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Abstract. For a tuple s of non-negative integers, the s-weak order is a lattice on
s-trees, generalizing the weak order on permutations. We describe its join irreducible
elements, its canonical join representations, and its forcing order in terms of combina-
torial objects, generalizing the arcs, non-crossing arc diagrams, and subarc order for
the weak order. We then extend the theory of shards and shard polytopes to construct
geometric realizations of the s-weak order and all its lattice quotients as polyhedral
complexes, generalizing the quotient fans and quotientopes of the weak order.

Résumé. Pour un uplet s d’entiers positifs ou nuls, le s-ordre faible est un treillis
sur les s-arbres, généralisant l’ordre faible sur les permutations. Nous décrivons ses
éléments sup irréductibles, ses représentations sup canoniques et son ordre de forçage
par des objets combinatoires, généralisant les arcs, les diagrammes d’arcs non croisés et
l’ordre des sous-arcs pour l’ordre faible. Nous étendons ensuite la théorie des tessons
et des polytopes de tessons pour construire des réalisations géométriques du s-ordre
faible et de tous ses treillis quotients sous forme de complexes polyédraux, généralisant
les éventails quotients et les quotientopes de l’ordre faible.

1 Introduction

The structure of permutations and associations of an n-element set is a classical topic
of algebraic and geometric combinatorics. In combinatorics, it is encoded by the Cayley
graph of permutations under simple transpositions and the rotation graph on binary
trees. In lattice theory, it materializes in the lattice morphism from the weak order on
permutations to the Tamari lattice on binary trees. In polyhedral geometry, it appears in
the braid arrangement and the sylvester fan, and their polar permutahedron and associ-
ahedron. See [12] for a survey on these connections and their influence in mathematics.

This prototype has motivated the study of all lattice congruences of the weak order,
pioneered by N. Reading [15]. Combinatorially, he provided an elegant combinatorial
model for the lattice theory of the weak order in [18]. Namely, the join irreducible per-
mutations are encoded as certain arcs wiggling around the vertical axis, the canonical

*vincent.pilaud@ub.edu. Supported by the French–Austrian grant PAGCAP (ANR-21-CE48-0020 &
FWF I 5788), by the Spanish–German project COMPOTE (AEI PCI2024-155081-2 & DFG 541393733), and
by the Spanish grants PID2022-137283NB-C21, 2021 SGR 00697 and CEX2020-001084-M.

mailto:vincent.pilaud@ub.edu


2 Eva Philippe and Vincent Pilaud

join representations of the permutations are encoded by non-crossing arc diagrams, and
the forcing order on join irreducible permutations is encoded by the subarc order on
these arcs. Geometrically, he showed in [16] that coarsening the braid fan according to
the equivalence classes of any congruence of the weak order always yields a complete
polyhedral fan. These quotient fans were shown to be normal fans of so-called quotien-
topes in [11]. Later, the problem was revisited in [8] using the theory of shard polytopes.

In [2, 3], C. Ceballos and V. Pons introduced the s-weak order on s-trees for an
n-tuple s of non-negative integers, generalizing the classical weak order for s=(1, . . . , 1).
An s-tree is a rooted plane tree on [n], where the node i has si + 1 children, all either
leaves or nodes j > i. These s-trees are ordered by inequalities between their inversion
numbers, generalizing the definition of the weak order on permutations by inclusion
of their inversion sets. See Section 2. [2, Section 1] proves that the s-weak order is a
lattice, describes its meets and joins, and establishes some lattice properties, in particular
congruence uniformity. [2, Section 2] introduces the s-Tamari lattice, a sublattice of the
s-weak order (also a lattice quotient when s contains no 0), which is isomorphic to the ν-
Tamari lattice of [13, 1] for well-chosen s and ν. [3, Conjecture 3.1.2] conjectures that the
Hasse diagram of the s-weak order can be realized as an orientation of the skeleton of a
polyhedral subdivision of the permutahedron, in the same spirit [1] realizes the ν-Tamari
lattice. When s contains no 0, this conjecture was proved in [6] using flow polytopes.

Combining perspectives from combinatorics, lattice theory, polyhedral geometry and
tropical geometry, we not only settle this conjecture for any s (including with some 0),
but actually provide geometric realizations of all lattice quotients of the s-weak order.

