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Abstract. Let W be a finite Weyl group with root system Φ and of rank n > 1. We study
the maximal sets of orthogonal positive roots of Φ with cardinality n, which exist if and
only if W has type E7, E8, or Dn for n even. We show that in these types, the set X of
all such maximal orthogonal sets forms a quasiparabolic W-set in the sense of Rains–
Vazirani. The quasiparabolic structure can be described in terms of certain quadruples
of orthogonal roots that we call crossings, nestings, and alignments. This leads to
noncrossing and nonnesting bases of a suitable irreducible representation of W known
as a Macdonald representation, as well as some highly structured partially ordered
sets, including the strong Bruhat poset of symmetric groups. In type E8, we use the
set X to give a concise description of a graph that is known to be non-isomorphic but
quantum isomorphic to the orthogonality graph of the E8 root system.
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1 Introduction

Root systems and Weyl groups are both fundamental objects in algebraic combinatorics.
In 1972, Macdonald [9] described a simple yet powerful method to construct an irre-
ducible Q-representation jΦ

Ψ(sgn) of a finite Weyl group W from the root system Φ of
W and any subsystems Ψ of Φ. This paper studies such representations arising from a
proper subsystem Ψ of Φ of type nA1 where n is the rank of Φ, whence Ψ is of the form
{±α1} ∪ {±α2} ∪ · · · ∪ {±αn} for pairwise orthogonal roots α1, α2, . . . , αn in Φ. Such
proper subsystems exist precisely when W has type E7, E8 or Dn for n even (Figure 1),
and in these cases the corresponding Macdonald representation, which we henceforth
denote by jΦ

nA1
(sgn) as it does not depend on the choice of Ψ, is spanned by what we

call positive n-roots. As we explain in Section 2.2, the positive n-roots can be identified
in a natural and precise way with the subsets of Φ consisting of n pairwise orthogonal
positive roots.
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Figure 1: Dynkin diagrams for root systems of type Dn, E7 and E8.

The goal of this paper is to explore the rich combinatorial properties of positive n-
roots and use them to elucidate the structure of the representation jΦ

nA1
(sgn). Our results

have natural connections to many previous works. In type Dn for n = 2k even, the posi-
tive n-roots can be identified with the perfect matchings of the set [n] = {1, 2, . . . , n} and
with the fixed-point-free involutions of the symmetric group Sn. The Macdonald repre-
sentation jΦ

nA1
(sgn) in this case is a lift of the Specht module S(k,k) of Sn indexed by the

two-row partition (k, k) ⊢ n studied recently in [12, 13, 8], and our results have implica-
tions for S(k,k) (Remark 4.2). In type E7, jΦ

nA1
(sgn) is known as the Coble representation

[4, Proposition 4.12], which has a long history going back to the work of Coble in 1916
on the Göpel variety [3, (65)]. In type E8, we use 8-roots to give a convenient construc-
tion of a certain strongly regular graph recently studied by Schmidt [14] in connection
to quantum isomorphisms of graphs in the sense of Atserias et al [1] (Proposition 4.3.3).

Let W be a Weyl group of type E7, E8, or Dn for n even, and let Φ be the root system
of W. The positive n-roots of W can be identified with the subsets of Φ consisting of
n pairwise orthogonal positive roots, and the collection X of all such subsets admits a
W-action induced by the action of W on Φ. The set X turns out to have a rich structure
as a W-set: Theorem 3.5, our first main theorem, shows that X is a quasiparabolic W-
set in the sense of Rains–Vazirani [11]. A quasiparabolic W-set for a Weyl group W is
a W-set equipped with an integer-valued level function satisfying certain axioms that
specify how the action of a reflection changes the level (Definition 3.1). These axioms
generalize properties satisfied by the natural action of W on any quotient W/WI of W
by a parabolic subgroup WI , and they enable the deformation of the W-action on X to
create a module for the Iwahori–Hecke algebra of W [11, Section 7]. In our setting, the
W-action on X in type Dn for n even induces an action of Sn on X, and Theorem 3.5
implies that the fixed-point-free involutions in Sn form a quasiparabolic Sn-set, which is
the one of the original motivating examples for the definition of quasiparabolic W-sets
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[11, Section 4].
To understand the quasiparabolic structure of X, it is useful to consider certain special

