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Abstract. Let xn×n be an n × n matrix of variables and let C[xn×n] be the polynomial
ring in these variables. We consider the ideal In ⊂ C[xn×n] generated by all row
sums, column sums, and products of variables in the same row or column. We prove
Rn = C[xn×n]/In has standard monomial theory governed by the Viennot shadow line
avatar of the Schensted correspondence and has Hilbert series given by the longest
increasing subsequence distribution on permutations (up to reversal). The ring Rn

coincides with the orbit harmonics quotient ring attached to the permutation matrix
locus in the space Matn×n(C) of n × n complex matrices. With Rn as motivation, we
prove results on orbit harmonics quotients for other matrix loci.
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1 Introduction

This extended abstract covers recent developments [8, 9, 15] in the theory of orbit har-
monics as applied to loci of n × n matrices, resulting in quotient rings reflecting combi-
natorial properties of these matrices. Our fundamental example is as follows.

Let Sn denote the symmetric group of permutations of [n] := {1, . . . , n}. An increas-
ing subsequence of w ∈ Sn is a set 1 ≤ i1 < · · · < ik ≤ n such that w(i1) < · · · < w(ik).
Write lis(w) for the size of a longest increasing subsequence of w and let

an,k := #{w ∈ Sn : lis(w) = k}. (1.1)

Baik, Deift, and Johansson proved [2] that the sequence (an,1, . . . , an,n) converges as n →
∞ (after renormalization) to the Tracy–Widom distribution modeling the largest eigenvalue
of a random GUE matrix.

We show that (an,1, . . . , an,n) is the Hilbert series of a graded ring, after reversal. Let
xn×n = (xi,j)1≤i,j≤n be an n × n matrix of variables and let C[xn×n] be the polynomial
ring in these variables.
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Figure 1: Hilb(R(S65); q) Figure 2: Hilb(R(S40,2); q)

Definition 1.1. Let In ⊆ C[xn×n] be the ideal generated by the following polynomials:

• all row sums ∑n
j=1 xi,j for 1 ≤ i ≤ n and column sums ∑n

i=1 xi,j for 1 ≤ j ≤ n, and

• all products xi,j · xi,j′ or xi,j · xi′,j of variables in the same row or column, including squares
x2

i,j of variables.

Write Rn := C[xn×n]/In for the corresponding quotient ring.

Despite its simple definition, the ring Rn has deep ties to permutation combinatorics.
It is a quotient of the Stanley–Reisner ring of the chessboard complex [3]. The ideal In is
homogeneous, so Rn is a graded C-algebra. The product Sn ×Sn of symmetric groups
acts naturally on the rows and columns of the matrix of variables xn×n, and this induces
an action of Sn ×Sn on C[xn×n]. The ideal In is stable under this action, so Rn is also a
graded (Sn ×Sn)-module.

If A =
⊕

i≥0 Ai is a graded algebra, the Hilbert series is Hilb(A; q) := ∑i≥0 dim Ai ·
qi. We prove (Corollary 3.2) that the Hilbert series of Rn is essentially the generating
function of the statistic lis on Sn:

Hilb(Rn; q) =
n−1

∑
i=0

an,n−i · qi. (1.2)

See Figure 1 for the Hilbert series at n = 65. Equation (1.2) holds because the standard
monomial basis of Rn (with respect to the ‘Toeplitz term order’) may be read off from the
Viennot shadow line avatar of the Schensted correspondence (Theorem 3.1). With respect
to a fixed term order, any polynomial ring quotient has a unique standard monomial
basis, but this basis does not generally have a nice structure. By contrast, Theorem 3.1
says (loosely) that the standard monomial theory of Rn ‘knows’ the Schensted bijection.

We extend Equation (1.2) to give the graded (Sn ×Sn)-module structure of Rn; we
show (Theorem 3.3) that the degree d piece of Rn is isomorphic to

⊕
λ EndC(Vλ) where
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the direct sum is over partitions λ ⊢ n whose first row has length n − d and Vλ is the
Sn-irreducible associated to λ.

