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Abstract. We consider the strong Lefschetz property for standard graded Artinian
Gorenstein algebras. Such an algebra has a presentation of the quotient algebra of
the ring of the differential polynomials modulo the annihilator of some homogeneous
polynomial. There is a characterization of the strong Lefschetz property for such an
algebra by the non-degeneracy of the higher Hessian matrix of the homogeneous poly-
nomial. Maeno and Numata conjectured that if such an algebra is defined by the basis
generating polynomial of any matroid, then it has the strong Lefschetz property. For
this conjecture, we give counterexamples that are associated with graphic matroids.
We prove the degeneracy of the higher Hessian matrix by constructing a non-zero
element in the kernel of that matrix.
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1 Introduction

The Lefschetz property for Artinian Gorenstein algebras is inspired by the Hard Lef-
schetz Theorem on the cohomology of smooth complex projective varieties.

Let n be a positive integer. The polynomial algebra R[x1, . . . , xn] is regarded as a
module over the algebra Q := R[∂1, . . . , ∂n] where ∂i := ∂

∂xi
for i = 1, . . . , n.

For a homogeneous polynomial f ∈ R[x1, . . . , xn] of degree d, let

AnnQ( f ) := {α ∈ Q | α f = 0},
A := Q/AnnQ( f ).

Since f is homogeneous, AnnQ( f ) is a homogeneous ideal of Q. Thus the algebra A
can be decomposed into

A =
d⊕

i=0

Ai
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as a graded Artinian algebra. Note that for all i > d, the homogeneous part of degree i
of A is equal to {0}.

Furthermore, the algebra A is a Poincaré duality algebra. In other words, Ad is congru-
ent to the ground field R and the bilinear pairing

Ai × Ad−i → Ad

is non-degenerate for all i = 0, . . . , d. It is known that a graded Artinian algebra is
Gorenstein if and only if it is a Poincaré duality algebra (see [3, Theorem 2.79]). Hence,
the algebra A is Gorenstein. The number d is called the socle degree of A.

Conversely, according to [3, Lemma 3.74], any standard graded Artinian Gorenstein
algebra has a presentation Q/AnnQ( f ) with some homogeneous polynomial f . This
correspondence comes from Macaulay’s inverse system [3, Section 2.4.2] and f is called
the Macaulay dual generator.

We say that the algebra A has the strong Lefschetz property if there exists an element
ℓ ∈ A1 such that the multiplication map

×ℓk : Ai → Ai+k

has full rank for all i = 0, . . . , d − 1 and k = 1, . . . , d − i. A weakening of this definition
to only k = 1 is called the weak Lefschetz property.

Conjecture. The Lefschetz property is defined for algebras, but it has strong connec-
tions to combinatorics and represents an important concept in the field. Nevertheless,
many questions remain unsolved. For example, the conditions on the polynomial f
under which the algebra A has the Lefschetz property are not well understood.

In the papers [4, 5], Maeno and Numata conjectured that if f is the basis generating
polynomial of any matroid, then the algebra A has the strong Lefschetz property. They
proved this conjecture for matroids whose lattice of flats is modular geometric, and
then provided an algebraic proof that every modular geometric lattice has the Sperner
property, as an application of the Lefschetz property in combinatorics.

Previous work. The strong Lefschetz property at i = 1 is studied in [7, 8, 14] as it is
related to the Hessian matrix of the polynomial f . As the most general result, Murai, Na-
gaoka, and Yazawa [7, Theorem 3.8 and Remark 3.9] showed that under the conjecture’s
condition (i.e., f is a basis generating polynomial of any matroid), the multiplication map
×ℓk : A1 → A1+k has full rank for all k = 1, . . . , d − 1, where ℓ = a1∂1 + · · ·+ an∂n ∈ A1
for any (a1, . . . , an) ∈ Rn

>0.

Our contributions. We try to verify this conjecture by computation with the mathemat-
ical software system SageMath [12]. We concentrate on a class of matroids called graphic
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matroids. For details of graphs and matroids, see [9]. By employing an enumeration of all
simple graphs, we construct graphic matroids of them and check whether the conjecture
holds.

