∂α satisfy the following relations:

1. ∂αi ◦ ∂αj = ∂αj ◦ ∂αi whenever |i − j| > 1.

2. ∂αi ◦ ∂αi+1 ◦ ∂αi = ∂αi+1 ◦ ∂αi ◦ ∂αi+1 for all i = 1, . . . , n − 2.

3. (∂αi + q2) ◦ (∂αi + (q2β − q2 − β)) = 0 for all i = 1, . . . , n − 1.

Remark 3.6. The operator ∂α has an “inverse"

∂̃α =
1

q2(β + q2 − βq2)

(
q2 − 1

xα
+

1 − q2(1 − xα)

xα
rα

)
in the sense that ∂α ◦ ∂̃α = ∂̃α ◦ ∂α = 1. The operators ∂̃α satisfy the following relations:

1. ∂̃αi ◦ ∂̃αj = ∂̃αj ◦ ∂̃αi whenever |i − j| > 1.

2. ∂̃αi ◦ ∂̃αi+1 ◦ ∂̃αi = ∂̃αi+1 ◦ ∂̃αi ◦ ∂̃αi+1 for all i = 1, . . . , n − 2.

3.
(

∂̃αi +
1
q2

)
◦
(

∂̃αi +
1

q2β−q2−β

)
= 0 for all i = 1, . . . , n − 1.

3.3 Deformed motivic Segre classes

Let Rloc
Λ be the localization of RΛ at the elements {1 − q2(1 − xλ)}λ∈Σ. Consider the

rings R̃Λ :=
⊕

λ∈WΘ RΛ and R̃loc
Λ :=

⊕
λ∈WΘ Rloc

Λ , both with pointwise addition and
multiplication. There is a natural action of W on R̃Λ given by w · ( fλ)λ = (w( fλ))w(λ)

for all w ∈ W. Moreover, the action of W on RΛ preserves the set {1 − q2(1 − xλ)}λ∈Σ.
Therefore, the action of W on R̃Λ induces an action of W on R̃loc

Λ . The action of W on
R̃loc

Λ induces an action of ∂w on R̃loc
Λ for all w ∈ W. Consider the element Sw0 ∈ R̃loc

Λ :

Sw0 |λ =

{
∏α∈Σ+

Θ

x−α

1−q2(1−x−α)
, if λ = w0;

0, otherwise.

Define Sw·w0 := ∂w(Sw0). The set {Sλ}λ∈WΘ forms a basis for R̃loc
Λ over the fraction field

Frac(RΛ). The image of Sw0 in ⊕λ∈WΘFrac(KT̂(pt)[β, β−1]) induced by (3.1) is

Sw0 |λ =

{
∏α∈Σ+

Θ

1−e−α

β(1−q2)+q2(1−e−α)
, if λ = w0;

0, otherwise.
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Example 3.7. After applying the isomorphism (3.1) and evaluating β = 1, the operator ∂α and
class Sw0 are the following:

∂α =
1 − q2

1 − e−α
+

1 − q2eα

1 − eα
rα and Sw0 |λ =

{
∏α∈Σ+

Θ

1−e−α

1−q2e−α , if λ = w0;

0, otherwise.

Therefore, {Sλ}λ∈WΘ is the set of images of motivic Segre classes of Schubert cells in the ring
Kloc

T̂
(T∗(G/PΘ)) under the localization map ι.

Example 3.8. After applying the isomorphism (3.2), the operator ∂α and class Sw0 are the fol-
lowing:

∂α =
h̄
α
+

h̄α + α − h̄
α

rα and Sw0 |λ =

{
∏α∈Σ+

Θ

α
h̄α+h̄+α , if λ = w0;

0, otherwise.

Replace ∂α with ∂H
α := ∂α

h̄+1 , replace Sw0 with SH
w0

:= (h̄ + 1)l(w0)Sw0 , and set h̄ := h̄
h̄+1 . Then

∂H
α =

h̄
α
+

α − h̄
α

rα and SH
w0
|λ =

{
∏α∈Σ+

Θ

α
α+h̄

, if λ = w0;

0, otherwise.

Thus, we can view the set of homogenizations {(h̄ + 1)l(λ)Sλ}λ∈WΘ as the set of images of the
SSM classes of Schubert cells in Hloc

T̂
(T∗(G/PΘ)) under the localization map ι.

4 Structure constants in the d = 1 case

Assume d = 1. Define Q(β) := q2 + β − q2β. For λ ∈ Λ, we will set yλ := 1− q2(1− xλ).
A puzzle with side labels λ, µ, ν in WΘ is a triangle with side labels λ, µ, ν that is tiled by
the following puzzle pieces with edge labels 0, 1, and 10. Each puzzle piece is equipped
with a function from Λ to the fraction field Frac(Z[q±1]⊗Z SΛ) known as its fugacity.

