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Abstract. Skew shaped positroid varieties are subvarieties of the Grassmannian de-
fined by determinantal equations, and are special cases of open positroid varieties.
Double Bott–Samelson varieties are algebraic varieties defined in terms of config-
urations of flags depending on a positive braid word. We explicitly realize every
skew shaped positroid in Gr(k, n) as a double Bott–Samelson variety, and use this
to construct splicing maps for skew shaped positroid varieties, generalizing those con-
structed by the first and third authors in the case of maximal positroid cells.
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1 Introduction

In this paper, we study the relation between two classes of varieties admitting a cluster
structure: skew shaped positroids, which are a special subclass of positroid varieties in the
Grassmannian [12] (see also [15]); and double Bott–Samelson varieties introduced by Elek–
Lu [8, 2]. The cluster structures we consider were constructed by Galashin–Lam [6] for
the case of skew shaped positroids, and by Shen–Weng [17] for double Bott–Samelson
varieties.

Let us fix positive integers 0 < k < n, and consider two partitions µ ⊆ λ both
fitting inside a k × (n − k)-rectangle. Associated to the pair (µ ⊆ λ), the skew shaped
positroid variety S◦

λ/µ is an affine subvariety of the Grassmannian Gr(k, n) defined by
the vanishing of certain minors, and the non-vanishing of other minors. These minors
are determined by the skew diagram λ/µ, and the skew shaped positroid S◦

λ/µ is in fact
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a positroid variety in the sense of [6]. By the results of that paper, C[S◦
λ/µ] admits a

cluster algebra structure. In a nutshell, this means that the structure of the coordinate
algebra C[S◦

λ/µ] can be codified into the combinatorics of a quiver and its mutations, see
Section 2 for details.

On the other hand, for each positive braid β ∈ Br+k , the double Bott–Samelson variety
BS(β) is defined as a space of flag configurations dictated by the braid β, see Defini-
tion 4.1 for a precise definition. By the work of several authors, see [2, 8], the coordinate
algebra C[BS(β)] admits a cluster algebra structure, that was made explicit in [17] and
later generalized to the setting of braid varieties in [1] and [7].

Theorem 1.1. Let n > 0 and 0 < k < n. For any two partitions µ ⊆ λ fitting inside a
k × (n − k)-rectangle, there exist a k-stranded braid βλ/µ ∈ Br+k , s ≥ 0 and an isomorphism:

BS(βλ/µ)× (C×)s ∼= S◦
λ/µ.

Moreover, the isomorphism can be chosen so that the natural cluster structure in BS(βλ/µ) ×
(C×)s is quasi-isomorphic to the cluster structure in S◦

λ/µ defined in [6].

We refer the reader to Section 2 for the notion of a cluster quasi-isomorphism.
Roughly speaking, a quasi-isomorphism preserves all the geometric information of a
cluster algebra, while possibly changing the combinatorics.

As an application of Theorem 1.1, we provide a splicing map for skew shaped
positroids, generalizing that constructed in [11] for the maximal positroid cell. More
precisely, we show that double Bott–Samelson varieties admit splicing maps, which are
predicted by results in link homology and Fock–Goncharov amalgamation [3, 17].

Theorem 1.2 ([9]). Let β = β1β2 ∈ Br+n be a positive braid. Then, there exists an open set
U(β1, β2) ⊆ BS(β) admitting a cluster structure induced from that on BS(β) and a cluster
quasi-isomorphism

U(β1, β2) ∼= BS(β1)× BS(β2).

We combine Theorems 1.1 and 1.2 as follows. Let µ ⊆ λ be partitions fitting inside
a k × (n − k) rectangle, and choose 1 ≤ j ≤ n − k. Let λ1,j be the partition obtained
by considering only the first j columns of λ, and define µ1,j similarly. Note that µ1,j ⊆
λ1,j are partitions fitting inside a k × j-rectangle, so we can consider the skew shaped
positroid Sλ1,j/µ1,j ⊆ Gr(k, k + j). Now let λ2,j be the partition obtained by considering
the j + 1, . . . , n − k-columns of λ, and similarly for µ2,j. Note that µ2,j ⊆ λ2,j fit inside
a k × (n − k − j)-rectangle, so we can consider the skew shaped positroid S◦

λ2,j/µ2,j ⊆
Gr(k, n − j).