quadruples of orthogonal positive roots that we call alignments, crossings, and nestings.
These terms are motivated by the perfect matching diagrams corresponding to the posi-
tive 4-roots in type D4 (Figure 2), but they are defined in a type-free way and prove to be
useful for understanding X even in types E7 and E8, where no diagrammatic interpreta-
tion of n-roots seems to be available. The level function associated to the quasiparabolic
set X can be obtained by counting crossings and nestings, and levels of n-roots in type
Dn have interesting connections to combinatorial game distributions of Steiner systems,
Gaussian q-distributions, Laguerre polynomials, and q-Bessel numbers; see [6, Section
6.1].

(a) γA (b) γC (c) γN

Figure 2: Perfect matchings corresponding to the positive 4-roots in type D4, which
include exactly one alignment, γA, one crossing, γC, and one nesting, γN . These 4-
roots satisfy the three-term relation γC = γN + γA, which can be interpreted as a skein
relation among the matchings.

We define a positive n-root to be noncrossing, nonnesting, or alignment-free if its set of
components contains no crossing, nesting, or alignment as a subset, respectively. These
“feature-avoiding” elements have many remarkable properties, and we summarize some
of them in Theorem 4.1, our second main result. In particular, we prove that the non-
crossing elements of X form a canonical basis of jΦ

nA1
(sgn) that behaves in jΦ

nA1
(sgn)

somewhat like a simple system in the reflection representation of W. The set of nonnest-
ing elements not only forms another basis of jΦ

nA1
(sgn) dual to the noncrossing basis, but

also has the structure of a distributive lattice induced by the weak Bruhat order on W.
The alignment-free elements form a quasiparabolic WI-set, XI , for a suitable parabolic
subgroup WI of W. Moreover, the three types of feature-avoiding n-roots also fit together
in satisfying ways. We define a equivalence relation on X, called σ-equivalence, whose
equivalence classes induce a canonical bijection between the noncrossing and nonnest-
ing elements of X. Any set of σ-equivalence class representatives forms a Q-basis for
jΦ
nA1

(sgn), and any two such bases, which include the nonnesting and noncrossing bases
of jΦ

nA1
(sgn), admit a unitriangular change of basis matrix with integer entries.

The rest of this abstract is organized as follows. Section 2 reviews preliminary ma-
terials leading to the notion of positive n-roots. Section 3 introduces crossings, nestings,
and alignments, and then explains how the positive n-roots form a quasiparabolic W-set.
Section 4 discusses feature-avoiding n-roots, including both type-independent results
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and some type-specific properties of the alignment-free positive n-roots. This abstract is
based on the full paper [6], where all proofs omitted in the abstract can be found.

2 Preliminaries

We recall the construction of Macdonald representations and explain their connections
to positive n-roots in this section. Throughout the abstract, we work over the rational
field Q and assume basic familiarity with root systems. For notation and terminology
related to root systems, we follow [7, Chapter 1].

2.1 Macdonald representations

Let W be a finite Weyl group with a root system Φ of rank n. Let Γ be the Dynkin
diagram of Φ shown in Figure 1, and let ∆ = {αi : i ∈ Γ} be a simple system of Φ. Let
V be the reflection representation of W defined over Q. We recall that ∆ is a basis of V,
and that V admits a positive-definite bilinear form B defined by

(αi, αj) =


2 if i = j;
−1 if i and j are adjacent in Γ;
0 otherwise.

