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Higher Specht polynomials for the diagonal action
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Abstract. We introduce higher Specht polynomials - analogs of Specht polynomials in
higher degrees - in two sets of variables x1, . . . , xn and y1, . . . , yn under the diagonal
action of the symmetric group Sn. This generalizes the classical Specht polynomial con-
struction in one set of variables, as well as the higher Specht basis for the coinvariant
ring Rn due to Ariki, Terasoma, and Yamada, which has the advantage of respecting
the decomposition into irreducibles.

As our main application, we provide a higher Specht basis for the hook shape Garsia–
Haiman modules. In the process, we obtain a new formula for their doubly graded
Frobenius series in terms of new generalized cocharge statistics on tableaux.

Keywords: Diagonal coinvariants, Shuffle theorem, Schur positivity, Young tableaux,
Garsia–Haiman modules, representation theory of the symmetric group

1 Introduction and notation

The polynomial ring C[x1, . . . , xn] comes with a natural action of the symmetric group
Sn by permuting the variables. This gives the polynomial ring the structure of a graded
Sn-representation, which naturally decomposes into irreducible representations. In [5],
Ariki, Terasoma, and Yamada defined higher Specht polyomials that give a basis for
C[x1, . . . , xn] that respects the decomposition into irreducibles and that generalizes the
ordinary Specht polynomial construction for the lowest-degree copy of each irreducible
representation. In order to do so, they first found such a basis for the coinvariant
ring Rn = C[x1, . . . , xn]/(e1, . . . , en) where ei is the ith elementary symmetric polynomial
consisting of the sum of all square-free monomials of degree i in x1, . . . , xn.

In this extended abstract, we extend the theory of higher Specht polynomials to the
diagonal action of the symmetric group Sn on the polynomial ring

C[x, y] := C[x1, . . . , xn, y1, . . . , yn],

defined by π · f (x1, . . . , xn, y1, . . . , yn) = f (xπ(1), . . . , xπ(n), yπ(1), . . . , yπ(n)). Full details
and proofs on the results outlined here can be found in [12].

The coinvariant ring construction can be generalized to two variables as follows.
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Definition 1.1. The ring of diagonal coinvariants is given by

DRn = C[x, y]/In

where In is generated by the positive-degree Sn-invariants under the diagonal action.

The ring DRn arises naturally in the geometry of the Hilbert scheme of n points in the
plane C2. Haiman [16] used this connection to prove the famous (n + 1)n−1 Conjecture,
which states that dimC(DRn) = (n + 1)n−1 as a complex vector space.

Haiman used similar methods to prove the n! Conjecture [15]. This states that the
Garsia–Haiman modules DRµ (which are also quotients of C[x, y], describing local infor-
mation of a limit as the n points all approach 0 in the plane) have dimension n! for any
partition µ of size n. The proof of the n! conjecture was the crucial step in the proof
of the Macdonald Positivity Conjecture, which states that the transformed Macdonald
polynomials [19] have a positive expansion in terms of the Schur symmetric functions.

Despite these advances, it remains open to understand the n! and (n + 1)n−1 conjec-
tures from a more combinatorial standpoint, in the following sense.

Problem 1.2. Find an explicit basis of n! polynomials for DRµ, where µ is a partition of n.

Problem 1.3. Find an explicit basis of (n + 1)n−1 polynomials for DRn.

Problem 1.2 is open for general partitions µ, while Problem 1.3 has very recently been
addressed by Carlsson and Oblomkov [7], who gave a construction of a basis for DRn
by establishing connections with affine Schubert calculus. However, their basis is not a
higher Specht basis in the following sense.

Definition 1.4. A higher Specht basis for a (graded) Sn-module M is a basis B that
admits a set partition

⊔
Bλ,i where λ and i represent a partition and positive integer

respectively, such that:

1. Each Bλ,i spans one of the copies of an irreducible representation Vλ in the decom-
position of M into irreducibles (there may be several such copies, so we distinguish
with the subscript i, and every copy is one such span),

2. There is a bijection from Bλ,i to the set of ordinary Specht polynomials FT (defined
below) for shape λ, that preserves the Sn-action with respect to each basis.