The ring Rn turns out (Theorem 3.1) to arise from a general method in combinatorial
deformation theory called orbit harmonics. This is a machine which linearly deforms a
finite locus Z of points in an affine space V to the origin, resulting in a graded quotient
R(Z) of the coordinate ring C[V]; see Section 2 for details. If we take V = Matn×n(C)
to be the affine space of n × n complex matrices and regard Sn ⊆ V as the locus of
permutation matrices, we prove (Theorem 3.1) that R(Sn) = Rn.

The identification R(Sn) = Rn and our theorems on Rn motivate the study of R(Z)
for other matrix loci Z ⊆ Matn×n(C). See Figure 2 for the Hilbert series when Z consists
of 40 × 40 signed permutation matrices. In Section 4 we give results on the locus Sn,r
of r-colored permutation matrices and in Section 5 we give results on various loci of
involution permutation matrices. We close in Section 6 with some open problems.

2 Background

2.1 Commutative algebra and orbit harmonics

Let x be a finite set of variables and let C[x] be the polynomial ring in x. A total order ≺
on the monomials in C[x] is a term order if 1 ⪯ m for all monomials m and

for all monomials m, m′, m′′, if m ⪯ m′ we have m · m′′ ⪯ m′ · m′′.

For a variable order x = {x1 < · · · < xN}, the lexicographic term order is xa1
1 · · · xaN

N ≺
xb1

1 · · · xbN
N if there exists 1 ≤ i ≤ N with aj = bj for j < i and ai < bi.

If f ∈ C[x] is nonzero and ≺ is a term order, write in≺( f ) for the ≺-largest monomial
appearing with nonzero coefficient in f . Let I ⊆ C[x] be an ideal. The following set of
monomials descends to a basis of C[x]/I called the standard monomial basis

B := {monomials m in C[x] : m ̸= in≺( f ) for any nonzero f ∈ I}.

For f ∈ C[x]− {0}, let τ( f ) ∈ C[x] be the top-degree homogeneous component of f .
Explicitly, if f = fd + · · ·+ f1 + f0 where fi is homogeneous of degree i and fd ̸= 0, we
have τ( f ) = fd. If I ⊆ C[x] is an ideal, the associated graded ideal is

gr I := (τ( f ) : f ∈ I, f ̸= 0) ⊆ C[x].

Let V be a finite-dimensional C-vector space with coordinate ring C[V]. If x1, . . . , xN
is a basis of the dual space V∗, then C[V] = C[x1, . . . , xN]. Let Z ⊆ V be a finite locus.
We have the vanishing ideal

I(Z) := { f ∈ C[V] : f (z) = 0 for all z ∈ Z}.
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Since Z is finite, the quotient C[V]/I(Z) coincides with the algebra C[Z ] of all functions
Z → C. The orbit harmonics method gives a vector space isomorphism

C[Z ] = C[V]/I(Z) ∼= C[V]/gr I(Z) (2.1)

where C[V]/gr I(Z) has the additional structure of a graded vector space. If G ⊆ GL(V)
is a finite linear group and the locus Z is G-stable, (2.1) is an isomorphism of G-modules,
where C[V]/gr I(Z) has the additional structure of a graded G-module. We write

R(Z) := C[V]/gr I(Z) (2.2)

for the graded orbit harmonics quotient ring of a finite locus Z ⊆ V. Geometrically,
(2.1) corresponds to a flat family which linearly deforms the reduced locus Z to a sub-
scheme of V with degree #Z supported at the origin, as shown schematically below.
Orbit harmonics quotients R(Z) arise in the study of Springer fibers [5], delta operator
coinvariant theory [6], Donaldson–Thomas theory [13], and Ehrhart theory [14].