Theorem 1.1. For any tuple s of non-negative integers (including with some 0), and any lattice
congruence ≡ of the s-weak order Ws, the lattice quotient Ws/≡ is realized geometrically as

• the dual graph of the quotient foam F≡, a polyhedral complex extending quotient fans [16],
• the graph of the quotientoplex Q≡, a polytopal complex extending quotientopes [11, 8].

To achieve this result, we first describe the join irreducibles of the s-weak order in
terms of s-arcs. An s-arc is an arc of [18] together with an integer bounded by s. We
extend the notions of crossings and subarcs of [18] to describe the canonical join repre-
sentations of s-trees as non-crossing s-arc diagrams, and the forcing order of the s-weak
order as the subarc order on s-arcs. Hence, the congruence lattice of the s-weak order is
isomorphic to the downset lattice of the subarc order on s-arcs. See Sections 3 and 4.

To each s-arc, we then associate an s-shard Σα (a polyhedral cone generalizing the
shards of [14]) and a shardoplex Sα (a polytopal complex constructed from and gen-
eralizing the shard polytopes of [8]). For a congruence ≡ of the s-weak order with
s-arcs A≡, the Hasse diagram of the quotient Ws/≡ is then the oriented dual graph of
the quotient foam F≡ whose union of walls is

⋃
α∈A≡ Σα, and the oriented graph of the

quotientoplex Q≡ obtained as the Minkowski sum ∑α∈A≡ Sα. See Sections 5 and 6.
Due to space limitation, this extended abstract omits many details and proofs of [9].
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2 The s-weak order

We first recall some definitions and results from [2] (with slightly different conventions).
We fix an n-tuple s := (s1, . . . , sn) of non-negative integers (note that we allow si = 0).
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Definition 2.1 ([2, Section 1.2]). An s-tree is a rooted plane tree with
internal nodes bijectively labeled by [n] such that the node j has sj + 1
children which are all either leaves or nodes larger than j.

Definition 2.2 ([2, Definition 1.3]). For an s-tree T and 1 ≤ i < j ≤ n, the
position pos(T, i, j) ∈ [0, si] is the minimum of si and the number of out-
going edges of i to the right of the increasing path from the root of T to j.

For instance, the tree T◦ on the right is a (1, 2, 2, 0, 2, 2, 1, 1)-tree, where
pos(T◦, 1, 4) = 0, pos(T◦, 1, 5) = 1, pos(T◦, 2, 5) = 2 and pos(T◦, 5, 7)=2.
The following definition is illustrated in Figure 1 (left) for s = (2, 1, 0).

Definition 2.3 ([2, Definition 1.9]). The s-weak order Ws is the partially ordered set of
s-trees given by T ≤ T′ if and only if pos(T, i, j) ≤ pos(T′, i, j) for all 1≤ i< j≤n.

Theorem 2.4 ([2, Theorems 1.21 & 1.40]). The s-weak order is a congruence uniform lattice.

Definition 2.5 ([2, Definition 1.24]). A descent of an s-tree T is a pair (i, j) of nodes where
• i is an ancestor of j and the increasing path from i to j takes the rightmost outgoing

edge at each node, except at node i,
• either sj = 0 or the rightmost edge of j is a leaf.

For instance, our (1, 2, 2, 0, 2, 2, 1, 1)-treeT◦ has descents (1, 5), (2, 4), (2, 6), (5, 7), (5, 8).
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Definition 2.6 ([2, Definition 1.30]). Pick a descent (i, j) in an
s-tree T. Let p be the parent of j (p might be i). Let j → q be
the leftmost outgoing edge of j (q might be a leaf). Let r → s
be last edge whose source is smaller than j along the leftmost in-
creasing path leaving i through the edge immediately to the right
of the path from i to j (note that s might be a leaf). The right rota-
tion of (i, j) transforms T by replacing the edges p → j, j → q and
r → s by new edges p → q, j → s and r → j respectively.

Proposition 2.7 ([2, Theorem 1.32]). The s-trees covered by an s-tree T in the s-weak order Ws
are precisely those obtained by the right rotation of a descent of T.

Remark 2.8. When s = (1, . . . , 1), the s-trees are just the increasing binary trees, in
bijection with permutations of [n]. Namely, the permutation πT corresponding to an
increasing tree T is obtained by reading its nodes in infix order. Moreover, pos(T, i, j) = 1
if and only if (j, i) is an inversion of πT, so that the s-weak order is the classical weak
order. More generally, if s contains no 0, then the s-trees are in bijection with Stirling
s-permutations, i.e. permutations of the multiset {1s1 , . . . , nsn} avoiding the pattern 121 [2].
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Figure 1: The s-weak order on s-trees and on s-arc diagrams, for s = (2, 1, 0).

