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Abstract. We characterize ratios of permanents of submatrices which are bounded
on the set of totally positive matrices. This provides a permanental analog of results
of Fallat, Gekhtman, and Johnson [Adv. Appl. Math., 30 no. 3, (2003)] concerning ra-
tios of matrix minors. We also extend work of Drake, Gerrish, and the first author
[Electron. J. Combin., 11 no. 1, (2004)] by characterizing differences of monomials in
Z[x1,1, x1,2, . . . , xn,n] which evaluate positively on all totally positive n × n matrices.
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1 Introduction

Given an n× n matrix A = (ai,j) and subsets I, J ⊆ [n] := {1, . . . , n}, let AI,J = (ai,j)i∈I,j∈J
denote the (I, J)-submatrix of A. For |I| = |J|, call det(AI,J) the (I, J)-minor of A. A real
n × n matrix A is called totally positive (totally nonnegative) if every minor of A is positive
(nonnegative). Let MTP

n ⊂ MTNN
n denote these sets of matrices.

These and the set MHPS
n of n × n Hermitian positive semidefinite matrices arise in

many areas of mathematics, and for more than a century mathematicians have been
studying inequalities satisfied by their matrix entries. (See, e.g., [7].) Many such inequal-
ities involve minors and permanents. For instance inequalities of Fischer [8], Fan [3],
and Lieb [12] state that for all matrices A ∈ MTNN

n ∪MHPS
n , and for all I ⊆ [n] and

Ic := [n]∖ I, we have
det(A) ≤ det(AI,I)det(AIc,Ic),
per(A) ≥ per(AI,I) per(AIc,Ic).

(1.1)

Koteljanskii’s inequality [11] states that for A ∈ MTNN
n ∪MHPS

n and I, J ⊆ [n] we have

det(AI∪J,I∪J)det(AI∩J,I∩J) ≤ det(AI,I)det(AJ,J). (1.2)

Many open questions about inequalities exist and seem difficult. For instance, it is
known which 8-tuples (I, J, K, L, I′, J′, K′, L′) of subsets satisfy

det(AI,I′)det(AJ,J′) ≤ det(AK,K′)det(AL,L′) (1.3)
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for all A ∈ MTNN
n [6], [13], but few permanental analogs of such inequalities are known.

While some of these 8-tuples also satisfiy

per(AI,I′) per(AJ,J′) ≥ per(AK,K′) per(AL,L′), (1.4)

this second inequality is not true in general: the natural permanental analog

per(AI∪J,I∪J) per(AI∩J,I∩J) ≥ per(AI,I) per(AJ,J) (1.5)

of (1.2) holds neither for all A ∈ MHPS
n nor for all A ∈ MTNN

n . (See [14, Section 6] for a
counterexample with n = 3.)

Let us put aside MHPS
n and consider conjectured inequalities of the form

product1 ≤ product2 (1.6)

involving minors and permanents of matrices in MTNN
n and MTP

n . One strategy for
studying (1.6) is to view the difference product2 − product1 as a polynomial

f (x) := f (x1,1, x1,2, . . . , xn,n) ∈ Z[x] := Z[x1,1, x1,2, . . . , xn,n] (1.7)

in matrix entries. Then the validity of the inequality (1.6) is equivalent to the statement
that for all A = (ai,j) ∈ MTNN

n , we have

f (A) := f (a1,1, a1,2, . . . , an,n) ≥ 0. (1.8)

We call a polynomial (1.7) with this property a totally nonnegative polynomial. Since MTP
n

is dense in MTNN
n , the inequality (1.8) holds for all A ∈ MTP

n if and only if it holds for
all A ∈ MTNN

n .
A second strategy for studying (variations of) a potential inequality (1.6) is to ask for

which positive constants k1, k2 the modified inequalities

k1 · product1 ≤ product2 ≤ k2 · product1 (1.9)

hold for all A ∈ MTNN
n . Bounds of k1 = 1 or k2 = 1 imply the inequality (1.6) or its

reverse to hold; other bounds give information not apparent in the proof or disproof of
(1.6). Equivalently, we may view the ratio of product2 to product1 as a rational function

R(x) := R(x1,1, x1,2, . . . , xn,n) ∈ Q(x) := Q(x1,1, x1,2, . . . , xn,n) (1.10)

in matrix entries, and we may ask for upper and lower bounds as x varies over MTP
n .