•

•

•

• •

•
•

2.2 Representation theory of Sn and shadow lines

For n ≥ 0, a partition of n is a sequence λ = (λ1 ≥ λ2 ≥ · · · ) of positive integers with
λ1 + λ2 + · · · = n. We write λ ⊢ n to mean that λ is a partition of n and let |λ| := n.
We identify λ with its (English) Young diagram with λi left-justified boxes in row i. A
standard λ-tableau is a filling of the boxes of λ with 1, 2, . . . , n which increases across rows
and down columns. Let SYT(λ) be the set of standard λ-tableaux.

Let Λ =
⊕

n≥0 Λn be the ring of symmetric functions. Bases of Λn are indexed by
partitions λ ⊢ n; we will use the Schur basis {sλ : λ ⊢ n}. Irreducible representations of
Sn are also indexed by partitions λ ⊢ n; we write Vλ for the Sn-irreducible attached to
λ ⊢ n. If V is a finite-dimensional Sn-module, there exist unique integers cλ ≥ 0 such
that V ∼=

⊕
λ⊢n cλVλ. The Frobenius image of V is the symmetric function

Frob(V) := ∑
λ⊢n

cλ · sλ.

More generally, if V =
⊕

i≥0 Vi is a graded Sn-module with each Vi finite-dimensional,
the graded Frobenius image is

grFrob(V; q) := ∑
i≥0

Frob(Vi) · qi.
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•
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•

•

•
•
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•

•

•
•

•
•

•
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•

•

Figure 3: The Viennot construction on w = [4, 3, 1, 2, 7, 5, 6] ∈ S7. We have the shadow
set S(w) = {(2, 4), (3, 3), (6, 7)}.

The Schensted correspondence [17] is an explicit bijection

Sn −→
⊔

λ⊢n

SYT(λ)× SYT(λ). (2.3)

from Sn to pairs (P, Q) of n-box standard tableaux of the same shape. We refer the
reader to Sagan’s textbook [16] for a wonderful exposition on this bijection. For example,
if w = [4, 3, 1, 2, 7, 5, 6] ∈ S7 then w 7→ (P(w), Q(w)) where P(w), Q(w) are shown below.

1 2 5 6
P(w) : 3 7

4

1 4 5 7
Q(w) : 2 6

3

Our example permutation w = [4, 3, 1, 2, 7, 5, 6] has lis(w) = 4, and both P(w), Q(w) have
4 boxes in their first row. This is a general phenomenon.

Theorem 2.1 (Schensted [17]). Suppose w ∈ Sn maps to (P(w), Q(w)) under the Schensted
bijection, and that P(w), Q(w) have the common shape λ ⊢ n. Then lis(w) = λ1.

Schensted defined the bijection (2.3) as an algorithm involving insertion and bump-
ing. We will use a beautiful ‘geometric’ reformulation of (2.3) due to Viennot [18]. We
represent a permutation w ∈ Sn with its graph {(i, w(i)) : 1 ≤ i ≤ n}. The left of
Figure 3 shows the graph of our example permutation w = [4, 3, 1, 2, 7, 5, 6].

Shine a light northeast from the origin onto the graph of w. The lattice points in this
graph cast overlapping shadows to the northeast. The first shadow line L1 is the boundary
of the shaded region. If we remove L1 and shine the light again, we obtain the second
shadow line L2. Iterating, we obtain the third shadow line L3, the fourth shadow line L4, and
so on. See the middle of Figure 3 for an example. Observe that the y-coordinates of the
infinite horizontal rays of the shadow lines are 1, 2, 5, 6 (which is the first row of P(w))
and the x-coordinates of the infinite vertical rays are 1, 4, 5, 7 (which is the first row of
Q(w)). The northeastern corners of the shadow lines of w play an important role.
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Definition 2.2. Let w ∈ Sn. The shadow set S(w) ⊆ [n] × [n] is the set of pairs (i, j) of
coordinates of the northeastern corners of the shadow lines of w.