Each root α ∈ Φ gives rise to a reflection, sα, which acts on Φ by the formula

sα(β) = β − B(α, β)α

and extends linearly to an action on V. For each simple root αi, we write si for sαi . The
bilinear form B is W-invariant in the sense that B(α, β) = B(w.α, w.β) for all w ∈ W and
all α, β ∈ Φ. We say two roots are α, β ∈ Φ are orthogonal if B(α, β) = 0.

Let Ψ be a subsystem of Φ, i.e., a nonempty subset of Ψ which is itself a root system.
Let Φ+ be the set of positive roots in Φ, and let Ψ+ = Ψ ∩ Φ+. The positive-definite
form B allows us to identify V with its dual, V∗, and the symmetric algebra Sym(V∗) is
a W-module under the contragredient action (w · ϕ)(x) = ϕ(w−1(x)). The Macdonald rep-
resentation of W associated to Ψ, denoted jΦ

Ψ(sgn), is the cyclic W-submodule of Sym(V∗)
generated by the element πΨ = ∏α∈Ψ+ α. The representation jΦ

Ψ(sgn) is irreducible, and
all irreducible representations of W can be constructed as a Macdonald representation
for a suitable choice of Ψ in types An and Bn [9].

2.2 Positive n-roots

When W has type E7, E8 or Dn for n even, the root system Φ contains proper subsystems
Ψ of type nA1, and we denote the corresponding Macdonald representation jΦ

Ψ(sgn) as
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jΦ
nA1

(sgn). The set Ψ+ consists of n orthogonal positive roots, and we call each element
of the form w.πΨ ∈ jΦ

nA1
(sgn) an n-root. Since the bilinear form B is W-invariant, every

n-root has the form α = ∏n
i=1 βi where the elements βi are orthogonal roots. Conversely,

every product of n orthogonal roots is an n-root, because W acts transitively on the set
of maximal sets of orthogonal roots ([6, Lemma 3.1.2]).

We say an n-root α is positive if it can be written in the form α = ∏n
i=1 βi where all

the factors βi are positive, and we call the roots βi the components of α in this case. The
components are well defined because they are the irreducible factors of α in the unique
factorization domain Q[α1, α2, . . . , αn]. It follows from the definitions that if α is an n-root
then −α is also an n-root, and that precisely one of α and −α is positive. Whenever α is
either a root or an n-root, we define the absolute value of α to be the positive element in
the pair {α,−α} and denote it by |α|.

The set Φ+
n of all positive n-roots admits a natural W-action given by w(α) = |w.α|.

Similarly, the set X of sets of n orthogonal positive roots admits a W-action given by
w({β1, · · · , βn}) = {|w(β1)|, · · · , |w(βn)|}. The map sending each set {β1, · · · , βn} ∈ X
to the product ∏n

i=1 βi ∈ Φ+
n respects these two W-actions, and we will henceforth use

it to identify X with Φ+
n . This identification provides a convenient passage between the

set X and the representation jΦ
nA1

(sgn).

2.3 Root systems of types An and Dn

We now review some well-known facts about root systems of types An and Dn, including
explicit constructions of the root systems. Details about similar constructions for types E7
and E8 are also relevant to our treatment of n-roots, and they are described in [6, Section
2.3], but we omit them here because they will not be directly used in this abstract.

Let ε1, ε2, . . . , εn be an orthonormal basis for Rn. The vectors {εi − ε j : 1 ≤ i ̸= j ≤ n}
form a root system of type An−1. The simple roots {α1, α2, . . . , αn−1} are given by αi =
εi − εi+1. The bilinear form B is the usual dot product. A root εi − ε j is positive if i < j
and negative if i > j. The Weyl group is isomorphic to the symmetric group Sn and acts
on Φ by permuting the basis ε1, .., εn.