While a ratio (1.10) is not defined everywhere on MTNN
n , the density of MTP

n in MTNN
n

allows us to restrict our attention to MTP
n : we have

k1 ≤ R(x) ≤ k2 (1.11)
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for all x ∈ MTP
n if and only if the same inequalities hold for all x ∈ MTNN

n such that R(x)
is defined. Clearly the lower bound k1 is interesting only when positive, since minors
and permanents of totally nonnegative matrices are trivially bounded below by 0.

A characterization of all ratios of the form

det(xI,I′)det(xJ,J′)

det(xK,K′)det(xL,L′)
, I, I′, . . . , L, L′ ⊂ [n], (1.12)

which are bounded above and/or nontrivially bounded below on MTP
n follows from

work in [6], [13]. Each ratio (1.12) is bounded above and/or below by 1, and for each n,
it factors as a product of elements of a finite set of indecomposable ratios. This result
was extended in [15] to include ratios of products of arbitrarily many minors

det(xI1,I′1
) · · ·det(xIp,I′p)

det(xJ1,J′1
) · · ·det(xJp,J′p)

. (1.13)

Again, each such ratio factors as a product of elements belonging to a finite set of inde-
composable ratios. For n = 3, each ratio (1.13) is bounded above and/or below by 1; for
n ≥ 4, such bounds are conjectured [2].

While the permanental version (1.5) of Koteljanskii’s inequality is false, we will show
in Section 3 that the corresponding ratio is bounded above and nontrivially below.
Specifically,

1
|I ∪ J|! |I ∩ J|! ≤

per(xI,I) per(xJ,J)

per(xI∪J,I∪J) per(xI∩J,I∩J)
≤ |I|! |J|! (1.14)

for all I, J ⊆ [n] and x ∈ MTP
n . The failure of (1.5), combined with (1.14), exposes a

difference between ratios of minors and of permanents: unlike the bounded ratios in
(1.12), not all bounded ratios of permanents are bounded by 1. Thus it is natural to ask
which ratios

R(x) =
per(xI1,I′1

)per(xI2,I′2
) · · ·per(xIr,I′r)

per(xJ1,J′1
)per(xJ2,J′2

) · · ·per(xJq,J′q)
(1.15)

are bounded above and/or nontrivially below as real-valued functions on MTP
n , and to

look for bounds.
In Section 2 we describe a multigrading of the coordinate ring Z[x] of n × n matrices.

Extending work in [5], we define a partial order on the monomials in Z[x] which char-
acterizes the differences ∏ x

ci,j
i,j − ∏ x

di,j
i,j which are totally nonnegative polynomials. This

leads to our main results in Section 3 which characterize ratios (1.15) which are bounded
above and nontrivially below as real-valued functions on MTP

n . We provide some such
bounds, which are not necessarily tight, and suggest problems for further investigation.
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2 A multigrading of Z[x1,1, x1,2, . . . , xn,n] and the total non-
negativity order

We will find it convenient to view degree-r monomials in Z[x] in terms of permutations
in the symmetric group Sr and multisets of [n]. In particular, given permutations v, w ∈
Sr define the monomial

xv,w := xv1,w1 · · · xvr,wr .

Define an r-element multiset of [n] to be a nondecreasing r-tuple of elements of [n]. In
exponential notation, we write ik to represent k consecutive occurrences of i in such an
r-tuple, e.g.,

(1, 1, 2, 3) = 122131, (1, 2, 2, 2) = 1123. (2.1)

Two r-element multisets

M = (m1, . . . , mr) = 1α1 · · · nαn , O = (o1, . . . , or) = 1β1 · · · nβn , (2.2)

determine a generalized submatrix xM,O of x by (xM,O)i,j := xmi,oj . For example, when
n = 3, we have the 4 × 4 generalized submatrix and monomial

x1123,1222 =


x1,1 x1,2 x1,2 x1,2
x1,1 x1,2 x1,2 x1,2
x2,1 x2,2 x2,2 x2,2
x3,1 x3,2 x3,2 x3,2

, (x1123,1222)
1234,4312 = x1,2x1,2x2,1x3,2. (2.3)

The ring Z[x] has a natural multigrading

Z[x] =
⊕
r≥0

⊕
M,O

AM,O, (2.4)

where the second direct sum is over pairs (M, O) of r-element multisets of [n], and

AM,O := spanZ{(xM,O)
e,w |w ∈ Sr}. (2.5)

More precisely, for M, O as in (2.2), a basis for AM,O is given by all monomials

∏
i,j∈[n]

x
ci,j
i,j (2.6)

with C = (ci,j) ∈ Matn×n(N) satisfying

ci,1 + · · ·+ ci,n = αi, c1,j + · · ·+ cn,j = β j for i, j = 1, . . . , n. (2.7)

One may express a monomial (2.6) in the form (xM,O)
e,w by the following algorithm.
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Algorithm 2.1. Given a monomial (2.6) in AM,O with M, O as in (2.2),

(i) Define the rearrangement u = u1 · · · ur of O by writing (2.6) with variables in
lexicographic order as xm1,u1 · · · xmr,ur .

