
Séminaire Lotharingien de Combinatoire 93B (2025) Proceedings of the 37th Conference on Formal Power
Article #127, 10 pp. Series and Algebraic Combinatorics (Sapporo)

Modified Macdonald polynomials and Mahonian
statistics

Emma Yu Jin*1 and Xiaowei Lin†2

1,2School of Mathematical Sciences, Xiamen University, Xiamen 361005, China.

Abstract. We establish an equidistribution between the pairs of statistics (inv,maj)

and (quinv,maj) on any row-equivalency class [τ] where τ is a filling of a given
Young diagram. In particular if τ is a filling of a rectangular diagram, the triples
(inv, quinv,maj) and (quinv, inv,maj) have the same distribution over [τ]. Our main
result affirms a conjecture proposed by Ayyer, Mandelshtam and Martin, thus pre-
senting the equivalence between two refined formulas for the modified Macdonald
polynomials.
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1 Introduction and main results

Macdonald polynomials Pλ(X; q, t) indexed by partitions are polynomials in infinitely
many variables X = {x1, x2, . . .} with coefficients in the field Q(q, t) of rational func-
tions of two variables q and t. Several important classes of symmetric polynomials
are well–studied specializations of Macdonald polynomials such as Schur polynomials
(when q = t), Hall–Littlewood polynomials (when q = 0) and Jack polynomials (when
q = tα and let t → 1).

Macdonald polynomials Pλ(X; q, t) are defined as the unique basis for the ring of
symmetric functions over the field Q(q, t) with orthogonal property and lower triangu-
lar property. The former is defined through the Hall scalar product and the latter by an
expansion of Pλ(X; q, t) with respect to monomial symmetric functions mλ(X). Since
the coefficients in this expansion have nontrivial denominators, Macdonald introduced
the integral form of Pλ(X; q, t), denoted by Jλ(X; q, t), which is defined as

Jλ(X; q, t) = ∑
µ

Kµλ(q, t)sµ[X(1 − t)], (1.1)

where f [X] denotes the plethystic substitution of X into the symmetric function f , sµ

is the Schur function and Kµλ(q, t) is the q, t-Kostka numbers.
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Subsequently, another widely studied variant of Macdonald polynomials, called
modified Macdonald polynomials H̃λ(X; q, t) was introduced by Garsia and Haiman [5].
Let K̃λµ(q, t) = tn(µ)Kλµ(q, t−1) where n(λ) = ∑i(i − 1)λi. Then

H̃λ(X; q, t) = ∑
µ

K̃µλ(q, t)sµ(X).

Haiman remarkably found that H̃λ(X; q, t) equals the Frobenius series of a space as
the linear span of certain polynomials and their all partial derivatives [7]. In par-
allel, the combinatorial investigation of modified Macdonald polynomials has been
greatly promoted by the celebrated breakthrough on the surprising connections be-
tween H̃λ(X; q, t) and Mahonian statistics on fillings of Young diagrams due to
Haglund, Haiman and Loehr [6].

Before we state the combinatorial formula of H̃λ(X; q, t), let us review definitions
of Mahonian statistics inv, quinv and maj of fillings. We represent a Young diagram in a
French manner. A partition λ = (λ1, · · · , λk) of n is sequence of positive integers such
that λi ≥ λi+1 for all 1 ≤ i < k and |λ| = λ1 + · · ·+ λk = n. Each λi is called the ith
part of λ and k is the length of λ, denoted by ℓ(λ). The Young diagram of λ, denoted
by dg(λ), is an array of boxes with λi boxes in the ith row from bottom to top, with
the first box in each row left-justified. A box has coordinate (i, j) if it is in the ith row
from bottom to top and jth column from left to right. Let λ′ be the transpose of λ, that
is, dg(λ′) is obtained from dg(λ) by reflecting across the main diagonal (boxes with
coordinate (i, i)).

A filling of dg(λ) is a function σ : dg(λ) → P (P is the set of positive integers),
which assigns each box u of dg(λ) to a positive integer σ(u). We use South(u) to
denote the box right below u. Let T (λ) denote the set of all fillings of dg(λ), and set

xσ = ∏
u∈dg(λ)

xσ(u)

be the monomial of σ. A descent (or non-descent) of a filling σ ∈ T (λ) is a pair of en-
tries (σ(x), σ(South(x)) such that σ(x) > σ(South(x)) (or σ(x) ≤ σ(South(x))). Define
Des(σ) = {x ∈ dg(λ) : (σ(x), σ(South(x)) is a descent} to be the descent set of σ and
des(σ) = |Des(σ)|. Let leg(u) be the number of boxes strictly above u in its column,
then

maj(σ) = ∑
u∈Des(σ)