Theorem 1.3. Let n > 0 and 0 < k < n. Let µ ⊆ λ be partitions fitting inside a k × (n − k)-
rectangle. Choose 1 ≤ j ≤ n − k, and let Uj(S◦

λ/µ) be the principal open set in S◦
λ/µ defined by

the non-vanishing of the cluster variables in the j-th column of λ/µ. Then,

Uj(S◦
λ/µ)

∼= S◦
λ1,j/µ1,j × S◦

λ2,j/µ2,j .
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Notation. If n is a positive integer, we denote by [n] the set {1, . . . , n}.

2 Cluster algebras

A quiver is a directed graph Q on a finite edge set that permits multiple edges but does
not allow directed cycles of length one or two. An ice quiver is obtained by specifying
each vertex of Q as either mutable or frozen. A seed Σ is a quiver where all vertices
are labeled with algebraically independent variables called cluster variables, which are
deemed mutable or frozen according to the vertex they label. A mutation is a local
operation that can be performed at a mutable vertex of Σ that takes Σ to another seed
Σ′. After mutating at the jth vertex of Σ, the associated cluster variable xj changes to

x′j where xj and x′j are related by xjx′j = Aj + Bj, where A = ∏i→j x#{i→j}
i and B =

∏j→k x#{j→k}
k . We define the exchange ratio ŷj as the ratio

Aj
Bj

. We denote Σ ∼ Σ′ if Σ′

can be obtained from Σ after performing a finite sequence of mutations.
The cluster algebra A(Σ) is defined to be the algebra generated by all cluster variables

in all possible seeds obtained from mutations on Σ. If Σ ∼ Σ′ then A(Σ) and A(Σ′) are
isomorphic. For more details on cluster algebras, see [4].

We say that an affine algebraic variety X is a cluster variety if there exists some seed
Σ such that X is isomorphic to Spec(A(Σ)). In our setting, skew shaped positroids and
double Bott–Samelson varieties are all cluster varieties, [6, 17].

A commutative algebra A may admit more than one cluster structure, that is, there
may exist two seeds Σ, Σ′ which are not mutation equivalent but such that A(Σ) ∼= A ∼=
A(Σ′). Following Fraser [5], see also [13, Section 5.2], we define a class of morphisms
between cluster algebras of perhaps non-mutation-equivalent seeds. We say that two
cluster structures A(Σ) ∼= A ∼= A(Σ′) on the commutative algebra A are quasi-cluster
equivalent if:

1. Both Σ and Σ′ have the same number of mutable as well as of frozen variables.

2. Each frozen variable in Σ′ is a Laurent monomial in the frozen variables of Σ, and
vice versa.

3. Mutable variables coincide up to multiplication by frozen variables.

4. The exchange ratios coincide, i.e., ŷi = ŷ′i for i ∈ [r].

Additionally, we say that two cluster varieties Spec(A(Σ)) and Spec(A(Σ′)) are quasi-
isomorphic if there is an isomorphism between Spec(A(Σ)) and Spec(A(Σ′)) and also Σ
is quasi-cluster equivalent to Σ′.
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3 Skew shaped positroid varieties

We fix 0 < k < n and consider a partition λ whose Young diagram fits inside an (n −
k)× k-rectangle, that is, λ = (λ1, . . . , λk) with λ1 ≤ n − k. We draw partitions using the
French convention, i.e., the boxes are lower left justified. Given partitions λ and µ with
µi ≤ λi for all 1 ≤ i ≤ k, the skew diagram λ/µ denotes the set-theoretic difference of
the Young diagrams of λ and µ.

Given 1 ≤ a ≤ n − k, 1 ≤ i ≤ k we define the square □a,i as the i-th box from
the bottom in the a-th column from the right. Let R(λ/µ) denote the ribbon shaped
boundary of λ/µ: a box □ ∈ λ/µ belongs to R(λ/µ) if the box northeast of □ does not
belong to λ/µ. For simplicity, we will assume that R(λ/µ) is connected. For discussions
regarding the general case, see [10].