(ii) Let j1 < · · · < jβ1 be the positions of the β1 ones in u, let jβ1+1 < · · · < jβ1+β2 be
the positions of the β2 twos in u, etc.

(iii) For i = 1, . . . , r, define wji = i.

(iv) Call the resulting word w = w(C).

For example, it is easy to check that for multisets (1123, 1222) = (122131, 112330) of
{1, 2, 3}, the graded component A1123,1222 of Z[x1,1, x1,2, . . . , x3,3] is spanned by monomi-
als (2.6), where C = (ci,j) is one of the matrices1 1 0

0 1 0
0 1 0

,

0 2 0
1 0 0
0 1 0

,

0 2 0
0 1 0
1 0 0

 (2.8)

having row sums (2, 1, 1) and column sums (1, 3, 0). These monomials are

x1,1x1,2x2,2x3,2, x2
1,2x2,1x3,2, x2

1,2x2,2x3,1, (2.9)

with column index sequences equal to the rearrangements 1222, 2212, 2221 of 1222.
Algorithm 2.1 then produces permutations 1234, 2314, 2341 in S4, and we may express
the monomials (2.9) as

(x1123,1222)
1234,1234, (x1123,1222)

1234,2314, (x1123,1222)
1234,2341. (2.10)

For r-element multisets M,O of [n], monomials in AM,O are closely related to parabolic
subgroups of Sr with standard generators s1, . . . , sr−1, and double cosets of the form
Wι(M)wWι(O) where w belongs to Sr, WJ is the subgroup of Sr generated by J, and

ι(M) := {s1, . . . , sr−1}∖ {sα1 , sα1+α2 , . . . , sr−αn} = {sj |mj = mj+1},

ι(O) := {s1, . . . , sr−1}∖ {sβ1 , sβ1+β2 , . . . , sr−βn} = {sj | oj = oj+1}.
(2.11)

It is easy to see that the map M 7→ ι(M) is bijective: one recovers M = 1α1 · · · nαn

from the generators not in ι(M) as in (2.11). It is known that each double coset has
unique minimal and maximal elements with respect to the Bruhat order on Sr, defined
by declaring v ≤ w if each reduced expression si1 · · · siℓ for w contains a subword which
is a reduced expression for v. (See, e.g., [1], [4].) Let Wι(M)\W/Wι(O) denote the set of
all double cosets of W = Sr determined by r-element multisets M, O.
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Proposition 2.2. Fix r-element multisets M, O as in (2.2). The double cosets Wι(M)\W/Wι(O)

satisfy the following.

(i) Each double coset has a unique Bruhat-minimal element u satisfying su > u for all s ∈
ι(M) and us > u for all s ∈ ι(O); it has a unique Bruhat-maximal element u′ satisfying
su′ < u′ for all s ∈ ι(M) and u′s < u′ for all s ∈ ι(O).

(ii) We have Wι(M)vWι(O) = Wι(M)wWι(O) if and only if (xM,O)
e,v = (xM,O)

e,w.

(iii) The cardinality |Wι(M)\W/Wι(O)| is the dimension of AM,O, equivalently, the number of
matrices in Matn×n(N) having row sums (α1, . . . , αn) and column sums (β1, . . . , βn).

(iv) Each permutation w produced by Algorithm 2.1 is the unique Bruhat-minimal element of
its coset Wι(M)wWι(O).

Proof. Omitted.