The vectors {±εi ± ε j : 1 ≤ i < j ≤ n} form a root system of type Dn. The simple
roots {α1, α2, . . . , αn} are given by αi = εi − εi+1 for i < n, and αn = εi + εi+1. If i < j,
then the roots εi ± ε j are positive, and the roots −εi ± ε j are negative. The bilinear
form B is the usual dot product. The Weyl group acts on Φ by signed permutations of
the orthonormal basis, with the restriction that each element effects an even number of
sign changes [7, Section 2.10]. There is a well-known homomorphism ϕ from W to Sn
resulting from forgetting the signs in a signed permutation, given as follows:

ϕ(si) =

{
(i, i + 1) if i < n
(n − 1, n) otherwise.

(2.1)
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2.4 A key example

Suppose that Φ is a root system of type Dn for an even integer n = 2k ≥ 4. It follows
from Section 2.3 that two roots α, β ∈ Φ are orthogonal if and only if either (a) α and
β have disjoint support or (b) α and β have the same support, but α ̸= ±β. Using this
fact, it is straightforward to show that every orthogonal set of positive roots in Φ that is
maximal with respect to set containment has the form

R = {εi1 − ε j1 , εi1 + ε j1 , εi2 − ε j2 , εi2 + ε j2 , . . . , εik − ε jk , εik + ε jk}

for numbers i1, j1, . . . , ik, jk such that i1 < j1, . . . , ik < jk, and {i1, j1, . . . , ik, jk} = [n].
Identifying the set R with the perfect matching {{i1, j1}, {i2, j2}, . . . , {ik, jk}}, we obtain
a bijection between the positive n-roots and the perfect matchings of [n]. Here, by a
perfect matching of [n] we mean a collection of pairwise disjoint size-2 subsets of [n]
whose union is the whole of [n].

The case where Φ has type D4 turns out to be particularly instructive for understand-
ing the general theory of n-roots in all types. In type D4, there are exactly three n-roots,
namely:

γA = (ε1 − ε2)(ε1 + ε2)(ε3 − ε4)(ε3 + ε4) = (ε2
1 − ε2

2)(ε
2
3 − ε2

4),

γC = (ε1 − ε3)(ε1 + ε3)(ε2 − ε4)(ε2 + ε4) = (ε2
1 − ε2

3)(ε
2
2 − ε2

4),

and
γN = (ε1 − ε4)(ε1 + ε4)(ε2 − ε3)(ε2 + ε3) = (ε2

1 − ε2
4)(ε

2
2 − ε2

3).

Viewed as maximal orthogonal sets, these 4-roots form a partition of the 12 positive roots
of Φ, and they correspond to the three perfect matchings {{1, 2} {3, 4}}, {{1, 3} {2, 4}},
and {{1, 4} {2, 3}} depicted in Figure 2, respectively. Furthermore, these 4-roots satisfy
the relation

γC = γN + γA

by a straightforward application of the Ptolemy relation

(A − C)(B − D) = (A − D)(B − C) + (A − B)(C − D),

and they have the property that for any component α in one of them, the reflection sα

interchanges the other two 4-roots in the Macdonald representation.
The above facts about the 4-roots in type D4 are important because in all of the types

E7, E8, and Dn for n even, the action of each reflection in the Weyl group on a positive
n-root is always controlled by a suitable type-D4 subsystem of Φ (Proposition 3.3, 2.).
The three-term relation γC = γN + γA provides an important connection between the
combinatorial structure of the set X as a W-set and the linear structure of the Macdonald
representation jΦ

nA1
(sgn) as a W-module. In particular, the three-term relation can help

establish the noncrossing and nonnesting bases of jΦ
nA1

(sgn).
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3 Quasiparabolic Structure

In this section, we recall the definition of quasiparabolic W-sets and explain how the
positive n-roots form a quasiparabolic W-set in types E7, E8, and Dn for n even.