Although the conjecture is true for all graphs of seven or fewer vertices, we found
counterexamples associated with graphs of eight vertices. One of them (see Figure 1
in Section 3), the algebra A = Q/AnnQ( f ), with the smallest codimension dimR A1 has
the following characteristic values: the number of variables n = 13, the socle degree
d = 7, the minimal number of generators of AnnQ( f ) is 69, and the Hilbert function
(dimR Ai)

d
i=0 = (1, 13, 70, 166, 166, 70, 13, 1). The algebra A does not have the strong

Lefschetz property at i = 3, i.e., there is no element ℓ ∈ A1 such that the multiplication
map

×ℓ : A3 → A4

has full rank. It means that the algebra A does not even have the weak Lefschetz prop-
erty.

Whether there exists a case that fails at i = 2 remains unknown.

Organization. The rest of this paper is organized as follows. Section 2 contains detailed
settings of the strong Lefschetz property and the conjecture. Section 3 describes our
computation and the failure of the strong Lefschetz property at i = 3.

Finally, we note the partial failure of the strong Lefschetz property at i = 2 in Sec-
tion 4. In contrast to the previous work, the element ℓ = ∂1 + · · · + ∂n ∈ A1 is not a
universal solution, despite the fact that (1, . . . , 1) ∈ Rn

>0.
This paper is the extended abstract of the paper [11]: see that paper for the details of

counterexamples.

2 Preliminaries

Section 2.1 contains the details of the strong Lefschetz property for graded Artinian
Gorenstein algebras. The conjecture is in Section 2.2.

2.1 Strong Lefschetz Property

Let f ∈ R[x1, . . . , xn] be a homogeneous polynomial of degree d. The algebra

A = A( f ) := Q/AnnQ( f )

is a standard graded Artinian Gorenstein algebra and can be decomposed into

A =
d⊕

i=0

Ai.
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Hereafter, we represent elements of A in terms of elements of Q without causing ambi-
guity.

The Poincaré duality algebra A satisfies the following properties:

• The linear map
[•] : Ad → R ; [α] := α f

is the isomorphism from Ad to R.

• For each i = 0, . . . , d, the bilinear form

Ai × Ad−i → R ; (ξ, η) 7→ [ξη]

is non-degenerate.

Next, we define the strong Lefschetz property of the algebra A.

Definition 2.1 (strong Lefschetz property (in the narrow sense)). Let k ≤ d/2 be a non-
negative integer. We say that A has the strong Lefschetz property at degree k, shortly SLPk,
if there exists an element ℓ ∈ A1 such that the multiplication map

×ℓd−2k : Ak → Ad−k

is an isomorphism. In addition, if A has the SLPk for all k ≤ d/2 with a common element
ℓ ∈ A1, we say that A has the strong Lefschetz property and ℓ is a Lefschetz element.

Since dimR Ai = dimR Ad−i for all i = 0, . . . , d, this definition of the strong Lefschetz
property is equivalent to the one given in Section 1.

To test the strong Lefschetz property, we employ the higher Hessian matrix.

Definition 2.2 (higher Hessian matrix). Let k be a non-negative integer and Bk={α1, . . . , αm}
be a set of homogeneous polynomials of degree k in Q. For polynomial g ∈ R[x1, . . . , xn], we
define an m × m polynomial matrix HBk(g) by(

HBk(g)
)

i,j := (αiαj)g (i, j = 1, . . . , m).

This HBk(g) is called the k-th Hessian matrix of g with respect to Bk.

When B1 = {∂1, . . . , ∂n}, the first Hessian matrix HB1(g) coincides with the usual
Hessian matrix of g.

The strong Lefschetz property of the algebra A can be examined using this matrix.