For any subsets I, J of generators of Sr, the Bruhat order on Sr induces a poset
structure on WI\W/WJ as follows. We declare WIvWJ ≤ WIwWJ if the minimal element
of WIvWJ is less than or equal to the minimal element of WIwWJ . (Equivalently, we may
compare maximal or arbitrary elements of the cosets [4, Lemma 2.2].) We call this poset
the Bruhat order on WI\W/WJ . Another equivalent inequality can be stated in terms of
matrices of exponents defined by monomials in AM,O. (See, e.g., [10].) Given a matrix
C = (ci,j) ∈ Matn×n(N), define the matrix C∗ = (c∗i,j) ∈ Matn×n(N) by

c∗i,j = sum of entries of C[i],[j]. (2.12)

Proposition 2.3. Fix monomials

(xM,O)
e,v = ∏

i,j
x

ci,j
i,j , (xM,O)

e,w = ∏
i,j

x
di,j
i,j ,

in AM,O and define matrices C∗, D∗ as in (2.12). Then we have Wι(M)vWι(O) ≤ Wι(M)wWι(O)

in the Bruhat order if and only if C∗ ≥ D∗ in the componentwise order.

The Bruhat order on Wι(M)\W/Wι(O) is closely related to certain totally nonnegative
polynomials in AM,O. Indeed, when M = O = 1 · · · n, totally nonnegative polynomials
of the form xe,v − xe,w are characterized by the Bruhat order on Sn [5].

Theorem 2.4. For v, w ∈ Sn, the polynomial xe,v − xe,w is totally nonnegative if and only if
v ≤ w in the Bruhat order.



Multiplicative permanental inequalities for totally positive matrices 7

We will now extend this result to all monomials in Z[x]. Let us define a partial order
≤T on all monomials in Z[x] by declaring (xM,O)

e,v ≤T (xP,Q)
e,w if (xP,Q)

e,w − (xM,O)
e,v is

a totally nonnegative polynomial. We call this the total nonnegativity order on monomials
in Z[x]. It is not hard to show that the total nonnegativity order is a disjoint union of its
restrictions to the multigraded components (2.4) of Z[x].

Lemma 2.5. Monomials
∏
i,j

x
ci,j
i,j , ∏

i,j
x

di,j
i,j (2.13)

are comparable in the total nonnegativity order only if they belong to the same multigraded
component of Z[x].

Proof. Omitted.

Theorem 2.6. Fix r-element multisets M = 1α1 · · · nαn , O = 1β1 · · · nβn as in (2.2), and matri-
ces C, D ∈ Matn×n(N) with row and column sums (α1, . . . , αn), (β1, . . . , βn), and define the
polynomial

f (x) = ∏
i,j

x
ci,j
i,j − ∏

i,j
x

di,j
i,j

in AM,O. Then the following are equivalent.

1. f (x) is totally nonnegative.

2. C∗ ≥ D∗ in the componentwise order.

3. w(C) ≤ w(D) in the Bruhat order on Sr.

4. f (x) is equal to a sum of products of the form det(xI,J)xu1,v1 · · · xur−2,vr−2 in AM,O with
|I| = |J| = 2.

Proof. Omitted.

For example, let us revisit the monomials (2.9) – (2.10) in the graded component
A1123,1222 of Z[x1,1, x1,2, . . . , x3,3]. It is easy to see that 1234 < 2314 < 2341 in the Bruhat
order on S4 and that the application of (2.12) to the corresponding matrices in (2.8)
yields the componentwise comparisons1 2 2

1 3 3
1 4 4

 ≥

0 2 2
1 3 3
1 4 4

 ≥

0 2 2
0 3 3
1 4 4

. (2.14)

Thus we have (x1123,1222)
1234,1234 ≥T (x1123,1222)

1234,2314 ≥T (x1123,1222)
1234,2341, i.e.,

x1,1x1,2x2,2x3,2 ≥T x2
1,2x2,1x3,2 ≥T x2

1,2x2,2x3,1.
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Furthermore, the chain 1234 < 2134 < 2314 < 2341 in the Bruhat order on S4 with

2134 = (1, 2)1234, 2314 = (2, 3)2134, 2341 = (3, 4)2314 (2.15)

allows us to write x1,1x1,2x2,2x3,2 − x2
1,2x2,1x3,2 as(

(x1123,1222)
1234,1234 − (x1123,1222)

1234,2134
)
+

(
(x1123,1222)

1234,2134 − (x1123,1222)
1234,2314

)
= det

[
x1,1 x1,2
x1,1 x2,2

]
x2,2x3,2 + x1,2 det

[
x1,1 x1,2
x2,1 x2,2

]
x3,2,

and to write x2
1,2x2,1x3,2 − x2

1,2x2,2x3,1 as(
(x1123,1222)

1234,2314 − (x1123,1222)
1234,2341

)
= x2

1,2 det
[

x2,1 x2,2
x3,1 x3,2

]
.