(leg(u) + 1)

is called the major index of σ.
Given a filling σ, let σ̂ be the filling obtained by adding a box with entry 0 above

the topmost box of each column of σ. A queue inversion triple of σ is a triple (a, b, c) of
entries in σ̂ such that (as shown below on the left)

1. b and c are in the same row and c ∈ σ is to the right of b;
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2. a and b are in the same column such that b is right below a;

3. one of the conditions a < b < c, b < c < a, c < a < b and a = b ̸= c is true.

a
b . . . c

a . . . c
b

Let σ̃ be the filling obtained by adding a box with entry ∞ below the bottommost box
of each column of σ. An inversion triple of σ is a triple (a, b, c) of entries in σ̃ satisfying
the above (2)–(3) and (4), as shown above on the right.

4. a and c are in the same row and c is to the right of a.

Let quinv(σ) and inv(σ) be the numbers of queue inversion triples and inversion
triples of σ, respectively.

We are now ready to present the combinatorial formula of H̃λ(X; q, t) by Haglund,
Haiman and Loehr [6]:

H̃λ(X; q, t) = ∑
σ∈T (λ)

xσqmaj(σ)tinv(σ) (1.2)

Recently, Corteel, Haglund, Mandelshtam, Mason and Williams [4, 3] discovered a
compact formula for H̃λ(X; q, t) which is summed over sorted tableaux and made a
conjecture on an equivalent form of Equation (1.2):

H̃λ(X; q, t) = ∑
σ∈T (λ)

xσqmaj(σ)tquinv(σ) (1.3)

This conjecture was confirmed by Ayyer, Mandelshtam and Martin [1] by proving that
the RHS of Equation (1.3) satisfies certain orthogonal and triangular conditions which
uniquely determine the modified Macdonald polynomials H̃λ(X; q, t).

Interestingly, a refinement of the equivalence between Equations (1.2) and (1.3) was
conjectured by Ayyer, Mandelshtam and Martin ([1, Conjecture 10.3]). Our main result
is an affirmation of this conjecture; see Theorem 1.1,Equation (1.4). As a bonus of our
approach, we find the equidistribution (1.5) between the triples (inv, quinv,maj) and
(quinv, inv,maj) for all rectangular diagrams. To be precise, two fillings σ, τ of dg(λ)
are called row-equivalent, denoted by σ ∼ τ, if the multisets of entries in the ith row of
σ and τ are exactly the same for all i. The precise statement of our main result is the
following.

Theorem 1.1. Let [σ] denote the row-equivalent class of σ, then

∑
τ∈[σ]

qmaj(τ)tinv(τ) = ∑
τ∈[σ]

qmaj(τ)tquinv(τ). (1.4)

If σ is a filling of a rectangular diagram, then

∑
τ∈[σ]

qmaj(τ)tinv(τ)uquinv(τ) = ∑
τ∈[σ]

qmaj(τ)uinv(τ)tquinv(τ). (1.5)
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It is worth pointing out that the symmetric distribution (1.5) is not true for arbitrary
filling σ and we provide such an example in Remark 3.6.

Three subsets of [σ], respectively with extreme values of the major index or (queue)
inversion numbers are shown to satisfy Equation (1.4) by Bhattacharya, Ratheesh and
Viswanath [2, 12]. Their proofs are bijective, which develop novel connections between
different combinatorial models, maps and statistics such that Gelfand–Tsetlin patterns,
partitions overlaid patterns, box complementation [2] and charge and cocharge on
words [12].

We take a different approach, highlighting that the reverse operator and a column
switch operator are sufficient to prove Theorem 1.1. The rest of the extended abstract is
organized as follows: In Section 2 the reverse operator and flip operator as the starting
point of our proof are described. Section 3 is devoted to proving Theorem 1.1, with
more details provided in [8].

2 Reverse operator and flip operator

This section is concentrated on two operators, reverse operator and a queue inversion
flip operator tailored to the statistic quinv given by Ayyer, Mandelshtam and Martin
[1]. The latter was inspired by the column switch operator for the statistic inv by Loehr
and Niese [10].

Both operators are related to a decomposition of the Young diagram of λ into rect-
angles [4]. Each Young diagram dg(λ) is regarded as a concatenation of maximal rect-
angles in a way that the heights of rectangles are strictly decreasing from left to right.
For any σ ∈ T (λ), let σi be the filling of the ith rectangle of dg(λ) and σ = σ1 ⊔ · · · ⊔ σp
where p is the number of rectangles of dg(λ); see Figure 2.1 for an example.