Theorem 2.3 ([3, Theorem 3.76],[6, Theorem 3.1],[13, Theorem 4]). Let k ≤ d/2 be a
non-negative integer and Bk = {α1, . . . , αm} be any R-basis of Ak. For any (a1, . . . , an) ∈
Rn, the algebra A has the SLPk with an element ℓ = a1∂1 + · · · + an∂n ∈ A1 if and only if
HBk( f )(a1, . . . , an) is non-degenerate where

(HBk( f )(a1, . . . , an))i,j := ((αiαj) f )(a1, . . . , an) (i, j = 1, . . . , m).
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Proof. Since the algebra A is a Poincaré duality algebra, A has the SLPk with an element
ℓ if and only if a bilinear form

Ak × Ak → R ; (ξ, η) 7→ [ℓd−2kξη]

is non-degenerate. The representation matrix of this bilinear form with respect to the
R-basis Bk of Ak has the (i, j)-entry

[ℓd−2kαiαj] = (ℓd−2kαiαj) f = (d − 2k)! ((αiαj) f )(a1, . . . , an) (i, j = 1, . . . , m).

The last equality is due to Euler’s homogeneous function theorem. Thus the representa-
tion matrix is (d − 2k)! HBk( f )(a1, . . . , an).

Remark 2.4. The algebra A has the SLPk if and only if the polynomial det HBk( f ) is non-zero.
Furthermore, if A has the SLPk for all k ≤ d/2, then there exists a common non-root (a1, . . . , an)
of the polynomials det HBk( f ). In this case, the algebra A has the strong Lefschetz property with
the Lefschetz element ℓ = a1∂1 + · · ·+ an∂n.

2.2 Basis Generating Polynomial

Let G be a connected graph with d + 1 vertices and n edges. We number the edges one
through n and identify the edges with the numbers.

A subgraph T of the graph G is called a spanning tree of G if T is connected graph on
the same vertices as G without cycles.

Definition 2.5 (basis generating polynomial (for graphs)). The basis generating polyno-
mial fG ∈ R[x1, . . . , xn] of the graph G is defined as the sum, over all spanning trees T of G, of
the products of xe for the edges e in T. More formally,

fG := ∑
T

∏
e

xe.

A spanning tree of G is a basis of the graphic matroid of G. Since the number of
edges in every spanning tree of G is d, the polynomial fG is a homogeneous polynomial
of degree d.

From the above, the conjecture we mentioned in Section 1 is as follows.

Conjecture 2.6 (Maeno–Numata conjecture (for graphs) [4]). The algebra A( fG) has the
strong Lefschetz property for any connected graph G.

Remark 2.7. If edges i and j are multiple edges, then ∂i − ∂j ∈ AnnQ( fG). If an edge k is a self
loop, then ∂k ∈ AnnQ( fG). Thus for Conjecture 2.6 we can ignore self loops and multiple edges;
and focus only on simple graphs, i.e., graphs without such edges.

In the following, we say that the graph G has the strong Lefschetz property or the
SLPk if the algebra A( fG) has the strong Lefschetz property or the SLPk, respectively.
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3 Failure of the SLP3

In this section, we provide a planar graph and a non-planar graph without the SLP3 as
the counterexamples to Conjecture 2.6. Our probabilistic and deterministic methods are
described in Sections 3.1 and 3.2, respectively.

3.1 Screening

To prove that the algebra A = A( fG) does not have the SLP3, it is necessary to verify that
the third Hessian matrix HB3( fG) is degenerate for an R-basis B3 of A3. This problem
is a variant of Edmonds’ problem [2]. Unfortunately, computing the determinant of that
large matrix of multivariate polynomials is difficult. For this reason, we first employ a
randomized algorithm based on Lemma 3.1.

Lemma 3.1 (Schwartz–Zippel lemma [1, 10, 15]). Let g ∈ R[x1, . . . , xn] be a non-zero poly-
nomial. Suppose that S is a finite subset of R and r1, . . . , rn are selected at random independently
and uniformly from S. Then,

Pr[g(r1, . . . , rn) = 0] ≤ deg g
|S| .

Since the SLP3 is trivial or undefined for graphs of seven or fewer vertices, let G be
a graph of eight vertices. Every entry of HB3( fG) is the sixth-order partial derivative of
the polynomial fG of degree seven. Thus if the polynomial g := det HB3( fG) is non-zero,
then deg g = dimR A3.