In our example, the shadow set (shown in red) is S(w) = {(2, 4), (3, 3), (6, 7)}. We
may apply the shadow construction to S(w), resulting in a new family of shadow lines;
these are shown in solid black on the right of Figure 3. The y-coordinates of the horizon-
tal rays are 3, 7 (which is the second row of P(w)) and the x-coordinates of the vertical
rays are 2, 6 (which is the second row of Q(w)). Viennot proved [18] that iteration on
w,S(w),S(S(w)), . . . gives the tableaux P(w), Q(w) for any w ∈ Sn.

3 The quotient ring Rn and the permutation matrix locus

Algebraic properties of the ring Rn of Definition 1.1 are governed by the combinatorics
of Viennot shadow lines. For a permutation w ∈ Sn, the shadow monomial s(w) is the
product of variables indexed by the shadow set of w, i.e.

s(w) := ∏
(i,j)∈S(w)

xi,j. (3.1)

In the example of Figure 3 we have s(w) = x2,4 · x3,3 · x6,7. The Toeplitz term order on
C[xn×n] is lexicographic order with respect to the variable ordering

x1,1 ≺ x1,2 ≺ x2,1 ≺ x1,3 ≺ x2,2 ≺ x3,1 ≺ · · · ≺ xn−1,n ≺ xn,n−1 ≺ xn,n.

Theorem 3.1. We have the equality gr I(Sn) = In of ideals in C[xn×n] where Sn ⊆ Matn×n(C)
is the locus of n × n permutation matrices. The standard monomial basis of Rn = C[xn×n]/In
with respect to the Toeplitz term order is the set {s(w) : w ∈ Sn} of shadow monomials.

Proof. (Sketch.) Every generator of In is the highest degree component of an element of
I(Sn). The generator ∑n

j=1 xi,j is the top component of ∑n
j=1 xi,j − 1 ∈ I(Sn) and similarly

for ∑n
i=1 xi,j. The square x2

i,j is the top component of xi,j(xi,j − 1) ∈ I(Sn), and we have
xi,j · xi,j′ , xi,j · xi′,j ∈ I(Sn) when j ̸= j′ and i ̸= i′. This proves In ⊆ gr I(Sn).

Let B be the standard monomial basis for Rn = C[xn×n]/In with respect to the
Toeplitz term order. It suffices to prove the containment

B ⊆ {s(w) : w ∈ Sn} (3.2)

for then one has the chain of (in)equalities

dimC Rn = |B| ≤ #{s(w) : w ∈ Sn} ≤ n! = dimC R(Sn) ≤ dimC Rn (3.3)

where the final inequality dimC R(Sn) ≤ dimC Rn holds because In ⊆ gr I(Sn). This
forces In = gr I(Sn) and, together with (3.2), we have B = {s(w) : w ∈ Sn}.
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The required containment (3.2) itself is established as follows. For subsets S, T ⊆ [n]
with |S| ≤ |T|, define polynomials aS,T, bS,T ∈ C[xn×n] by

aS,T := ∑
f :S↪→T

∏
s∈S

xs, f (s) bS,T := ∑
f :S↪→T

∏
s∈S

x f (s),s (3.4)

where both sums are over injective maps f : S ↪→ T. One uses induction to prove

aS,T, bS,T ∈ In whenever |S|+ |T| > n. (3.5)

Let m be a monomial in C[xn×n]. If m is not squarefree, or if m contains two variables
in the same row or column, then m ∈ In so that m /∈ B. If the variables in m form a
non-attacking rook placement on [n]× [n] which is not the shadow set of a permutation
w ∈ Sn, one argues using the relations (3.5) that m is the Toeplitz-leading monomial of
an element of In.

If w ∈ Sn, Schensted’s Theorem 2.1 and the definition of s(w) imply

lis(w) + deg(s(w)) = n. (3.6)

This leads to the following corollary of Theorem 3.1. Recall that an,k counts permutations
w ∈ Sn with lis(w) = k.

Corollary 3.2. The Hilbert series of Rn is given by Hilb(Rn; q) = ∑n−1
i=0 an,n−i · qi.