3.1 Quasiparabolic W-sets

Rains and Vazirani introduced quasiparabolic W-sets for a general Coxeter system (W, S)
and associated a partial order to them as follows:

Definition 3.1. [11, Definitions 2.1, 2.3, and 5.1] Let W be a Weyl group with generating
set S and set of reflections T. A scaled W-set is a pair (X, λ), where X is a W-set and
λ : X → Z is a function, called the level function, such that |λ(sx) − λ(x)| ≤ 1 for
all s ∈ S. A quasiparabolic set for W is a scaled W-set X satisfying the following two
properties:

1. for any r ∈ T and x ∈ X, if λ(rx) = λ(x), then rx = x;

2. for any r ∈ T, x ∈ X, and s ∈ S, if λ(rx) > λ(x) and λ(srx) < λ(sx), then rx = sx.

For each quasiparabolic W-set (X, λ), the quasiparabolic order on a X is the weakest partial
order ≤Q such that x ≤Q rx whenever we have x ∈ X, r ∈ T, and λ(x) ≤ λ(rx).

We note that Rains and Vazirani call λ the height function, and ≤Q the Bruhat order,
but we have chosen to call them the level function and the quasiparabolic order because of
the potential for confusion in the context of this abstract.

3.2 Crossing, Nestings, and Alignments

To explain how positive n-roots form a quasiparabolic W-set, we need to specify the level
function λ. We do so by examining certain special quadruples of orthogonal roots:

Definition 3.2. Let Φ be a root system of type E7, E8 or Dn for n even. We say a quadruple
Q = {β1, β2, β3, β4} of four mutually orthogonal positive roots in Φ is a coplanar quadruple
if the element γ = (β1 + β2 + β3 + β4)/2 is a root in Φ.

The following proposition reveals intimate connections between coplanar quadru-
ples, subsystems of type D4 in Φ, and the W-action on positive n-roots. Note that if α is
a root in a maximal orthogonal set R then the reflection sα fixes R in the W-action on X,
hence the more interesting actions arise in the case where α ̸∈ R, as treated in the second
part of the proposition below.

Proposition 3.3. Let Φ be a root system of type E7, E8 or Dn for n even. Let Q ={β1, β2, β3, β3}
be a set of four mutually orthogonal positive roots in Φ, and let γ = (β1 + β2 + β3 + β4)/2.
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1. The following are equivalent:

(a) the set Q is coplanar, i.e., γ is a root;

(b) the set Q is contained in a subsystem Ψ ⊆ Φ of type D4;

(c) there is a unique subsystem Ψ of type D4, ΨQ, such that (Q ∪ {γ}) ⊂ ΨQ ⊆ Φ.

2. Let α ∈ Φ and let R be a set of n orthogonal positive roots such that α ̸∈ R.

(a) The root α is orthogonal to all but precisely four elements Q = {β1, β2, β3, β4} of R.
The elements of Q form a coplanar quadruple.

(b) For the subsystem ΨQ as defined in 1.(c), we have α ∈ ΨQ, and the set sα(Q) =
{sα(βi) : 1 ≤ i ≤ 4} is also a coplanar quadruple contained in ΨQ.

To help clarify the relationship between the coplanar quadruples Q and sα(Q) in the
setting of Proposition 3.3.2, we introduce the following notions:

Definition 3.4. Let Q = {β1, β2, β3, β4} be a coplanar quadruple, let Ψ = ΨQ be the D4-
subsystem associated to Q as in Proposition 3.3, let ≤ be the partial order on Ψ relative
to the induced simple roots of Ψ, and let γ = (β1 + β2 + β3 + β4)/2. We say that Q is

1. a crossing if βi ≤ γ for all i and Q contains the unique maximal element of the set
Q ∪ (−sγ(Q)) with respect to ≤;

2. a nesting if βi ≤ γ for all i and Q contains the unique minimal element of the set
Q ∪ (−sγ(Q)) with respect to ≤;

3. an alignment otherwise.

We call each crossing, nesting, or alignment a feature. For each maximal orthogonal set
R ∈ X, we define A(R), C(R) and N(R) to be the numbers of alignments, crossings, and
nestings contained in R, respectively.