3 Main results

Let MTP
n be the set of totally positive n × n matrices. To characterize ratios of products

of permanents which are bounded above and/or nontrivially bounded below on the
set MTP

n , we first consider necessary conditions on the multisets of rows and columns
appearing in such ratios. Let

R(x) =
per(xI1,I′1

)per(xI2,I′2
) · · ·per(xIr,I′r)

per(xJ1,J′1
)per(xJ2,J′2

) · · ·per(xJq,J′q)
, (3.1)

be such a ratio, where

(I1, . . . , Ir), (I′1, . . . , I′r), (J1, . . . , Jq), (J′1, . . . , J′q) (3.2)

are multisets of [n] satisfying |Ik| = |I′k|, |Jk| = |J′k| for all k. In order for R(x) to
be bounded above or nontrivially bounded below on MTP

n the multisets (3.2) must be
related in terms of an operation which we call multiset union. Given multisets M =
1α1 · · · nαn , O = 1β1 · · · nβn of [n], define their multiset union to be

M ⋓O := 1α1+β1 · · · nαn+βn . (3.3)

For example, 1124 ⋓ 1233 = 11122334.

Proposition 3.1. Given multiset sequences as in (3.2), a ratio (3.1) can be bounded above or
nontrivially bounded below on MTP

n only if we have the multiset equalities

I1 ⋓ · · ·⋓ Ir = J1 ⋓ · · ·⋓ Jq, I′1 ⋓ · · ·⋓ I′r = J′1 ⋓ · · ·⋓ J′q. (3.4)
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Proof. Omitted.

To state sufficient conditions for the boundedness of ratios (3.1) we observe that it is
possible to bound the permanent above and below as follows.

Proposition 3.2. For any n × n totally nonnegative matrix A = (ai,j) we have

a1,1 · · · an,n ≤ per(A) ≤ n! · a1,1 · · · an,n. (3.5)

Proof. Omitted.

Now we state our main result, which characterizes ratios R(x) as in (3.1) which are
bounded above for x ∈ MTP

n .

Theorem 3.3. Let rational function

R(x) =
per(xI1,I′1

)per(xI2,I′2
) · · ·per(xIr,I′r)

per(xJ1,J′1
)per(xJ2,J′2

) · · ·per(xJq,J′q)
(3.6)

have index sets which satisfy (3.4), and define matrices C = (ci,j), C∗ = (c∗i,j), D = (di,j),
D∗ = (d∗i,j) by

(xI1,I′1
)e,e · · · (xIr,I′r)

e,e = ∏ x
ci,j
i,j , (xJ1,J′1

)e,e · · · (xJq,J′q)
e,e = ∏ x

di,j
i,j , (3.7)

and (2.12). Then R(x) is bounded above on the set of totally positive matrices if and only if
C∗ ≤ D∗ in the componentwise order. In this case, it is bounded above by |I1|! · · · |Ir|! .

Proof. Suppose that C∗ ≰ D∗. Then for some indices (k, ℓ) we have c∗k,ℓ > d∗k,ℓ. Define the
matrix B(t) = (bi,j(t)) by

bi,j(t) =

{
t if i ≤ k and j ≤ ℓ,
1 otherwise.

Now, we have R(B(t)) = p(t)
q(t) where deg(p(t)) = c∗i,j > d∗i,j = deg(q(t)). Thus we have

lim
t→∞

R(B(t)) = tc∗i,j−d∗i,j = ∞.

Assume therefore that we have C∗ ≤ D∗ and let A be any n × n totally positive
matrix. Applying the inequalities of Proposition 3.2 to the numerator and denominator
of R(A) respectively, we see that R(A) is at most

|I1|!(AI1,I′1
)e,e · · · |Ir|!(AIr,I′r)

e,e

(AJ1,J′1
)e,e · · · (AJq,J′q)

e,e =
|I1|! · · · |Ir|! ∏ a

ci,j
i,j

∏ a
di,j
i,j

. (3.8)

By Theorem 2.6, this is at most |I1|! · · · |Ir|! .
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Observe that Theorem 3.3 guarantees no nontrivial lower bound for R(x) and gives
an upper bound which is sometimes tight. Indeed the ratio x1,2x2,1

x1,1x2,2
attains all values in

the open interval (0, 1) as x varies over matrices in MTP
2 . On the other hand, special

cases of the ratios in Theorem 3.3 can be shown to have both upper and nontrivial lower
bounds.

Corollary 3.4. For ratio R(x) and matrices C, D defined as in Theorem 3.3, if C = D, then
R(x) is bounded above and below by

1
|J1|! · · · |Jq|!