Row and column permutation on xn×n turns Rn into a graded (Sn ×Sn)-module.
The module structure of the degree d piece (Rn)d is as follows. If G is a group and W is
a G-module, then EndC(W) is a (G × G)-module via ((g1, g2) · φ)(w) := g1 · φ(g−1

2 · w)
for g1, g2 ∈ G, φ ∈ EndC(W), and w ∈ W.

Theorem 3.3. For 0 ≤ d ≤ n − 1, we have an isomorphism of (Sn ×Sn)-modules

(Rn)d
∼=

⊕
λ⊢n

λ1=n−d

EndC(Vλ).

Proof. (Sketch.) If A =
⊕

i≥0 Ai is a graded algebra, write A≤d :=
⊕d

i=0 Ai. Theorem 3.1
says that Rn = C[xn×n]/gr I(Sn), where Sn ⊆ Matn×n(C) is the permutation matrix
locus. For fixed d, it follows that

(Rn)≤d
∼=Sn×Sn C[xn×n]≤d/(I(Sn) ∩ C[xn×n]≤d) (3.7)

as ungraded (Sn ×Sn)-modules. The quotient C[xn×n]≤d/(I(Sn) ∩ C[xn×n]≤d) is the
space of functions f : Sn → C which are restrictions of polynomials in C[xn×n]≤d. With
this identification, Hamaker and Rhoades proved [7, Theorem 3.8]

C[xn×n]≤d/(I(Sn) ∩ C[xn×n]≤d) ∼=
⊕
λ⊢n

λ1≥n−d

EndC(Vλ). (3.8)

Since the isomorphisms (3.7) and (3.8) of ungraded (Sn ×Sn)-modules hold for any d
and the group algebra C[Sn ×Sn] is semisimple, the theorem follows.
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4 Matrix groups and colored permutation matrices

Theorem 3.1 states that the quotient ring Rn = C[xn×n]/In of Definition 1.1 is the orbit
harmonics ring R(Sn) of the permutation matrix locus Sn ⊆ Matn×n(C). This opens the
door to the following problem.

Problem 4.1. Let G ⊆ Matn×n(C) be a finite matrix group. Then R(G) is a graded (G × G)-
module. Determine the graded structure of this module.

With Theorem 3.1 in mind, Hilb(R(G); q) is a kind of ‘longest increasing subsequence
distribution’ for G. We present a solution to Problem 4.1 for the group of colored per-
mutation matrices.

A monomial matrix is a square matrix with a unique nonzero entry in each row and
column. For n, r > 0, the group Sn,r of r-colored permutations of [n] consists of n× n mono-
mial matrices whose nonzero entries are rth roots-of-unity. Letting ζ := exp(2πi/r), we
think of ζ0, ζ1, . . . , ζr−1 as ‘colors’.

Let w ∈ Sn,r be a colored permutation. For 0 ≤ p ≤ r − 1 define Cp(w) ⊆ [n]× [n] by

Cp(w) := {(i, j) : 1 ≤ i ≤ n, the (i, j)-entry of w is ζ p}.

If I, J ⊆ [n] are the projections of C0(w) to the x- and y-axes, we naturally have a shadow
monomial s(C0(w)) in the variables {xi,j : i ∈ I, j ∈ J} and a longest increasing subse-
quence lis(C0(w)). The shadow monomial of a colored permutation w ∈ Sn,r is

s(w) := s(C0(w))r ×
r−1

∏
p=1

∏
(i,j)∈Cp(w)

xp
i,j. (4.1)

For d ≥ 0, let cn,r,d be the number of Sn,r-shadow monomials of degree d:

cn,r,d := #{w ∈ Sn,r : deg s(w) = d}. (4.2)

Theorem 4.2. The set {s(w) : w ∈ Sn,r} is the standard monomial basis of R(Sn,r) with
respect to the Toeplitz term order. We have Hilb(R(Sn,r); q) = ∑d≥0 cn,r,d · qd.