Starting with the work in [5] for the coinvariant ring Rn, there have been several
higher Specht bases constructed for related modules in recent years. In [11], the au-
thor and Rhoades found higher Specht bases for both the modules Rn,k (the Haglund–
Rhoades–Shimozono modules defined in the context of the t = 0 specialization of the Delta
conjecture [14]) and Rµ (the Garsia–Procesi modules, which are the cohomology rings of
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the fibers of the Springer resolution [8, 10, 27]). The construction was proven to be a
basis in the former case and conjectured for the latter, with proof for µ having two parts.

This construction was similar to that of [3], in which Allen constructed a basis that
respects the decomposition into irreducibles for Rn, and for Rµ for µ having two parts
or being a hook shape. (Allen’s basis is not a higher Specht basis in the strongest sense,
since it does not satisfy condition 2 above). In [2] and [4], Allen also began an exploration
the two-variable case, focusing on the diagonally symmetric subring of the polynomial
ring in two variables and its quotients.

Most recently, Salois [22] defined a higher Specht basis for the cohomology rings
of certain Hessenberg varieties. These rings also appear naturally in symmetric func-
tion theory, as they directly relate to the Stanley–Stembridge Conjecture [17, 25] and the
Shareshian–Wachs Conjecture [23] on chromatic (quasi)symmetric functions.

Our main result is a higher Specht basis for the hook shape Garsia–Haiman modules:

Theorem 1.5. Suppose µ = (n − k + 1, 1k) is a hook shape of height k. There is an explicitly
constructed set of polynomials {FS

T (x, y)} ranging over all pairs T, S of standard Young tableaux
of the same shape that forms a higher Specht basis for DRµ.

We achieve this result by first developing a general theory of higher Specht polyno-
mial constructions in two sets of variables (see Section 2 below).

1.1 Notation on Young tableaux and cocharge

We refer to [9] for notation on Young tableaux and partitions, with the caveat that we
are using the “French” convention for Young diagrams in this paper, where the i-th row
from the bottom of the Young diagram of a partition λ has λi squares. See Figure 1.
We will also generalize the notion of a semistandard Young tableau (SSYT) to include
entries from any ordered set, not just the natural numbers. We write SYT(λ) for the
set of standard Young tableaux of shape λ, and SYT(n) for the set of Young tableaux
of size n. We write Tab(λ) for the set of standard general tableau T of shape λ, which
are ways of filling the squares of λ with the numbers 1, 2, . . . , n each used once, with no
restrictions on the rows or columns.

We recall the RSK bijection, which takes permutations of 1, . . . , n to pairs (P, Q) of
SYT’s with the same shape as each other. Thus there are n! such pairs.

Definition 1.6. The cocharge labels of a permutation π are defined by labeling the 1 with
a subscript 0, then searching leftwards cyclically for the 2, 3, 4, . . ., each time incrementing
the subscript label unless the search wraps around the word. The cocharge of π, written
cc(π), is the sum of its cocharge labels.

Example 1.7. The permutation 25314 has cocharge labels 2152311041, so

cc(25314) = 1 + 2 + 1 + 0 + 1 = 5.
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5
3 4
2 2
1 1 1 3

7
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1 3 6 9

7
1 4
6 2
3 9 8 5

Figure 1: From left to right: A semistandard Young tableau, a standard Young tableau,
and a standard general tableau T of shape sh(T) = λ = (4, 2, 2, 1). The tableau at left
has content (3, 2, 2, 1, 1), and the reading word of the tableau at middle is 748251369.

Lusztig and Stanley [24] showed (in a different notation, that is equivalent to the
cocharge statistic defined by Lascoux and Schützenberger [18]) that the number of copies
of the irreducible representation Vλ of Sn in the coinvariant ring Rn in degree d is equal
to the number of standard Young tableaux of shape λ with cocharge d. We will express
this fact in terms of the graded Frobenius character in the next section.