≤ R(x) ≤ |I1|! · · · |Ir|! , (3.9)

for x ∈ MTP
n .

For example, consider the ratio

R(x) =
per(x12,34)per(x34,12)

x1,3x2,4x3,1x4,2
(3.10)

with |I1| = |I2| = 2, |J1| = |J2| = |J3| = |J4| = 1, and

C = D =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 . (3.11)

By Corollary 3.4, we have 1 ≤ R(x) ≤ 4. It is easy to see that R(x) attains values
arbitrarily close to 4 as x approaches the matrix of all ones. It is also possible to show that
R(x) attains values arbitrarily close to 1. Indeed, consider the matrix A = A(ϵ) = (ai,j)
defined by

A(ϵ) =


1 1 ϵ ϵ3

1 2 1 ϵ

ϵ 1 2 1
ϵ3 ϵ 1 1

 , (3.12)

where ϵ is positive and close to 0. To see that A(ϵ) is totally positive, it suffices to verify
the positivity of the sixteen minors det(A[a1,b1],[a2,b2]) indexed by pairs of intervals, at
least one of which contains 1 [9, Theorem 9]. Observe that we have a1,j > 0 and ai,1 > 0
for all i, j. Also,

det(A12,12) = 1,
det(A12,23) = det(A23,12) = 1 − 2ϵ,

det(A12,34) = det(A34,12) = ϵ2 − ϵ3,

det(A123,123) = 1 + 2ϵ − 2ϵ2,

det(A123,234) = det(A234,123) = 1 − 4ϵ + ϵ2 + 3ϵ3,

det(A) = 4ϵ − 6ϵ2 − 2ϵ3 + 9ϵ4 − 2ϵ5 − 3ϵ6.
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It follows that we have

lim
ϵ→0+

R(A) = lim
ϵ→0+

(ϵ2 − ϵ3)2

ϵ4 = lim
ϵ→0+

1 − 2ϵ + ϵ2 = 1.

In the case that all submatrices in (3.6) are principal, the necessary condition (3.4)
for boundedness is in fact sufficient to guarantee the existence of upper and nontrivial
lower bounds.

Corollary 3.5. For ratio R(x) as in Theorem 3.3, if only principal submatrices appear (Ik = I′k,
Jk = J′k for all k), then R(x) is bounded above and below as in (3.9).

Proof. Omitted.

For example, consider the ratio

per(xI,I) per(xJ,J)

per(xI∪J,I∪J) per(xI∩J,I∩J)
(3.13)

coming from the (false) permanental version (1.5) of Koteljanskii’s inequality (1.2). By
Corollary 3.5, the four principal submatrices of x imply that the exponent matrices C
and D are equal and diagonal with (i, i) entry equal to the multiplicity of i in I ⋓ J. Thus
Corollary 3.4 gives the lower and upper bounds

1
|I ∪ J|! |I ∩ J|! , |I|! |J|! (3.14)

as claimed in (1.14). These bounds are not in general tight. Consider the special case

1
3!1!

≤ per(x12,12)per(x23,23)

per(x123,123)per(x2,2)
≤ (2!)2, C = D =

1 0 0
0 2 0
0 0 1

 . (3.15)

A more careful analysis leads to improved bounds of 1/2 and 2, since the difference
2per(x12,12)per(x23,23)− per(x123,123)per(x2,2) equals

det(x13,13)x2
22 + det(x23,13)x12x22 + det(x12,23)x21x32 + x11x22x23x32 + x12x21x23x32,

and the difference 2per(x123,123)per(x2,2)− per(x12,12)per(x23,23) equals

x11x2
22x33 + det(x23,23)x12x21 + 2x12x22x23x31 + x11x22x23x32 + 2x13x21x22x32 + 2x13x2

22x31.

The authors believe that even these bounds are not tight. The smallest and greatest
values we have found for the ratio in (3.15) are 2/3 and 121/114, respectively.

It would be interesting to characterize the ratios (1.15) which are bounded by 1, or to
find examples of such ratios.

Problem 3.6. Characterize the differences per(xJ1,J′1
) · · ·per(xJq,J′q)− per(xI1,I′1

) · · ·per(xIr,I′r)

which are totally nonnegative polynomials.

Problem 3.7. Show that the polynomial per(x[n],[n])per(x[n+1,2n],[n+1,2n])− per(xI,I)per(xJ,J)
is totally nonnegative when I = [2n]∖ 2Z, J = [2n] ∩ 2Z.
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