3 Canonical representations in the s-weak order

We now develop lattice properties of the s-weak order. Generalizing the arcs and non-
crossing arc diagrams of [18], we describe the join irreducible s-trees and the canonical
join representations in the s-weak order in terms of the following combinatorial objects.

Definition 3.1. An s-arc is a quintuple (i, j, A, B, r) where 1 ≤ i < j ≤ n, the sets A and B
form a partition of {k ∈ ]i, j[ | sk ̸= 0}, and r ∈ [si].

Definition 3.2. Consider two s-arcs α := (i, j, A, B, r) and α′ := (i′, j′, A′, B′, r′). Assume
without loss of generality that j ≤ j′ (otherwise, exchange α and α′). Then α and α′ are
non-crossing if j < j′, and one of the following holds:

1. j ≤ i′,
2. i < i′ < j and i′ ∈ A and j /∈ A′ and A′ ∩ ]i, j[ ⊆ A ∩ ]i′, j′[,
3. i < i′ < j and i′ ∈ B and j /∈ B′ and A′ ∩ ]i, j[ ⊇ A ∩ ]i′, j′[,
4. i = i′ and r < r′ and j /∈ A′ and A′ ∩ ]i, j[ ⊆ A ∩ ]i′, j′[,
5. i = i′ and r = r′ and sj = 0 and A′ ∩ ]i, j[ = A ∩ ]i′, j′[,
6. i = i′ and r > r′ and j /∈ B′ and A′ ∩ ]i, j[ ⊇ A ∩ ]i′, j′[,
7. i′ < i and i ∈ A′ and j /∈ B′ and A′ ∩ ]i, j[ ⊇ A ∩ ]i′, j′[,
8. i′ < i and i ∈ B′ and j /∈ A′ and A′ ∩ ]i, j[ ⊆ A ∩ ]i′, j′[.

A non-crossing s-arc diagram is a set δ of pairwise non-crossing s-arcs.
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Graphically, consider n points on the vertical axis, labeled by [n] from bottom to top.
The s-arc (i, j, A, B, r) is represented by a curve wiggling around these points, starting
at i and ending at j, passing on the right of the points in A and on the left of the points
in B (we do not care if it passes on the left or right of the points in {k ∈ ]i, j[ | sk = 0}),
and with a label r close to it. Two arcs are non-crossing if the corresponding curves
are not crossing in their interior, plus some boundary conditions at their endpoints (the
starting points may coincide according to rules 4, 5, 6 of Definition 3.2, while the ending
points must be distinct). See Figure 1 (right), and the figure on the bottom of this page.

Remark 3.3. When s = (1, . . . , 1), the s-arcs are the original arcs of [18]. An arc is a
quadruple (i, j, A, B) where 1 ≤ i < j ≤ n and ]i, j[ = A ⊔ B, or equivalently a curve
joining i to j and passing right of A and left of B. Two arcs are non-crossing if they do
not cross in their interior and have distinct starting points and distinct ending points.

Let (L,≤,∨) be a join semilattice. A join representation of x ∈ L is a subset J ⊆ L such
that x =

∨
J. Such a representation is irredundant if x ̸= ∨

J′ for any strict subset J′ ⊊ J.
The irredundant join representations of x ∈ L are ordered by J ≤ J′ if and only if for
any y ∈ J there is y′ ∈ J′ with y ≤ y′. The canonical join representation of x is the unique
minimal irredundant join representation of x for this order when it exists. Note that the
canonical joinands form an antichain of join irreducible elements of L (those which cover a
single element). Canonical join representations always exist if and only if L is join semidis-
tributive (that is, x ∨ y = x ∨ z implies x ∨ (y ∧ z) = x ∨ y for any x, y, z ∈ L). It follows
from Theorem 2.4 and [4] that the s-weak order is join semidistributive. We now provide
bijections from join irreducible s-trees to s-arcs, and from all s-trees to non-crossing s-arc
diagrams, which enable to read the canonical join representations in the s-weak order.

Definition 3.4. For a descent (i, j) of an s-tree T, let r :=pos(T, i, j) and A (resp. B) the set
of nodes i< k< j with sk ̸= 0 and weakly on the left (resp. strictly on the right) of the path
from i to j. Define α∨(T, i, j) := (i, j, A, B, r) and δ∨(T) := {α∨(T, i, j) | (i, j) descent of T}.