1.2 Symmetric functions and Frobenius series

The two bases of the ring of symmetric functions ΛC(x1, x2, . . .) that will be used are
the elementary symmetric functions, defined by ed(x1, x2, . . .) = ∑i1<i2<···<id xi1 · · · xid
and eλ = ∏ eλi , and the Schur functions, defined by sλ = ∑T∈SSYT(λ) ∏c∈λ xT(c). The
Frobenius map Frob is the additive map that sends the irreducible Sn-module Vν to the
Schur function sν. For instance, Frob(V(2) ⊕ V(1,1) ⊕ V(1,1)) = s(2) + 2s(1,1).

For Sn-modules with a grading (such as the coinvariant ring, which is graded by
degree), its graded Frobenius is the generating function grFrobq(R) := ∑d Frob(Rd)qd

where Rd is the d-th graded piece and q is a formal variable. For doubly graded Sn-
modules (by the x-degree and y-degree here) the bi-graded Frobenius map is

grFrobq,t(R) := ∑
d

Frob(Rd1,d2)q
d1td2 .

The theorem of Lusztig and Stanley [24] mentioned above on the decomposition of Rn
into irreducibles can therefore be stated as

grFrobq(Rµ) = ∑
T∈SSYTµ

qcc(T)ssh(T)

where SSYTµ is the set of SSYT’s of content µ. We will not define Garsia–Haiman mod-
ules in full in this extended abstract, but we discuss their properties when µ is a hook
shape of the form (n − k + 1, 1k−1). Several monomial bases for DRµ for hook shapes
µ were established in [1]. The graded Frobenius was derived by Stembridge [26], and
makes use of “maj” and “comaj” statistics:

grFrobq,t(DRµ) = ∑
T∈SYT(n)

qmaj1,n−k+1(T)tcomajn−k+1,n(T)ssh(T). (1.1)
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1.3 Specht polynomial constructions

The standard construction of the Specht modules Vλ, which are the irreducible represen-
tations of Sn where λ ranges over all partitions of n, is often presented via Young tabloids
(see [21]). This construction is equivalent (see [19, p. 125, Exercise 15(c)]) to defining a
submodule of C[x1, . . . , xn] spanned by Specht polynomials as follows.

Definition 1.8. The Specht polynomial FT corresponding to a Young tableau T whose
entries are 1, 2, 3, . . . , n is given by

FT = ∏
C∈col(T)

∏
i,j∈C

i above j

(xi − xj)

where col(T) is the set of columns of T. (See Figure 2.)

One can then define the Specht module as

Mλ = span{FT : T ∈ Tab(λ)} ⊆ C[x1, . . . , xn],

and we have Mλ
∼= Vλ with a basis given by the FT such that T is a standard Young

tableau (SYT), in which the entries are increasing along rows and up columns. The
Garnir relations (see [21]) give a straightening algorithm for expressing any FT in terms
of the standard Young tableau basis, and thereby gives a rule for computing with the
Sn-action on the Specht module.

In [5], Ariki, Terasoma, and Yamada noted that FT may also be defined (up to a
constant) as a Young idempotent operator applied to a monomial. In particular, define

εT = ∑
τ∈C(T)

∑
σ∈R(T)

sgn(τ)τσ

where C(T) ⊆ Sn is the group of column permutations that preserve the columns of T,
and R(T) ⊆ Sn is the group of row permutations. Then it is not hard to check that FT is
a scalar multiple of εT(xr

T) where xr
T = ∏ xrow(i)−1

i with row(i) denoting the row that i
occurs in in T, indexed from bottom to top.

Example 1.9. We have
ε 3

1 2
= id + (12)− (13)− (123)

and F 3
1 2

= x3 − x1.

T =

3
7 1 6
2 8 4 5

FT = (x3 − x7)(x7 − x2)(x3 − x2) · (x1 − x8) · (x6 − x4)

Figure 2: A tableau T ∈ Tab(4, 3, 1) in French notation, and the Specht polynomial FT.
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Ariki, Terasoma, and Yamada then generalized this construction to define

FS
T (x) = εT(xS

T) (1.2)

where T, S are a pair of standard Young tableaux of the same shape, and xS
T is defined as

follows. Let ccTab(S) be the tableau consisting of the cocharge subscripts of the reading
word of S, written in the corresponding squares of the diagram of λ. Define

xS
T = ∏

c
xccTab(S)(c)

T(c)

where the product is over all squares c in the diagram of λ.