Given a square □a,i ∈ (n − k)k, we define µa,i as the minimal Young diagram such
that µ ⊆ µa,i and □a,i ∈ µa,i. Note that µa,i = µ if and only if □a,i ∈ µ, and if □a,i ∈ λ/µ

then µa,i ⊆ λ. We will identify µa,i with its boundary path Pa,i from the southeast to the
northwest corner of the (n − k)× k-rectangle. We label all the steps of Pa,i with numbers
from 1 to n, starting at the southeast corner and increasing as we go west and north. The
label of □a,i is the k-element subset I′(□a,i) ⊆ [n] consisting of the labels of the vertical
steps of Pa,i. We denote by Iµ := I′(□a,i) for any square □a,i ∈ µ.

Example 3.1. Our running example will be n = 12, k = 5, λ = (7, 7, 5, 3, 1) and µ =
(3, 3, 2) ⊆ λ. The next figure shows that I′(□4,2) = {4, 5, 8, 11, 12}.

∗

i

a

123
4

5

67
8

910
11

12

Definition 3.2. Given µ ⊆ λ as above, the skew shaped positroid variety S◦
λ/µ ⊆ Gr(k, n)

consists of those subspaces V admitting a matrix representative MV ∈ Matk×n(C) satis-
fying the following conditions:

1. ∆I′(a,i)(MV) = 0 for □a,i ∈ (n − k)k/λ.

2. ∆I′(a,i)(MV) ̸= 0 for □a,i ∈ R(λ/µ).

3. ∆Iµ(MV) ̸= 0.

By Condition (3), we can and will restrict to the affine chart of Gr(k, n) where ∆Iµ = 1.



Skew shaped positroids and double Bott–Samelson varieties 5

By definition, S◦
λ/µ is a locally closed subset of Gr(k, n). In fact, any skew shaped

positroid is in fact a positroid variety inside the Grassmannian. Introduced by Knutson–
Lam–Speyer [12], positroid varieties provide a stratification of the Grassmannian. By
the work of Galashin–Lam [6], the coordinate ring of open positroid variety is a cluster
algebra, and hence coordinate ring of a skew shaped posiroid admits a cluster algebra
structure. We simplify their initial seed for the case of skew shaped positroids as follows.

Theorem 3.3. Consider a skew diagram λ/µ. An initial seed for the cluster structure on S◦
λ/µ

can be described as follows:
Cluster variables: For each box □a,i ∈ λ/µ, we have a cluster variable xa,i := ∆I′(a,i).
Frozen variables: A variable xa,i is frozen if the box □a,i belongs to the ribbon shaped

boundary R(λ/µ).
Quiver: The vertices of the quiver Qλ/µ are in bijection with the boxes □a,i ∈ λ/µ. There

are arrows:

□a,i → □a+1,i, □a,i → □a,i−1, □a,i → □a−1,i+1

provided at least one of these boxes corresponds to a mutable vertex.

Remark 3.4. In fact, the sets I′(a, i) for □a,i ∈ R(λ/µ), together with Iµ form a source
Grassmann necklace. Consequently, we also get a bounded affine permutation. See [12]
for details.

Remark 3.5. In part of the literature, there is an extra frozen variable xµ = ∆Iµ , and
consequently the quiver Qλ/µ has an extra frozen vertex. This yields a cluster structure
on the affine cone over S◦

λ/µ. Since we work inside Gr(k, n) by setting ∆Iµ = 1, we do not
see this frozen variable.

Example 3.6. Continuing with n, k, λ and µ as in our running Example 3.1 we obtain
the following quiver, where the frozen variables are drawn in blue, and the mutable
variables in red.

5, 6, 8
11, 12

1, 6, 8
11, 12

1, 2, 8
11, 12

2, 3, 8
11, 12

3, 4, 8
11, 12

3, 4, 5
11, 12

4, 5, 6
11, 12

5, 6, 7
11, 12

5, 6, 7
8, 12

5, 6, 8
9, 12

5, 6, 8
10, 12

5, 6, 8
10, 11

2, 6, 8
11, 12

3, 6, 8
11, 12

4, 6, 8
11, 12

4, 5, 8
11, 12

Remark 3.7. Skew shaped positroids differ from the skew Schubert varieties of [16], and
are closely related to Grassmannian Richardson varieties, see [10, Remark 3.2.7].
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4 Double Bott–Samelson varieties

We now define double Bott–Samelson varieties. We will work with the positive braid
monoid on k strands, i.e. Br+k is the monoid with generators σ1, . . . , σk−1 satisfying the
usual braid relations: σiσj = σjσi if |i − j| > 1 and σiσi+1σi = σi+1σiσi+1. We will picture
an element β ∈ Br+k via its wiring diagram, obtained by taking k horizontal strands,
numbered from bottom to top, representing a generator σi by a crossing between the i-th
and (i + 1)-st strands, and concatenating left-to-right as we read β in the same direction.