Theorem 3.5. The map α∨ is a bijection from join irreducible s-trees to s-arcs. The map δ∨ is
a bijection from all s-trees to non-crossing s-arc diagrams. The canonical join representation of
an s-tree T is T =

∨
α∈δ∨(T) α−1

∨ (α).
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1As illustrated on the right, the non-crossing s-arc dia-
gram δ∨(T) of an s-tree T can be obtained graphically by
drawing the path joining i to j in T for each descent (i, j)
of T, perturbing all these paths so that they pass slightly
to the right of their intermediate nodes, and flattening the
picture horizontally, allowing the arcs to bend but not to
cross nor to pass a node.

For instance, Figure 1 (right) represents the s-weak order where the s-trees are re-
placed by their non-crossing s-arc diagrams, for s = (2, 1, 0).
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4 Quotients of the s-weak order

A congruence ≡ on a finite lattice (L,≤,∧,∨) is an equivalence relation on L such that
x ≡ x′ and y ≡ y′ implies x ∨ y ≡ x′ ∨ y′ and x ∧ y ≡ x′ ∧ y′. The lattice quotient L/≡ is
the lattice where the join X ∨ Y (resp. meet X ∧ Y) of two congruence classes is the con-
gruence class of the join x ∨ y (resp. meet x ∧ y) of any representatives x ∈ X and y ∈ Y.
A congruence ≡ is determined by its contracted join irreducibles, i.e. its relations j ≡ j⋆
where j covers only j⋆. If any congruence contracting j also contracts j′, then j forces j′.
This defines a preorder on join irreducibles of L whose lattice of downsets is isomorphic
to the congruence lattice of L. This preposet is a poset when L is congruence uniform.
Understanding the congruences of L then boils down to understanding the forcing poset
on join irreducibles of L. Generalizing the subarc order of [18], we now describe the
forcing order of the s-weak order in terms of the subarc order on s-arcs.

Definition 4.1. Consider two s-arcs α := (i, j, A, B, r) and α′ := (i′, j′, A′, B′, r′). We say that
α is a subarc of α′ if all the following conditions hold:

1

1 2

1 1 22• i′ ≤ i < j ≤ j′,
• A ⊆ A′ and B ⊆ B′,
• if sj = 0 then j = j′,
• if i′ = i then r = r′,
• if i′ < i then i ∈ A′ and r = 1, or i ∈ B′ and r = si.

Remark 4.2. When s = (1, . . . , 1), an arc (i, j, A, B) is a subarc of an arc (i′, j′, A′, B′) if
and only if i′ ≤ i < j ≤ j′ and A ⊆ A′ and B ⊆ B′, as defined in [18].

Theorem 4.3. The forcing order on join irreducible s-trees is the subarc order on s-arcs: If T
and T′ are two join irreducible s-trees, then T forces T′ if and only if α∨(T) is a subarc of α∨(T′).

Corollary 4.4. The congruence lattice of the s-weak order Ws is isomorphic to the lattice of
downsets of the subarc order on s-arcs. We denote by A≡ the downset of a congruence ≡.

Remark 4.5. We can exploit Corollary 4.4 to define relevant congruences and quotients:
• The s-Tamari lattice is the quotient of the s-weak order by the s-sylvester congru-

ence ≡sylv where A≡sylv is the set of right s-arcs (i, j, {k ∈ ]i, j[ | sk ̸= 0} ,∅, r) for
some 1 ≤ i < j ≤ n and r ∈ [si]. When s contains no 0, this quotient was consid-
ered in [2, Section 2.4] in connection to the ν-Tamari lattice [13, 1].

• For any s-arc α, the α-Cambrian lattice is the quotient of the s-weak order by the
α-Cambrian congruence ≡α, where A≡α is the downset of subarcs of α. See [17].

• For a map δ : {i ∈ [n] | si ̸= 0} → { , , , }, the δ-permutree lattice is the
quotient of the s-weak order by the δ-permutree congruence ≡δ, where A≡δ

is the
set of arcs which do not pass on the right of a point j with δ(j) ∈ { , } nor on
the left of the points j with δ(j) ∈ { , }. See [10].
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• A congruence ≡ is regular if any minimal (in subarc order) arc (i, j, A, B) of the
complement of the set A≡ is either a left arc (A = ∅) or a right arc (B = ∅). See [7].