We repeated the following check 100 times: select r1, . . . , rn at random independently
and uniformly from the set S = {1, . . . , 109} and assure whether g(r1, . . . , rn) = 0.
If the polynomial g is non-zero, then the probability that g passes our check is less

than
(

dimR A3
|S|

)100
. Because our computation showed dimR A3 ≤ 500, this probability is

smaller than 10−630.
We found 152 counterexample candidates out of 11, 117 simple connected graphs of

eight vertices, up to isomorphism of graphs. Among them, for the one which has the
smallest number of edges (Figure 1) and one of which is a planar graph (Figure 2), we
verify that HB3( fG) is degenerate for an R-basis B3 of A3. The details of Figure 1 are in
Section 3.2 and [11].

Remark 3.2. It is sufficient to consider only biconnected graphs, that is, graphs whose con-
nectivity is preserved when any one vertex is deleted. The reason is as follows. First, the poly-
nomial fG is a product of the basis generating polynomials of each biconnected components
of G, that are maximal biconnected subgraphs of G. In consequence, according to [3, Theo-
rem 3.34 and Proposition 3.77], the strong Lefschetz property of each biconnected component
derives the strong Lefschetz property of the whole graph G.
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Figure 1: The graph with the small-
est number of edges without SLP3 Figure 2: A planar graph without

SLP3

The number of biconnected graphs of eight vertices is 7, 123, up to isomorphism.

3.2 Verification

Let G be the graph shown in Figure 1. The numbering of each edge is also shown in
Figure 1. The algebra A = A( fG) is mentioned in Section 1: the number of variables n =
13, the socle degree d = 7, the minimal number of generators of AnnQ( fG) is 69, and the
Hilbert function (dimR Ai)

d
i=0 = (1, 13, 70, 166, 166, 70, 13, 1). Let m := dimR A3 = 166.

We fix the R-basis B3 of A3 as follows. Let (i, j, k) := ∂i∂j∂k for 1 ≤ i < j < k ≤ n.
The set of monomials {(i, j, k) | 1 ≤ i < j < k ≤ n} is a generating set of A3 because
the polynomial fG is a square-free polynomial. Enumerate this set in the lexicographic
order, as β1 = (1, 2, 3), . . . , β(n

3)
= (n − 2, n − 1, n). We use

B3 :=
{

βi

∣∣∣∣ 1 ≤ i ≤
(

n
3

)
, ⟨β1, . . . , βi−1⟩ ⊊ ⟨β1, . . . , βi⟩

}
.

The third Hessian matrix HB3( fG) contains 8, 450 non-zero entries. To verify the de-
generacy of HB3( fG), we construct a non-zero vector of polynomials F = (F1, . . . , Fm)T ∈
R[x1, . . . , xn]m such that HB3( fG)F = 0. Such an F satisfies the following conditions:

Theorem 3.3. Let k ≤ d/2 be a non-negative integer, Bk = {α1, . . . , αm} be any R-basis of Ak,
and F = (F1, . . . , Fm)T ∈ R[x1, . . . , xn]m with HBk( f )F = 0. The following hold.

1. For any (a1, . . . , an) ∈ Rn, let ℓ := a1∂1 + · · ·+ an∂n and

ξ :=
m

∑
i=1

Fi(a1, . . . , an)αi.
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The element ξ ∈ Ak is in the kernel of the multiplication map ×ℓd−2k : Ak → Ad−k.

2.
m

∑
i=1

Fi · (αi f ) = 0.

Algorithm for Constructing F. The vector of polynomials F is constructed through the
following steps using polynomial interpolation.

1. Determine the maximum degree

Di := max
j=1,...,m

deg Fj(1, . . . , xi, . . . , 1),

where Fj(1, . . . , xi, . . . , 1) denotes the univariate polynomial in xi obtained by set-
ting all xk with k ̸= i equal to one in Fj.

2. Construct the polynomials F using multivariate polynomial interpolation based on
the values of F at each point (a1, . . . , an) ∈ X1 × · · · × Xn, where Xi is a set of Di + 1
points in Z.

The first step also employs univariate polynomial interpolation. We found that the max-
imum degrees are (D1, . . . , D13) = (1, 1, 1, 0, 1, 1, 1, 0, 2, 2, 2, 2, 1).