σ1 σ2 · · · σp

3 3 2

1 5 1

2 4 3

1 3 3

2 3 3

1 5 1

3 4 2

3 3 1

Figure 2.1: A decomposition of σ = σ1 ⊔ σ2 ⊔ · · · ⊔ σp (left), a filling σ of a rectangle
diagram (middle) and its reverse (right).

Definition 2.1 (reverse operator). For a partition λ and σ = σ1 ⊔ · · · ⊔ σp ∈ T (λ), define
σr = σr

1 ⊔ · · · ⊔ σr
p as the reverse of σ where the filling σr is obtained by reversing the

sequence of entries of each row; see Figure 2.1.

We adopt some notations from [1, 11] to describe the flip operator. Define Q(a, b, c) = 1
if (a, b, c) is a queue inversion triple or an inversion triple; otherwise Q(a, b, c) = 0. We
say that i is λ-compatible if λ′

i = λ′
i+1 ≥ 1.
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Definition 2.2 (flip operator). For σ ∈ T (λ) and λ-compatible i, let t(r)i be the operator
that acts on σ by interchanging the entries σ(r, i) and σ(r, i + 1). For 1 ≤ r, s ≤ λ′

i, let

t[r,s]
i := t(r)i ◦ t(r+1)

i · · · ◦ t(s)i

denote the flip operator that swaps entries of boxes (x, i) and (x, i + 1) for all x with
r ≤ x ≤ s. The flip operator ρr

i is defined as follows: if columns i and i+ 1 are identical in
σ, then ρr

i (σ) = σ; otherwise, let k be the maximal integer such that σ(k, i) ̸= σ(k, i + 1)
and k ≤ r. Let h be maximal such that h ≤ k, σ(h, i) ̸= σ(h, i + 1) and

Q(σ(h, i), σ(h − 1, i), σ(h − 1, i + 1)) = Q(σ(h, i + 1), σ(h − 1, i), σ(h − 1, i + 1)),

where σ(0, i) = ∞ for all i. Define ρr
i (σ) = t[h,k]

i , that is, reverse the pair of entries in
every row between rows h and k, columns i and i + 1. We call row k (or h) the starting
row (or the ending row) of ρr

i . For simplicity, we denote

ρi = ρ
λ′

i
i and ti = t(λ

′
i)

i .

By definition ρr
i ◦ ρr

i (σ) = σ, that is, ρr
i is an involution on T (λ).

Remark 2.3. We point out two differences between flip operator in Definition 2.2 and
the queue inversion flip operator introduced in [1, 11]. First the latter always starts
from the topmost row, that is ρi, while we allow the flip operator to begin from any
row. Second, we add the condition σ(h, i) ̸= σ(h, i + 1) to the terminating row h. These
two modifications are intended to develop a precise relation between the change of
quinv, inv and N des (see Theorem 3.4), which contributes to the proof of Theorem 1.1.

Example 2.4. Given a filling σ as below, ρ1(σ) = t[3,5]
1 (σ) is generated as follows. Since

9 3 is the topmost row with different entries, the flipping process ρ1 starts from
this row, i.e., row 5 and continues until row 3, where Q(3, 5, 8) = Q(9, 5, 8) = 1.
Consequently ρ1 = t[3,5]

1 .

3 3

9 3

2 5

3 9

5 8

9 3

→ 3 3

3 9

2 5

3 9

5 8

9 3

→ 3 3

3 9

5 2

3 9

5 8

9 3

→ 3 3

3 9

5 2

9 3

5 8

9 3

3 Our proof strategy

The proof of Theorem 1.1 is bijective, namely, for a partition λ, we will construct a
bijection φ : T (λ) → T (λ) satisfying

(quinv,maj)(φ(σ)) = (inv,maj)(σ). (3.1)
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In particular, if dg(λ) is a rectangle, we prove that

(inv, quinv,maj)(φ(σ)) = (quinv, inv,maj)(σ);

otherwise, we find a filling σ such that Equation (1.5) is no longer true (see Remark 3.6).
The bijection φ is a composition of two bijections associated with the flip operator

ρk
i . The first one γ is described in Theorem 3.1 (see below), which is reduced to the

reverse operator if dg(λ) is a rectangle. Let σ = σ1 ⊔ · · · ⊔ σp, define

κ(σ) :=
p

∑
i=1

(quinv(σi)− inv(σr
i )). (3.2)

For any filling τ, τ1 represents the leftmost rectangle in the decomposition of τ. Define
N des(τ) = (a1, . . . , ak) where ai counts the number of non-descents in column i of τ

and set ndes(τ) = a1 + · · ·+ ak be the number of non-descents of τ.