5 Quotient foams

We now realize the s-weak order and its lattice quotients as dual graphs of polyhedral
complexes. Generalizing the shards of [14], we first associate codimension 1 polyhedral
cones to the s-arcs, and use them to generalize the braid fan. See Figure 2 (left).

Definition 5.1. The s-shard of an s-arc α:=(i, j, A, B, r) is the polyhedron Σα of Rn given by
• the equality xi − xj = r − 1 + ∑k∈B max(0, sk − 1),
• the inequalities xi − xa ≥ r − 1 + ∑k∈B∩]i,a[ max(0, sk − 1) for all a ∈ A, and
• the inequalities xi − xb ≤ r − 1 + ∑k∈B∩]i,b[ max(0, sk − 1) for all b ∈ B.

Definition 5.2. The s-foam Fs is the polyhedral complex of Rn whose maximal cells are
the closures of the connected components of the complement of the union of all s-shards.

Theorem 5.3. The Hasse diagram of the s-weak order is isomorphic to the dual graph of the
s-foam Fs oriented in the direction ω := (1, 2, . . . n)− (n, . . . , 2, 1) = ∑i∈[n](2i − n − 1) ei.

Remark 5.4. When s = (1, . . . , 1), the shard of an arc (i, j, A, B) is the polyhedral cone
defined by xb ≤ xi = xj ≤ xa for all a ∈ A and b ∈ B. The union of the shards is the
braid arrangement, and the s-foam is the classical braid fan.

Remark 5.5. The cells of the s-foam Fs can also be obtained as the closures of the fibers
of an insertion algorithm, generalizing the insertion algorithm of permutations in in-
creasing trees. This perspective is the most convenient to prove Theorem 5.3, but its
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Figure 2: The s-foam and its sylvester quotient foam, for s = (2, 1, 0). See Figure 4.
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presentation is more technical, and unnecessary here. We refer to [9, Section 1] for
details.

Proposition 5.6. The vertices of Fs form a (s0 × · · · × sn−1)-grid Λs := ∏
i∈[n−1]

[si](e1 − ei+1).

Generalizing [16], we can then either glue some regions of the s-foam or delete some
s-shards according to a congruence of the s-weak order, as illustrated in Figure 2 (right).

Definition 5.7. For any congruence ≡ of the s-weak order, the ≡-quotient foam F≡ is the
complete polyhedral complex defined by the following equivalent descriptions:

(i) the maximal cells of F≡ are obtained by glueing together the maximal cells of the
s-foam Fs corresponding to s-trees in the same congruence class of ≡,

(ii) the union of the walls of F≡ is the union of the s-shards Σα of the s-arcs α in A≡.

Theorem 5.8. For any congruence ≡ of the s-weak order Ws, the two descriptions of Defini-
tion 5.7 coincide and define a polyhedral complex F≡, whose dual graph, oriented in the direc-
tion ω, is isomorphic to the Hasse diagram of the quotient Ws/≡ .

Remark 5.9. When s = (1, . . . , 1), the s-quotient foams are the quotient fans of [16].

6 Quotientoplexes

We now realize the s-weak order and its lattice quotients as graphs of polytopal com-
plexes. Our construction relies on the shard polytopes of [8], which are elementary
pieces whose Minkowski sums enable to construct quotientopes for all lattice congru-
ences of the weak order. We first recall their definition.

Definition 6.1 ([8, Definitions 39 & 40]). Fix an original arc α:=(i, j, A, B). An α-alternating
matching µ is a sequence i ≤ i1 < j1 < i2 < j2 < · · · < iq < jq ≤ j such that ip ∈ {i} ∪ A
and jp ∈ {j} ∪ B for all p ∈ [q]. Its characteristic vector is χµ := ∑p∈[q] eip − ejp . The shard
polytope SPα is the convex hull of the characteristic vectors of all α-alternating matchings.

Given an s-arc α, we now associate a face Sq
α of a shard polytope to each vertex q ∈ Λs

of the s-foam, and consider the polytopal complex formed by the collection (S
q
α)q∈Λs .

Definition 6.2. Consider an s-arc α := (i, j, A, B, r), the arc α̃ := (i, j, A, B), and a vertex
q ∈ Λs of the s-foam Fs. The local shard polytope Sq

α is the face of the shard polytope SPα̃

maximizing the scalar product with ∑ℓ∈]i,j]
(
qi − qℓ + r − 1 + ∑k∈B∩]i,ℓ[ max(0, sk − 1)

)
eℓ.