Theorem 1.10 ([5]). The polynomials FS
T (x) form a higher Specht basis for the one-variable

coinvariant ring Rn = C[x1, . . . , xn]/(e1, . . . , en).

2 General constructions in two sets of variables

For a tableau T ∈ Tab(λ), fix an ordering on the squares of λ and write T1, T2, . . . , Tn to
denote the values of T in each of those squares. Also, for any tuples c = (c1, . . . , cn) and
d = (d1, . . . , dn) of nonnegative integers, we write

xc
T = xc1

T1
xc2

T2
· · · xcn

Tn
and yd

T = yd1
T1

yd2
T2
· · · ydn

Tn
.

Definition 2.1. We write
Fc,d

T = εT(xc
Tyd

T).

Remark 2.2. All proofs in this section hold for any number of variables; for instance, we
could have three sets of variables x, y, z and three exponent sequences c, d, e and define
Fc,d,e

T = εT(xcydze) and we would obtain analogous results.

We will first show the general statement that, assuming the polynomials Fc,d
T are

independent for T standard of shape λ, the submodule Vc,d ⊆ C[x, y] spanned by these
polynomials is a copy of the irreducible Sn-module Vλ. We first recall (see, for instance,
[20, 21]) that the Garnir relations govern the Sn-module structure of Vλ with respect to
the standard Specht basis.

Our first preliminary result is that Lemma 3.3 in [20] (or equivalently [11, Lemma
3.13]) generalizes to this setting (see [12] for the proof):

Proposition 2.3. We have πFc,d
T = Fc,d

πT for any π ∈ Sn, and the Fc,d
T elements satisfy the Garnir

relations.

It follows that the span Mλ of the polynomials Fc,d
T is an Sn-module. The Garnir

straightening algorithm (see [21]) along with Proposition 2.3 then implies the following.
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Proposition 2.4. The subspace Mλ = span(Fc,d
T : T ∈ Tab(λ)) ⊆ C[x, y] is generated by

the subset B = {Fc,d
T : T ∈ SYT(λ)}. Moreover, if the polynomials in B are independent,

then Mλ
∼= Vλ as an Sn-module, and there is an action-preserving isomorphism induced by the

bijection Fc,d
T → FT that sends the basis B to the ordinary Specht basis.

2.1 Conditions for independence

Proposition 2.4 shows that if the basis elements are independent, then Mλ is a copy of the
irreducible Specht module. We now state some conditions for determining independence
in quotients by Sn-invariant ideals or in the full polynomial ring (see [12] for proofs).

Proposition 2.5. The polynomials in B = {Fc,d
T : T ∈ SYT(λ)} are independent in C[x, y]/I

if and only if some particular element Fc,d
T is nonzero in the quotient (i.e., not in the ideal I).

We now state a sufficient condition for one of the Fc,d
T elements to be nonzero in the

full polynomial ring C[x, y] that we will use below.

Proposition 2.6. Suppose that c = (c1, . . . , cn) and d = (d1, . . . , dn) are tuples of nonnegative
integers, with their ordering corresponding to a chosen ordering of the boxes of the Young diagram
of a partition λ of n. Suppose further that there exists a total ordering on the possible pairs of
values (m, n) that arise among the pairs ci, di such that, when the boxes of λ are filled in order
with (ci, di), it forms a semistandard Young tableau with respect to the ordering on the pairs.

Then for any standard tableau T of shape λ, the polynomial Fc,d
T is nonzero in C[x, y].

Example 2.7. Suppose we choose the ordering on pairs (m, n) by (m, n) > (x, y) if and
only if either m > x or m = x and n > y. Consider the following tableau below at left,
where pairs (m, n) are written as mn:

22 22

21 21 22 22

01 10 10 13

00 00 00 01 10

12 13

10 11 14 15

4 6 7 9

1 2 3 5 8

Also, for simplicity let T be the tableau above at right that standardizes the above (the
choice of T does not matter in the proof). Then xc

Tyd
T = x2

15y2
15 · x2

14y2
14 · x2

13y2
13 · x2

12y2
12 ·

x2
11y11 · · · . In the proof [12], this leading term does not cancel after applying εT.