Theorem 3.1. There is a bijection γ : T (λ) → T (λ) satisfying γ(σ) ∼ σ,

quinv(γ(σ)) = inv(σ) + κ(γ(σ)), (3.3)
maj(γ(σ)) = maj(σ), (3.4)
N des(σ1) = N des((γ(σ)1)

r) (3.5)

and the topmost rows of σ and γ(σ) are reverse of each other.

The second bijection θ : T (λ) → T (λ) acts on each rectangle of the fillings inde-
pendently and decreases the number of queue inversions by κ(γ(σ)) but preserves the
major index, by which we find the desired bijection φ with property (3.1).

3.1 The proof of Theorem 1.1

In this first step, we discuss the change of statistics quinv, inv and maj by the reverse
operator and the flip operator in Lemmas 3.2 and 3.3.

Lemma 3.2. For λ = (nm) and σ ∈ T (λ), let xi be the number of non-descents in column i
of σ. Then, we have

quinv(σ)− inv(σr) = inv(σ)− quinv(σr) =
n

∑
i=1

xi(n − 2i + 1). (3.6)

Lemma 3.3. For a partition λ and a λ-compatible i, let σ ∈ T (λ) and suppose that ρr
i =

t[κ1,κ2]
i . Let

a b
c d and

s t
u v be parts of σ such that c d is the starting row κ2 and s t is the

ending row κ1. Set σ(0, i) = ∞ and σ(λ′
i + 1, i) = 0 for all i. If Q(a, c, d) = Q(b, c, d) = 0,

then

quinv(σ) + 1 = quinv(ρr
i (σ)).
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Equivalently, if Q(a, c, d) = Q(b, c, d) = 1, then

quinv(σ)− 1 = quinv(ρr
i (σ)).

If Q(s, u, t) = Q(s, v, t) = 0, then

inv(σ) + 1 = inv(ρr
i (σ)).

Equivalently, if Q(s, u, t) = Q(s, v, t) = 1, then

inv(σ)− 1 = inv(ρr
i (σ)).

For all cases, i.e., Q(a, c, d) = Q(b, c, d) or Q(s, u, t) = Q(s, v, t), we have

maj(σ) = maj(ρr
i (σ)).

In the second step, with the help of Lemmas 3.2 and 3.3, we establish the involution
ϕi in Theorem 3.4, which relates the change of inv and quinv with the number of non-
descent pairs.

Theorem 3.4. For a partition λ and a λ-compatible i, let σ ∈ T (λ) and xi be the number of
non-descents in the ith column of σ. Then there is an involution ϕi : T (λ) → T (λ) such that
ϕi(σ) ∼ σ, and for ν ∈ {inv, quinv},

maj(ϕi(σ)) = maj(σ), (3.7)
ν(ϕi(σ)) = ν(σ) + xi+1 − xi, (3.8)

N des(ϕi(σ)) = (i, i + 1) ◦ N des(σ), (3.9)

where (i, i + 1) ◦ (. . . xi, xi+1 . . .) = (. . . xi+1, xi . . .).

In the last step, building upon the properties Equation (3.7)–(3.9) of ϕi, we construct
the bijections θ and γ, thereby completing the proof of Theorem 1.1.

Theorem 3.5 (second part of Theorem 1.1). If the diagram of λ is a rectangle, then there is
a bijection θ : T (λ) → T (λ) such that (inv, quinv,maj)σ = (quinv, inv,maj)θ(σ).

Proof. For λ = (nm) and σ ∈ T (λ), let xi be the number of non-descents in column
i. Then N des(σr) = (xn, . . . , x1). Define a bijection θ : T (λ) → T (λ) as a product
of ϕi’s as follows. In the first step, apply the bijections ϕi for i from n − 1 to 1 on σr,
let τ1 = ϕ1 ◦ · · · ◦ ϕn−1(σ

r). Theorem 3.4 ensures that the number of queue inversion
triples is increased by

ν(τ1)− ν(σr) =
n

∑
i=2

(x1 − xi) = (n − 1)x1 −
n

∑
i=2

xi

for ν ∈ {inv, quinv} and N des(τ1) = (x1, xn, . . . , x2). In the next step, we apply the
bijections ϕi for i from n − 1 to 2 on τ1 and let τ2 = ϕ2 ◦ · · · ◦ ϕn−1(τ1), yielding that
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the number of queue inversion triples is increased by (n − 2)x2 − (x3 + · · ·+ xn) and
N des(τ2) = (x1, x2, xn . . . , x3). Continue this process until the sequence N des of the
image becomes (x1, x2, . . . , xn). Denote the resulting filling by θ(σ) and one sees that
maj(θ(σ)) = maj(σ) by Equation (3.7). Further,

ν(θ(σ)) = ν(σr) +
n−1

∑
i=1

(n − i)xi −
n

∑
i=2

(i − 1)xi

= ν(σr) +
n

∑
i=1

xi(n − 2i + 1).