Proposition 6.3. For any s-arc α, the collection of all local shard polytopes Sq
α for q ∈ Λs,

together with all their faces, form a polyhedral complex Sα that we call the shardoplex of α.

We now construct quotientoplexes as Minkowski sums of shardoplexes, see Figure 4.
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Figure 3: The congruence lattice of the (2, 1, 0)-weak order, where each congruence ≡
is replaced by its quotient foam F≡. See also Figure 5.

Definition 6.4. For a congruence ≡ of the s-weak order Ws, the quotientoplex Q≡ is the
polytopal complex obtained as the coordinatewise Minkowski sum (∑α∈A≡ S

q
α)q∈Λs of

the shardoplexes Sα over all s-arcs α in A≡.

Proposition 6.5. There is an inclusion reversing bijection ψ from the faces of the quotient
foam F≡ to the faces of the quotientoplex Q≡ such that F and ψ(F) are orthogonal.

Theorem 6.6. For any congruence ≡ of the s-weak order Ws, the Hasse diagram of the quo-
tient Ws/≡ is isomorphic to the skeleton of the quotientoplex Q≡.

Remark 6.7. When s = (1, . . . , 1), the shardoplexes are the shard polytopes of [8], and
the quotientoplexes are the quotientopes of [8].

Our next result states that quotientoplexes are polytopal subdivisions of quotien-
topes. To be precise, we need to manipulate weighted Minkowski sums of shard poly-
topes and shardoplexes. Note that the combinatorics of the resulting quotientopes and
quotientoplexes does not depend on these weights, as long as they are positive.
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Proposition 6.8. For an s-arc α := (i, j, A, B, r), denote by α̃ := (i, j, A, B) the corresponding
original arc. For a congruence ≡ of the s-weak order Ws, denote by ≡̃ the corresponding congru-
ence of the weak order Wn, with downset of arcs A≡̃ := {α̃ | α ∈ A≡}. Consider λ := (λα)α∈A≡
with λα > 0, and let λ̃ := (λ̃α̃)α̃∈A≡̃ with λ̃α̃ := ∑α λα where the sum ranges over all s-arcs α

which project to α̃. Then the quotientoplex (∑α∈A≡ λα S
q
α)q∈Λs is a polytopal subdivision of (a

translate of) the quotientope ∑α̃∈A≡̃ λ̃α̃ SPα̃.

For instance, Figure 6 show the (2, 1, 0, 1)-permutahedron and the (2, 1, 0, 1)-associa-
hedron, which are polytopal subdivisions of a permutahedron and an associahedron.

Applying Theorem 6.6 and Proposition 6.8 to the trivial congruence (where each
congruence class contains a single s-tree), we obtain the following statement, answering
a question of C. Ceballos and V. Pons [2, 3]. We note that this question was partially
solved in [6] in the case when s contains no 0 entry, with a very different method based
on a combination of flow polytopes, tropical geometry, and Cayley embedding.

Corollary 6.9. For any s (including with some 0 entries), the Hasse diagram of the s-weak
order Ws is isomorphic to the oriented skeleton of a polytopal subdivision of a polytope combina-
torially equivalent to the zonotope Zono(s) := ∑1≤i<j≤n si conv{ei, ej}.

We conclude with some intriguing conjectures on the special congruences discussed
in Remark 4.5.

Conjecture 6.10. Up to isomorphism, the face lattice of the α-Cambrian quotientoplex Q≡α only
depends on the endpoints of α.

Conjecture 6.11. For any fixed s, changing any to in δ does not affect the cardinality of
the δ-permutree lattice Ws/≡δ, although it may change the isomorphism class of the face lattice
of the δ-permutree quotientoplex Q≡δ

.

Conjecture 6.12. All faces of the quotientoplex Q≡ are simple polytopes if and only ≡ is regular.

Remark 6.13. When s = (1, . . . , 1), these conjectures hold by [17], [10], and [7, 5].

Figure 4: The s-permutahedron (top) and s-associahedron (bottom) obtained as
Minkowski sums of shardoplexes, for s = (2, 1, 0). See Figure 2.



The s-permutahedron and its lattice quotients 11

Figure 5: The congruence lattice of the (2, 1, 0)-weak order, where each congruence ≡
is replaced by its quotientoplex Q≡. See also Figure 3.
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