It is straightforward to verify that in type D4, the three 4-roots γA, γC, γN from Sec-
tion 2.4 form an alignment, a crossing, and a nesting, respectively, which is compatible
with the diagrams of their corresponding perfect matchings in the obvious sense. In gen-
eral types, it can also be shown that a coplanar quadruple is always a crossing, a nesting,
or an alignment, but never multiple features at once [6, Theorem 3.2.2.(ii)]. The purpose
of Definition 3.4 is to distinguish the three coplanar quadruples in a type-D4 subsystem
using only abstract properties of roots, and doing so allows us to develop the theory
of n-roots even in types E7 and E8, where no convenient diagrammatic interpretation of
n-roots seems to be available.
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3.3 The positive n-roots form a quasiparabolic W-set.

We are ready to state our first main theorem precisely. Recall from Section 2.2 that for
each root α, we denote by |α| the absolute value of α.

Theorem 3.5. Let W be a Weyl group of type E7, E8, or Dn for n even, and let X be the set of
maximal orthogonal sets of positive roots of W, regarded as a W-set under the action

w({β1, · · · , βn}) = {|w(β1)|, · · · , |w(βn)|}.

The pair (X, λ) is a quasiparabolic W-set, where λ : X → Z is the level function given by
λ(x) = C(x) + 2N(x).

The proof of the theorem involves a detailed analysis of how a reflection sα acts on
a maximal orthogonal set R. Using Proposition 3.3, it can be shown that sα either fixes
R or changes exactly four roots in R forming a coplanar quadruple Q within a type-D4
subsystem ΨQ of Φ to a different feature, but considerable care is required to deal with
other coplanar quadruples in R that overlap with Q, which may undergo changes not
local to ΨQ under the action of sα. For example, in type D6, as the reflection sα for
the root α = ε1 − ε3 takes the maximal orthogonal set R = {ε1 ± ε4, ε2 ± ε5, ε3 ± ε6} to
the set {ε1 ± ε6, ε2 ± ε5, ε3 ± ε4}, it not only changes the crossing Q = {ε1 ± ε4, ε3 ± ε6}
consisting of the roots not orthogonal to α to a nesting, but also causes the crossings
{ε1 ± ε4, ε2 ± ε5} and {ε2 ± ε5, ε3 ± ε6} in R to become nestings.

4 Feature-avoiding Elements

We study the noncrossing, nonnesting, and alignment-free positive n-roots in this sec-
tion. To understand the interactions of these feature-avoiding elements, it is helpful to
define two n-roots to be σ-equivalent if their components have the same sum. This is an
equivalence relation, and we call each equivalence class of the relation a σ-class.

4.1 Type-independent properties

The following theorem is a summary of selected results from [6, Sections 5.1–5.5]. We
omit the proofs, but note that the three-term relation γC = γN + γA plays a crucial role
in the proofs of all the results summarized.

Theorem 4.1. Let W be a Weyl group of type E7, E8, or Dn for n even, and let X be the set of
maximal orthogonal sets of positive roots of W.

1. The noncrossing n-roots in X form a canonical Q-basis, BNC, for the Macdonald repre-
sentation jΦ

nA1
(sgn). Moreover, every n-root of W is a Z-linear combination of BNC with

coefficients of like sign. Equivalently, the basis BNC is a sign-coherent basis for jΦ
nA1

(sgn)
in the sense of [5, Definition 6.12].
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2. The nonnesting n-roots in X form a Q-basis, BNN, for jΦ
nA1

(sgn). Moreover, the set BNN
has the structure of a distributive lattice isomorphic to the lattice L = {v ∈ W : v ≤L wN}
for a suitable element wN, where ≤L is the left weak Bruhat order on W.