We will also need the flag variety F (k) of complete flags in Ck. If F•
1 = (0 ⊆ F1

1 ⊆
· · · ⊆ Fk

1 = Ck) and F•
2 are two flags in Ck, and j ∈ {1, . . . , k − 1}, then we say that F•

1 is
in position sj with respect to F•

2 if

Fj
1 ̸= Fj

2, and Fi
1 = Fi

2 for i ̸= j.

we write F•
1

j→ F•
2 to express that F•

1 is in position sj with respect to F•
2 . On the other

hand, we say that the flags F•
1 and F•

2 are transverse if, for each j = 1, . . . , k − 1

Fj
1 ∩ Fk−j

2 = {0}, equivalently Fj
1 + Fk−j

2 = Ck.

We write F•
1 ⋔ F•

2 to express the fact that F•
1 and F•

2 are transverse. Finally, we will need
two special flags: the standard and antistandard flags, defined by

F•
std = {0} ⊆ ⟨e1⟩ ⊆ ⟨e1, e2⟩ ⊆ · · · ⊆ ⟨e1, e2, . . . , ek⟩ = Ck,

F•
ant = {0} ⊆ ⟨ek⟩ ⊆ ⟨ek, ek−1⟩ ⊆ · · · ⊆ ⟨ek, ek−1, . . . , e1⟩ = Ck.

Definition 4.1. Let β = σi1 · · · σiℓ ∈ Brk
+. We define the double Bott–Samelson variety BS(β)

as follows:

BS(β) = {(F•
0 , . . . , F•

ℓ ) ∈ F (k)ℓ+1 | F•
0 = F•

std
i1→ F•

1
i2→ · · · iℓ→ F•

ℓ ⋔ F•
ant}.

In fact, for any braid β = σi1 · · · σiℓ , the double Bott–Samelson variety BS(β) is a
smooth, affine algebraic variety, that is a principal open set in the affine space Cℓ. To
see this, let us give coordinates to the double Bott–Samelson variety BS(β). We identify
the flag variety F (k) with the quotient GL(k)/B(k), where B(k) ⊆ GL(k) is the group
of upper triangular matrices, as follows. If M = (m1|m2| · · · |mk) ∈ GL(k) has columns
m1, . . . , mk, we define the flag

F•
M = {0} ⊆ ⟨m1⟩ ⊆ ⟨m1, m2⟩ ⊆ · · · ⊆ ⟨m1, m2, . . . , mk⟩ = Ck.

Note that F•
M = F•

N if and only if there exists an upper-triangular matrix U such that
M = NU, and this provides the identification F (k) ∼= GL(k)/B(k). Now we need the
following results. Recall that if I, J ⊆ [k] are sets of the same size and M ∈ GL(n), then
the minor ∆I,J(M) is the determinant of the |I| × |J|-submatrix of M obtained by deleting
all rows (resp. columns) that do not belong to I (resp. J).
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Lemma 4.2. Let M ∈ GL(k). Then F•
M ⋔ F•

ant if and only if for each i = 1, . . . , k, the minor
∆[i],[i](M) is nonzero.

Lemma 4.3. Let M ∈ GL(k) and let j ∈ [k − 1]. The space of all flags F• ∈ F (k) such that

F•
M

j→ F• forms an affine line C, and consists of all the flags of the form F•
MBj(z)

, where z ∈ C

and Bj(z) is the matrix

Bj(z) = Ik + (z − 1)Ei,i − Ei+1,i+1 − Ei,i+1 + Ei+1,1

where Er,s is the matrix with a 1 on the (r, s)-position and zeroes everywhere else.

If β = σi1 · · · σiℓ ∈ Br+k is a positive braid and (z1, . . . , zℓ) ∈ Cℓ, define Bβ(z1, . . . , zℓ) :=
Bi1(z1) · · · Bir(zr) ∈ GL(n). Lemmas 4.2 and 4.3 have the following consequence.