3 New basis for hook-shape Garsia–Haiman modules

Throughout this subsection, we set µ = (n − k + 1, 1k−1) to be the hook shape of height k
and size n. We now define our higher Specht polynomials for DRµ.
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Definition 3.1. For S ∈ SYT(n), define the µ-cocharge tableau of S, written ccTabµ(S),
to be the tableau of shape sh(S) that has 0 in the squares occupied by 1, 2, . . . , n − k + 1
in S, and where for n − k + 1, n − k + 2, . . . , n we apply the cocharge algorithm in reverse
reading order, incrementing the cocharge label whenever we reach an entry i + 1 that is
above i. The µ-cocharge of S, written ccµ(S), is the sum of the entries of ccTabµ(S).

Definition 3.2. For S ∈ SYT(n), define the reverse µ-cocharge tableau, which we write
ccTab′

µ(S), to be the tableau of shape sh(S) that has 0 in the squares occupied by n −
k + 1, . . . , n in S, and where for n − k + 1, n − k, n − k − 1, . . . , 1 we calculate cocharge
in reverse, that is, in forward reading order and labeling the numbers from biggest to
smallest, incrementing the label on i when it is below i + 1. The µ-reverse cocharge,
written cc′µ(S), is the sum of the entries of the reverse ccTab′

µ(S).

Example 3.3. Suppose n = 8, S is the tableau below at left, and k = 5. Then ccTabµ(S) is
the tableau below at middle and ccTab′

µ(S) is at right:

5 7
3 6 8
1 2 4

1 2
0 1 2
0 0 0

0 0
0 0 0
1 1 0

Thus we have cc′µ(S) = 1 + 1 = 2 and ccµ(S) = 1 + 1 + 2 + 2 = 6.

In [12], we show that these statistics agree with maj and comaj from Equation (1.1):

Lemma 3.4. We have that ccµ(S) = comajn−k+1,n(S) and cc′µ(S) = maj1,n−k+1(S) for any
standard Young tableau S.

Definition 3.5. Let (T, S) ∈ Tab(λ)× SYT(λ). The µ-monomial of (T, S) is

xyS
T := ∏

b∈λ

xccTabµ(S)(b)
T(b) y

ccTab′µ(S)(b)
T(b) .

Then we define FS
T (x, y) = εTxyS

T.

Example 3.6. Keeping S as in Example 3.3 and k = 5, we set

T =

6 8
2 4 7
1 3 5 and S =

5 7
3 6 8
1 2 4

and we find xyS
T = x4x6x2

7x2
8 · y1y3.

In [12], we show that the values of c := ccTabµ(S) and d := ccTab′
µ(S) form an SSYT

according to a particular ordering on the pairs of values, so that it satisfies the conditions
of Proposition 2.6. Then, we obtain the following by Proposition 2.4.
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Proposition 3.7. The polynomials FS
T (x, y) for T ∈ SYT(λ) span a copy of Vλ in C[x, y].

We now note that we can recover the one-variable higher Specht polynomials from
our construction by a substitution and a degree shift.

Lemma 3.8. Consider the map to the Laurent polynomial ring (also defined in [1])

ψ : C[x1, . . . , xn, y1, . . . , yn] → C[x1, . . . , xn, x−1
1 , . . . , x−1

n ]

that sends yi 7→ x−1
i . Then if q is the largest entry in ccTab′

µ(S), we have

ψ(FS
T (x, y)) · xq

1xq
2 · · · xq

n = FS
T (x)

where FS
T (x) is the one-variable higher Specht polynomial defined in [5] (see Equation (1.2)).

For notational brevity, we define MS
λ to be the copy of Vλ inside C[x, y] generated by

the polynomials FS
T over all T ∈ SYT(sh(S)). We can use Lemma 3.8 and the results of

[5] to show these copies are distinct for different S.