Compare with Equation (3.6), we conclude that (inv, quinv)(σ) = (quinv, inv)(θ(σ)), as
claimed.

Remark 3.6. In the table below, we present a row-equivalent filling class [σ] of a non-
rectangular diagram to disprove Equation (1.5) for arbitrary fillings.

[σ]

3
4 1 2
3 3 3

3
4 2 1
3 3 3

3
1 2 4
3 3 3

3
1 4 2
3 3 3

3
2 4 1
3 3 3

3
2 1 4
3 3 3

maj 2 2 2 2 2 2

inv 0 1 2 1 2 3

quinv 3 2 2 1 0 1

We proceed by establishing Theorem 1.1 via Theorem 3.1 and Theorem 3.5.

Proof of Theorem 1.1. For any σ ∈ T (λ), let τ = γ(σ), consider the rectangle decompo-
sition of τ = τ1 ⊔ · · · ⊔ τp, let π = θ(τr

1) ⊔ · · · ⊔ θ(τr
p) and we shall see that φ(σ) = π

satisfying quinv(π) = inv(σ) and maj(π) = maj(σ). Theorem 3.5 assures that

quinv(π)− quinv(τ) =
p

∑
i=1

(quinv(θ(τr
i ))− quinv(τi)) =

p

∑
i=1

(inv(τr
i )− quinv(τi)) = −κ(τ).

In combination of quinv(τ)− inv(σ) = κ(τ) by Theorem 3.1, we conclude that quinv(π)
equals inv(σ). Furthermore, maj(π) = maj(σ) follows directly by Theorem 3.1 and
Theorem 3.5, as wished.

Example 3.7. Let λ = (7, 7, 5, 5, 5, 2), a filling σ of dg(λ) and the corresponding φ(σ)
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are displayed as below left and right, respectively.

5 4

9 3 6 1 3

2 5 9 4 8

3 9 7 3 5

5 8 4 6 4 8 7

9 3 6 5 2 10 1

4 5

6 3 1 3 9

8 4 5 9 2

3 3 5 7 9

7 8 4 4 6 8 5

10 1 6 2 5 9 3

One can easily check that (inv,maj)(σ) = (quinv,maj)(φ(σ)) = (40, 33), but quinv(σ) ̸=
inv(φ(σ)) as quinv(σ) = 32 and inv(φ(σ)) = 34.

4 Discussion

We propose some interesting open questions. A column strict filling (CSF) of a diagram
is a filling whose entries along each column are strictly decreasing from top to bottom.
In other words, the major index of a column strict filling reaches its maximal value.

Bhattacharya, Ratheesh, and Viswanath [2] found the symmetric distribution (1.5)
for all the column strict fillings of an arbitrary diagram. That is, let CSF(λ) be the set
of CSFs of the diagram of λ, then

∑
τ∈[σ]∩CSF(λ)

tinv(τ)uquinv(τ) = ∑
τ∈[σ]∩CSF(λ)

uinv(τ)tquinv(τ). (4.1)

Open problem 4.1. The equation (4.1) is not directly seen from our bijection φ. It would
be interesting to find out whether the bijection φ is applicable to prove Equation (4.1).

Combining Theorem 1.1 and results by Loehr and Niese [10], we are led to

∑
τ∈[σ]

tmaj(τ′) = ∑
τ∈[σ]

tinv(τ) = ∑
τ∈[σ]

tquinv(τ) =
ℓ(λ)

∏
i=1

[
ai,1 + · · ·+ ai,N

ai,1, . . . , ai,N

]
t
, (4.2)

where τ′ is obtained by transposing the filling τ, the ith row of σ consists of ai,1 copies
of 1, ai,2 copies of 2, etc, and the rightmost one is a product of t-multinomial coefficients
(see for instance [9, 13]).

Open problem 4.2. Let G(q, t, u) be the LHS of Equation (1.5), can one derive a formula
of G(q, t, u) with the symmetric property G(q, t, u) = G(q, u, t)? Is there a formula for
Equation (1.4) as a natural generalization of Equation (4.2)?
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