3. The alignment-free n-roots in X form a quasiparabolic WI-set, XI , where WI is a suitable
standard parabolic subgroup of W, under the restriction of the level function λ on X. The
set XI also has a bipartite structure: the n-roots in XI with even levels and those with odd
levels partition XI into two equal-sized components, and these components are interchanged
by every reflection in WI .

4. Each σ-class C of X contains a unique nonnesting n-root, β1, and a unique noncrossing
element, β2. Moreover, in this case C coincides with the interval

[β1, β2] = {γ ∈ X : β1 ≤Q γ ≤Q β2} ⊆ X

with respect to the quasiparabolic order ≤Q. The set XI coincides with the unique maximal
σ-class with respect to a certain natural partial order on the σ-classes.

5. Any set of σ-equivalence class representatives forms a Q-basis for jΦ
nA1

(sgn), and any two
such bases (when suitably ordered) have a unitriangular change of basis matrix with integer
entries. In particular, this is true for the bases BNC and BNN.

In Theorem 4.1, the facts that BNC and BNN are bases of jΦ
nA1

(sgn) can be established
using a version of Bergman’s diamond lemma [2]. Simple reflections in W act on BNC by
a simple formula [6, Theorem 5.3.2.(iv)], and the sign-coherence property of BNC may
be amenable to categorification. The element wN is a fully commutative element (in the
sense of [15]) that we can identify explicitly, and the distributive lattice L is isomorphic
to the lattice of ideals in the heap poset of wN (Figure 3). The set XI has many interesting
properties, and we summarize some of them in Section 4.2. The results in (4) give rise
to a canonical bijection β1 ↔ β2 between BNC and BNN, and both (4) and (5) generalize
known results for a Specht module, as we explain in the following remark.

Remark 4.2. In type Dn for n = 2k even, the action of W on the representation jDn
nA1

(sgn)
factors through the map ϕ from Equation (2.1) to induce an Sn-module structure on
jDn
nA1

(sgn). The resulting Sn-module is isomorphic to the Specht module S(k,k), and the

nonnesting and noncrossing bases for jDn
nA1

(sgn) ∼= S(k,k) have been studied extensively
as the web basis and standard basis in the works of Rhoades [12], Russell–Tymoczko [13],
and Hwang–Jang–Oh [8]. The canonical bijection between BNC and BNN generalizes the
graph isomorphism ψ from [13], and Theorem 4.1.5 can be used to recover the results on
the transition matrix from BNN to BNC in [13, Section 5]. If we expand the maximally
crossing and maximally nesting positive n-roots (such n-roots exist in all types by [6,
Sections 4.3 and 5.2]) as linear combinations of BNC, then the resulting coefficients give
rise to Euler numbers [10, A000111] and web permutations by the results of [8], respectively.
For more details, see [6, Remark 6.1.3].
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Figure 3: Hasse diagrams for the heaps of the elements wN in types D8, E7 and E8.

4.2 Type-specific properties

The alignment-free positive n-roots have the following properties. We refer the interested
reader to [6, Sections 6.1–6.3] for more details.

Proposition 4.3. Let W be a Weyl group of type E7, E8, or Dn for n even, and let XI be the set
of alignment-free positive n-roots of W.

1. If W has type Dn for n = 2k even, then under the restriction of the quasiparabolic order on
positive n-roots, the set XI is canonically isomorphic to the symmetric group Sk under the
strong Bruhat order via the map φ : Sk → XI sending each element τ ∈ Sn to the n-root
φ(τ) = ∏k

i=1(ε
2
i − ε2

τ(i)+k).

2. If W has type E7, then the set XI admits a canonical bijection to the 30 inequivalent
labellings of the Fano plane.

3. If W has type E8, then the graphs GE8 and Γ constructed as follows are not isomorphic but
quantum isomorphic in the sense of [1]. The vertices of GE8 are the positive roots of type
E8, with two vertices being adjacent if and only if they are orthogonal. The vertices of Γ
are the elements of XI with even levels, with two vertices being adjacent if and only if they
share no common components.
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