Algorithm for Evaluating F. In both steps, it is necessary to determine the values of F
at certain points (a1, . . . , an) ∈ Rn. Since F(a1, . . . , an) ∈ ker HB3( fG)(a1, . . . , an), we can
obtain information about the value from the kernel, a linear subspace of Rm.

Let (a1, . . . , an) ∈ Zn
>0. The value F(a1, . . . , an) ∈ Zm is computed using the following

steps.

1. Verify that the kernel ker HB3( fG)(a1, . . . , an) is of dimension one.

2. Choose a non-zero vector F ′ from ker HB3( fG)(a1, . . . , an).

3. Determine the coefficient c ̸= 0 such that every component of the vector cF ′ is an
integer, the greatest common divisor of the components of cF ′ is one, and cF′

i0
> 0

for a predetermined index i0.

4. Lastly, this cF ′ will be the value of F(a1, . . . , an).

By the verification of the first step, the vectors F ′ and F(a1, . . . , an) are parallel. In
some counterexample candidates, this confirmation fails because the kernel of the third
Hessian matrix is most likely of dimension two.

The third step is a form of normalization. We anticipated the greatest common divisor
of the components of F(a1, . . . , an) to be one by choosing ai to be a prime power. We
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Figure 3: The graph does not have the SLP2 with the element ℓ = ∂1 + · · ·+ ∂n

also predict that Fi0(a1, . . . , an) is always positive. We used i0 = 2. The corresponding
basis element is α2 = ∂1∂2∂4. Finally it was revealed that F2 = (x1 + x5 + x13)(x2 +
x6)x2

10x11x12.
The vector of polynomials F has 90 zeros and 76 homogeneous polynomials of degree

six. We observed that a vector of polynomials F, defined similarly for the graph shown
in Figure 2, contains only 154 zeros and 137 homogeneous polynomials of degree six as
well.

4 Partial Failure of the SLP2

First of all, every graph of eight or fewer vertices has the SLP2. However, only one graph
(Figure 3) does not have the SLP2 with fixed element ℓ = ∂1 + · · ·+ ∂n. This graph also
does not have the SLP3 with the same element ℓ, but has the strong Lefschetz property
with other elements.

This ℓ is typically one of the Lefschetz elements of the strong Lefschetz property. A
previous work [14] showed that the complete or complete bipartite graph has the SLP1
with this element ℓ. Besides, det HBk( f )(1, . . . , 1) is calculated in [5]. For any set of edges
I, ((∏i∈I ∂i) fG) (1, . . . , 1) is equal to the number of spanning trees in G which contains
all of edges in I.

Let G be the graph shown in Figure 3. The number of variables n = 11, the socle
degree d = 7, the minimal number of generators of AnnQ( fG) is 42, and the Hilbert
function (dimR Ai)

d
i=0 = (1, 11, 51, 112, 112, 51, 11, 1). As in Section 3, we construct an R-

basis B2 of A2 by the same method and find a non-zero vector F = (F1, . . . , F51)
T ∈ R51

such that HB2( fG)(1, . . . , 1)F = 0.



10 Ryo Takahashi

Table 1: The basis B2 and the vector F
∂1 ∂2 ∂3 ∂4 ∂5 ∂6 ∂7 ∂8 ∂9 ∂10 ∂11

∂1 10 0 −4 0 0 0 0 0 0 −3
∂2 −4 0 0 0 0 0 0 −3
∂3 10 0 0 0 0 0 0 −3
∂4 0 0 0 0 0 0 −3
∂5 0 0 0 0 0
∂6 0 0 0 0
∂7 −10 0 4 3
∂8 4 3
∂9 −10 3

∂10 3
∂11

The vector F has only 16 non-zero components. Our B2 and F are on Table 1. Empty
cells mean that the corresponding monomials are not in B2: ∂2∂4, ∂5∂11, ∂6∂11, and ∂8∂10.
Non-empty cells contain corresponding Fi, e.g., F1 = 10 for α1 = ∂1∂2. Table 1 shows
symmetries of the squares {∂1, . . . , ∂9} × {∂2, . . . , ∂10} and of the rightmost column.
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