0 0

00 = 1
1 1

11 = 1
0 1

01 = 1
1 10

110 = 1
10 0

100 = 1

1 10

00 =
1 − q2

yλ 10 0

11 =
1 − q2

yλ 1 0

10 =
qxλ

yλ 10 10

01 =
q(q2 − 1)

yλ

1 1

100 =
(1 − q2)(1 − βxλ)

yλ 0 0

110 =
(1 − q2)(1 − βxλ)

yλ 0 10

010 =
qQ(β)xλ

yλ

10 1

101 =
qQ(β)xλ

yλ 0 1

1010 =
Q(β)(q2 − 1)(1 − βxλ)

qyλ 10 10

1010 = Q(β)
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1
11 = 1

1
100 = 1

0
110 = 1

10
01 = 1

10
1010 =

−Q(β)

q

0
0 0 = 1

1
1 1 = 1

1
10 0 = 1

0
1 10 = 1

10
0 1 = 1

10
10 10 = −q

The bottom row of a puzzle is always tiled by the triangle puzzle pieces, and the rest
of the puzzle is tiled by (not rotated) rhombus puzzle pieces. The fugacity of a puzzle
is the product of the fugacities of the rhombi and triangles that tile it. The fugacity of a
triangle tile is constant, independent of its position in the puzzle, whereas the fugacity of
a rhombus tile depends on its position in the puzzle. A rhombus tile that lies in the i-th
southwest-to-northeast diagonal and (j− 1)-th northwest-to-southeast diagonal depends

on λ = −∑
j
t=i αt. For example, the fugacity of the puzzle below is

qQ(β)x−α1
y−α1

· q(q2−1)
y−α1−α2

· 1.

01

110

110
0

101

11
1

100
1

We will use the notation ν
µλ to mean the sum over the fugacities of all possible puzzles

with the prescribed boundary labels. The homogenization of Sλ by a factor q is ql(λ)Sλ,
where l(λ) is the length of λ ∈ WΘ. We can now state our main theorem:

Theorem 4.1. The product of two classes ql(λ)Sλ and ql(µ)Sµ is given by the “puzzle” formula

(ql(λ)Sλ)(ql(µ)Sµ) = ∑
ν ν

µλ (ql(ν)Sν). (4.1)

Proof. The divided difference operators ∂α and ∂̃α produce an R-matrix recursion that
defines the classes ql(λ)Sλ. The fugacities of the rhombus and triangle tiles can be used
to define R, U, and D matrices that satisfy various Yang–Baxter type equations [8, Propo-
sition 3.4]. The rest of the proof is essentially the same as that of [8, Theorem 3.8].

Remark 4.2. Following [8, Section 6], we define a positivity monoid M to be a submonoid of
Rloc

Λ under addition such that M ∩ (−M) = 0. Consider the submonoid M of Rloc
Λ , defined as the

set of sums of products of the factors over all α ∈ Σ+:

−q± Q(β) 1 − βx−α
1−q2

y−α
− x−α

y−α

Then M is a positivity monoid of Rloc
Λ . To see it, view M as a submonoid of Frac(KT̂(pt)[β, β−1])

via the isomorphism (3.1), and then evaluate β = 1, e−αi = 2i, and q = −2−n/2 to see that every
factor is positive. As the structure constants for {ql(λ)Sλ}λ∈WΘ lie in the positivity monoid M,
it is in this sense that we consider the structure constants and puzzle formula for them positive.
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Example 4.3. We will compute the product (q · S10) · S01 using puzzles. First, we compute

q · S10 = q ·
[
0,

x−α1
y−α1

]
; S01 = (1

q ∂α1)(q · S10) =
[
1, 1−q2

y−α1

]
.

Here, α1 is the positive root of Gr(1, 2). Pointwise multiplication of these classes yields the
equation (q · S10) · S01 = 1−q2

y−α1
· (q · S10). The puzzle rule (4.1) gives the same result:

00

110
0

11
1

=
1 − q2

y−α1

.

5 Towards a geometric interpretation of the classes

Let E be any linear algebraic group over C. Let SmE be the category of smooth alge-
braic varieties over C equipped with an algebraic action of E, with morphisms being
E-equivariant morphisms of varieties. An E-equivariant oriented cohomology theory
h∗

E is a functor from SmE to the category of commutative unital rings satifying several
“cohomological-type" axioms. See [14] or [2] for detailed exposition. Let ΩE be the E-
equivariant algebraic cobordism of Krishna [9] and Malagón-López and Heller [4]. The
functor ΩE is an example of an E-equivariant oriented cohomology theory.

Example 5.1. The E-equivariant Chow theory CHE of Edidin–Graham [3] is an E-equivariant
oriented cohomology theory. Let ĈHE(pt) be the completion of CHE(pt) at the augmentation
ideal (i.e., the ideal generated by algebraic cycles of positive codimensions). Let X ∈ SmE. In [9,
Section 7.1] it is shown there is a canonical map ΩE(pt) → ĈHE(pt) and a ring isomorphism

ΩE(X)⊗ΩE(pt) ĈHE(pt) ≃ CHE(X)⊗CHE(pt) ĈHE(pt).