Irreducible representations of Sn,r are indexed by r-tuples λ = (λ(0), λ(1), . . . , λ(r−1))
of partitions such that ∑r−1

p=0 |λ(p)| = n. If λ is such an r-tuple, write Vλ for the associated
Sn,r-irreducible; see e.g. [10] for its definition. The Sn,r-analog of Theorem 3.3 is as
follows.

Theorem 4.3. The degree d piece of the graded (Sn,r ×Sn,r)-module R(Sn,r) is isomorphic to

R(Sn,r)d
∼=

⊕
λ

EndC(Vλ)

where λ ranges over r-tuples λ = (λ(0), λ(1), . . . , λ(r)) which satisfy ∑r−1
p=0 |λ(p)| = n and

r · (|λ(0)| − λ
(0)
1 ) + ∑r−1

p=1 p · |λ(p)| = d.
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5 Permutation matrices of involutions

Let G ⊆ GLn(C) be a finite matrix group and K ⊆ G be a subset such that gKg−1 = K
for all g ∈ G. The conjugation action of G on K induces a graded G-module structure
on R(K). This leads to the following variant of Problem 4.1.

Problem 5.1. Let G ⊆ GLn(C) be a finite matrix group and let K ⊆ G be a subset closed under
the conjugation action of G. Find the graded G-module structure of R(K).

We present solutions to Problem 5.1 when G = Sn is the group of permutation
matrices and K consists of various classes of involutions. The graded Sn-modules so
obtained have Frobenius images best described in terms of plethysm. If F, G ∈ Λ are
symmetric functions, let F[G] ∈ Λ denote the plethysm of G into F; see e.g. [10] for its
definition.

We first consider the locus of all permutation matrices of involutions w ∈ Sn:

Mn := {w : w ∈ Sn, w2 = 1} ⊆ Matn×n(C). (5.1)

The notation Mn reflects the status of its elements as (not necessarily perfect) matchings
on [n]. If w ∈ Mn, we have the matching monomial

m(w) := ∏
i : w(i)>i

xi,w(i) (5.2)

whose variables correspond to the 2-cycles of w.

Theorem 5.2. The set {m(w) : w ∈ Mn} of matching monomials descends to a basis of
R(Mn). The graded Frobenius image of R(Mn) is

grFrob(R(Mn); q) =
⌊n/2⌋

∑
k=0

sk[s2] · sn−2k · qk.

If n is even, we may consider the locus of perfect matchings

PMn := {w ∈ Sn : w2 = 1, w has no fixed points} ⊆ Matn×n(C). (5.3)

The ungraded Sn-structure of PMn is given by the plethysm Frob(C[PMn]) = sn/2[s2].
It is known that sn/2[s2] has s-expansion

Frob(C[PMn]) = sn/2[s2] = ∑
λ⊢n

λ even

sλ, (5.4)

where a partition λ ⊢ n is even if all of its parts are even. The graded Sn-structure of
R(PMn) refines Equation (5.4) by the length of the first row of λ.
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Theorem 5.3. Assume n is even. The graded Frobenius image of R(PMn) is

grFrob(R(PMn); q) = ∑
λ⊢n

λ even

sλ · q
n−λ1

2 .

Theorem 5.3 and a result of Baik and Rains [1] show that the coefficient sequence
of Hilb(R(PMn); q) converges to the distribution of the largest eigenvalue of a random
GSE matrix as n → ∞, after renormalization and reversal.

Finally, we generalize Theorem 5.3 by considering arbitrary conjugacy classes of in-
volutions. For n, a ≥ 0, let

Mn,a := {w ∈ Sn : w2 = 1, w has a fixed points} ⊆ Matn×n(C). (5.5)

Observe that Mn,a = ∅ unless a ≡ n mod 2. If F = ∑λ cλsλ is a symmetric function
written in the s-basis and k ≥ 0, we write

{F}λ1≤k := ∑
λ1≤k

cλsλ (5.6)

for the truncation of its s-expansion to partitions whose first row has length ≤ k. The
s-expansion of grFrob(R(Mn,a; q) is as follows; its s-positivity is not combinatorially
obvious.