Lemma 3.9. If S1 and S2 are two distinct standard Young tableaux of size n and shapes λ and ρ

respectively, then MS1
λ and MS2

ρ are disjoint submodules of C[x, y].

We now recall a generating set for the ideal Iµ defining DRµ in the hook shape case,
and a sub-ideal defined in [1].

Proposition 3.10 ([1]). If µ = (n − k + 1, 1k−1), the ideal Iµ is generated by:

1. The elementary symmetric functions e1(x), . . . , en(x),

2. The elementary symmetric functions e1(y), . . . , en(y),

3. All products xi1 · · · xik of k distinct x variables,

4. All products yj1 · · · yjn−k+1 of n − k + 1 distinct y variables.

5. The products xiyi for i = 1, . . . , n.

Definition 3.11 ([1]). Define Ik to be the ideal generated by the last three bullet points
in the definition above, that is, just the products xi1 · · · xik , yj1 · · · yjn−k+1 , and xiyi. Define

P (k)
n = C[x, y]/Ik.

It is not hard to see that the elements FS
T (x, y) are nonzero in P (k)

n . To show they

descend to a basis of DRµ, we recall the Sn-invariant basis e(k)ν of (P (k)
n )Sn from [1].
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Definition 3.12. For d = 1, . . . , n, define

e(k)d =

{
ed(x1, . . . , xn) d ≤ k − 1
en−d(y1, . . . , yn) d ≥ k

and e(k)ν = ∏i e(k)νi .

As a stepping stone to proving our main result, we show the following [12].

Proposition 3.13. The set of polynomials {FS
T (x, y) · e(k)ν }, ranging over all pairs (T, S) of SYT’s

of the same shape and all (possibly empty) ν with ν1 ≤ n, forms a higher Specht basis of P (k)
n .

We finally conclude our main result.

Theorem 1.5. The set {FS
T (x, y)} is a higher Specht basis for DRµ.

4 Future directions and observations

One corollary of Theorem 1.5 is that we can express the graded Frobenius series for hook
shapes µ = (n − k + 1, 1k−1) as

grFrobq,t(DRµ) = ∑
S∈SYT(n)

qccµ(S)tcc′µ(S)ssh(T).

It is a more general open problem than Problem 1.2 to find a combinatorial Schur ex-
pansion for the Frobenius series of DRµ, and one possible route would be to generalize
these new ccµ and cc′µ statistics to more general shapes µ.

For the diagonal coinvariant ring (Problem 1.3), it would be interesting to see if a
higher Specht basis could be constructed by combining the general tools from Section 2
with the new basis of Carlsson and Oblomkov [7], or by interpreting parking functions
as certain pairs of tableaux.

To conclude, we provide higher Specht bases for DR2 and DR3. The Shuffle theorem
(conjectured in [13], proven in [6]) gives a combinatorial formula for the graded Frobe-
nius series of DRn, which is also equal to a Macdonald eigenoperator ∇ applied to the
elementary symmetric function en. We used Sage [28] to expand ∇e2 and ∇e3 in terms
of Schur functions, giving us the decompositions of DR2 and DR3 into irreducibles, and
used that data to guess and verify higher Specht bases.

Example 4.1. For DR2, a higher Specht basis is: 1, x2 − x1, y2 − y1.

Example 4.2. For DR3, its graded Frobenius series from the Shuffle theorem is

∇e3 = s(3) + (q + t)s(2,1) + (q2 + qt + t2)s(2,1) + qts(1,1,1) + (q3 + t3 + q2t + t2q)s(1,1,1).
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The following set of polynomials, corresponding to each term in this expansion left to
right, form a higher Specht basis for DR3:

1, x2 − x1, x3 − x1, y2 − y1, y3 − y1, ε 3
1 2

x3x2, ε 2
1 3

x2x3, ε 3
1 2

x3y2, ε 2
1 3

x2y3

ε 3
1 2

y3y2, ε 2
1 3

y2y3, ε 3
2
1

x3y1, (x3 − x2)(x3 − x1)(x2 − x1),

(y3 − y2)(y3 − y1)(y2 − y1), ε 3
2
1

x2
3y1, ε 3

2
1

x3y2
1
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