Example 5.2. The E-equivariant algebraic K-theory KE := K0
E of Thomason [13] is an E-

equivariant oriented cohomology theory. Let K̂E(pt) be the completion of KE(pt) at the aug-
mentation ideal (i.e., the ideal of virtual representations of rank 0). Let X ∈ SmE. In [9, Section
7.2] it is shown that there is a canonical map ΩE(pt) → K̂E(pt) and a ring isomorphism

ΩE(X)⊗ΩE(pt) K̂E(pt) ≃ KE(X)⊗KE(pt) K̂E(pt).

For any X ∈ SmE, we define

ĈHE(X) := ΩE(X)⊗ΩE(pt) ĈHE(pt) and K̂E(X) := ΩE(X)⊗ΩE(pt) K̂E(pt).

Let IΛ be the ideal in (Z[β])[xλ]λ∈Λ generated by the elements xλ, with λ ∈ Λ.
Consider the IΛ-adic completion (Z[β])JxλKλ∈Λ of (Z[β])[xλ]λ∈Λ. Let JΛ be the closure
of the ideal in (Z[β])JxλKλ∈Λ generated by x0 and xλ+µ − xλ − xµ + βxλxµ over all λ, µ ∈
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Λ. Set SΛ := (Z[β])JxλKλ∈Λ/JΛ. It follows from [1, Corollary 2.13] that SΛ is an integral
domain. It follows from [1, Section 2.5] and [2, Theorem 3.3] that there are maps from
SΛ to both ĈHT(pt) and K̂T(pt), which are induced by maps of formal group laws, and
that there is a map ΩT(pt) → SΛ. The kernel of the composition (Z[β])[xλ]λ∈Λ ↪→
(Z[β])JxλKλ∈Λ → SΛ is precisely the ideal JΛ defined in Section 3.1. Thus, we can view
SΛ as a subring of SΛ. Define R̂Λ := Z[β]JxqK ⊗Z[β] SΛ. We can view Z[q±2]⊗Z SΛ as
a subring of R̂Λ via the map q2 7→ 1 − xq (observe that q−2 7→ 1 + xq + x2

q + · · · .) As
ΩT̂(pt) ≃ ΩT(pt)⊗L LJxK, the map ΩT(pt) → SΛ induces a map ΩT̂(pt) → R̂Λ, x 7→ xq.

We expect the definition below to agree with that of [5]. We plan to explore this.

Definition 5.3. The (completed) T̂-equivariant connective K-ring of T∗(G/PΘ) is

CKT̂(T
∗(G/PΘ)) := ΩT̂(T

∗(G/PΘ))⊗ΩT̂(pt) R̂Λ.

There are ring homomorphisms,

CKT̂(T
∗(G/PΘ)) → ĈHT̂(T

∗(G/PΘ)) and CKT̂(T
∗(G/PΘ)) → K̂T̂(T

∗(G/PΘ)),

where xq 7→ −xh̄ on the left and xq 7→ xq on the right. Consider the localization R̂loc
Λ

of R̂Λ at the set {xq + xα − xqxα}α∈Σ. Let ĈH
loc
T̂ (pt) be the localization of ĈHT̂(pt) at

the set {xh̄ + xα + xh̄xα}α∈Σ, and let K̂loc
T̂
(pt) be the localization of K̂T̂(pt) at the set

{xq + xα − xqxα}α∈Σ. Define ĈH
loc
T̂ (T∗(G/PΘ)) := ĈHT̂(T

∗(G/PΘ))⊗ĈHT̂(pt) ĈH
loc
T̂ (pt)

and K̂loc
T̂
(T∗(G/PΘ)) := K̂T̂(T

∗(G/PΘ))⊗K̂T̂(pt) K̂loc
T̂
(pt).

Conjecture 5.4. We conjecture:

1. There are classes Sλ ∈ CKT̂(T
∗(G/PΘ))⊗R̂Λ

R̂loc
Λ indexed by λ ∈ WΘ whose images in

ĈH
loc
T̂ (T∗(G/PΘ)) and K̂loc

T̂
(T∗(G/PΘ)) can be identified with SSM and motivic Segre

classes, respectively. The set {Sλ}λ∈WΘ is an R̂loc
Λ -basis for CKT̂(T

∗(G/PΘ))⊗R̂Λ
R̂loc

Λ .

2. Under the “localization map" ι : CKT̂(T
∗(G/PΘ)) ⊗R̂Λ

R̂loc
Λ → ⊕λ∈WΘ R̂loc

Λ , the image
ι(Sλ) is the class Sλ defined in Section 3.3.

Remark 5.5. The classes Sλ satisfy a “GKM-type" property. We believe this property, together
with a connective K-theory analogue of a theorem of Chang and Skjelbred, imply that there exist
classes Sλ ∈ CKT̂(T

∗(G/PΘ))⊗R̂Λ
R̂loc

Λ satisfying Conjecture 5.4. This is work in progress.
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