Theorem 5.4. Suppose a ≡ n mod 2. The graded Frobenius image of R(Mn,a) is

grFrob(R(Mn,a); q) =
(n−a)/2

∑
d=0

{sd[s2] · sn−2d − sd−1[s2] · sn−2d+2}λ1≤n−2d+a · qd.

6 Future directions: log-concavity and distributions

A sequence (b1, . . . , bn) of positive real numbers is log-concave if b2
k ≥ bk−1 · bk+1 for all

1 < k < n. Chen conjectured [4] that the sequence (an,1, . . . , an,n) obtained by counting
permutations in Sn by the length of their longest increasing subsequence is log-concave.

Conjecture 6.1 (Chen [4]). The sequence (an,1, . . . , an,n) is log-concave.

Novak and Rhoades formulated [12] a character-theoretic strengthening of Chen’s
conjecture. For 1 ≤ k ≤ n, let An,k be the Sn-module

An,k :=
⊕
λ⊢n

λ1=k

f λ · Vλ

where f λ := |SYT(λ)|. Let αn,k : Sn → C be the character of An,k. It is known that
αn,k(1) = dimC An,k = an,k, so the following conjecture would imply Conjecture 6.1.
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Conjecture 6.2 (Novak–Rhoades [12]). The class function αn,k · αn,k − αn,k−1 · αn,k+1 on Sn
is the character of a representation for 1 ≤ k ≤ n − 2.

Since pointwise product of Sn-class functions is Kronecker product of symmetric
functions, Conjecture 6.2 is likely to be challenging. It follows from Theorem 3.3 that

An,n−d
∼=Sn ResSn×Sn

1×Sn
(Rn)d = ResSn×Sn

1×Sn
R(Sn)d (6.1)

for 0 ≤ d ≤ n − 1. The graded pieces of Rn therefore give an occurrence of the An,k-
modules ‘in nature’. This is the simplest such occurrence known to the authors.

Equation (6.1) suggests a further strengthening of Conjecture 6.2. Let G be a group.
If V, W are C[G]-modules, let G act on V ⊗ W diagonally. A sequence (V1, . . . , Vn) of
G-modules is equivariantly log-concave [11] if there exists a G-equivariant injection Vk−1 ⊗
Vk+1 ↪→ Vk ⊗ Vk for all 1 < k < n. A graded G-module W =

⊕d
i=0 Wi is equivariantly

log-concave if the sequence (W0, W1, . . . , Wd) of G-modules is equivariantly log-concave.

Conjecture 6.3. The graded (Sn ×Sn)-module Rn = R(Sn) as well as the graded Sn-modules
R(Mn), R(Mn,a) are equivariantly log-concave.

Conjecture 6.3 has been checked for n ≤ 16. The first assertion of Conjecture 6.3
would imply Conjecture 6.2, and therefore Conjecture 6.1. Although the Hilbert series of
R(Sn,r) does not have log-concave coefficients for r > 1, Figure 2 suggests the following
conjecture on its coefficient sequence.

Conjecture 6.4. For fixed r > 1, the coefficient sequence of the Hilbert series of R(Sn,r) is
unimodal. That is, there exists d such that dim R(Sn,r)k ≤ dim R(Sn,r)k+1 for k < d and
dim R(Sn,r)k ≥ dim R(Sn,r)k+1 for k ≥ d.

Figures 1 and 2 suggest one last conjecture. A polynomial f (q) = a0 + a1q+ · · ·+ adqd

with real coefficients and ad ̸= 0 is top heavy if ai ≤ ad−i for all i < d/2. The following
conjecture is true for R(Mn).

Conjecture 6.5. The Hilbert series of R(Sn), R(Sn,r), and R(Mn,a) are top heavy.
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