Theorem 4.4. Let β = σi1 · · · σiℓ ∈ Br+k . Then,

BS(β) ∼= {(z1, . . . , zℓ) ∈ Cℓ | ∆[i],[i](Bβ(z1, . . . , zℓ)) ̸= 0 for every i ∈ [k]}.

Let us give another equivalent characterization of the variety BS(β) that will be useful
later. The wiring diagram of β separates the horizontal strip where the wiring diagram
is drawn in several connected components, which moreover can be arranged by “levels,”
i.e., by horizontal sections of the diagram. Then, an element in BS(β) is an assignment of
a subspace Vi of dimension i to each region of level i satisfying the following incidence
conditions:

(I1) To the unique left-unbounded region of level i, we assign the subspace ⟨e1, . . . , ei⟩.

(I2) If Vi is the subspace assigned to the unique right-unbounded region of level i, then
Vi ∩ ⟨ei+1, . . . , ek⟩ = {0}.

(I3) If Vi and Vi+1 are assigned to regions with intersecting boundaries, then Vi ⊆ Vi+1.

(I4) If Vi, V′
i are assigned to regions separated by a single crossing, then Vi ̸= V′

i .

To finish this section, we describe the initial seed in the cluster structure on BS(β) con-
structed by Shen and Weng in [17]. We set β = σi1 · · · σiℓ ∈ Br+k and use the parametriza-
tion of BS(β) given by Theorem 4.4.

Cluster variables. For each e ∈ [ℓ], set xe := ∆[ie],[ie](Bσi1
···σie

(z1, . . . , ze)). The cluster
variables in Σ are x1, . . . , xℓ. We picture these variables in the wiring diagram of β, by
putting the variable xj on the region to the right of the crossing σij .

Frozen variables. A variable xe is frozen if and only if there is no d > e with ie = id.
Note that these correspond to the rightmost regions in the wiring diagram of β.

Quiver. The quiver Qβ is read from the wiring diagram of β, see [17] and Example 5.1
below.
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5 Skew shaped positroids and double Bott–Samelson va-
rieties

Let 0 < k < n and take partitions µ ⊆ λ ⊆ (n − k)k. We define a k-stranded braid βλ/µ

via the following procedure.

1. Cross out the top box of every column of λ.

2. For each column of (n − k)k, put strands starting on the lower left corner of each
box in this column, so that there are precisely k strands. We join the strands to
corners in the right border of this column, as follows:

(a) Join the strand starting in the lower left corner of the crossed box belonging
to λ/µ (from Step 1) in this column to the lower right corner of the lowest box
in the same column belonging to λ/µ. If the crossed box also belongs to µ,
then simply join the strand to the lower right corner of the same box.

(b) If a strand starts in the lower left corner of a non-crossed box in λ/µ, join it to
the upper right corner of the same box.

(c) If a strand starts on the lower left corner of any box which is not of the above
type, join it (in a straight line) to the lower righg corner of the same box.

3. The braid βλ/µ is defined to be the concatenation of the (n − k)-braids from Step 2.
In formulas,

βλ/µ = C1C2 · · ·Cn−k, Cj = σλt
j−1σλt

j−2 · · · σµt
j+1 (5.1)

where Cj is the empty braid if µt
j + 1 > λt

j − 1.

Example 5.1. In our running Example 3.1, we draw the braid βλ/µ as well as the quiver
Qβλ/µ

. Note that βλ/µ = (σ4)()(σ3)(σ2σ1)(σ2σ1)(σ1)(σ1), and that the quiver Qβ is the
opposite of the quiver obtained from Qλ/µ by deleting the vertices corresponding to
crossed out boxes.

•

•

•

••••

•

Theorem 5.2. There exist s ≥ 0 and an isomorphism of algebraic varieties

BS(βλ/µ)× (C×)s ∼= S◦
λ/µ

that is a quasi-isomorphism of cluster varieties.
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The proof of this theorem makes use of the following key concept. The short labeling
J(□a,i) ⊆ I′(□a,i) of a box □a,i ∈ λ/µ, consists of the first i (with respect to the usual
order of [n]) elements of I′(□a,i). The short labels provide a map Φ : S◦

λ/µ → BS(βλ/µ).
More precisely, given an element V ∈ S◦

λ/µ, pick a matrix MV = (v1| . . . |vn) representing
it. The matrix MV is unique if we require that vb1 = e1, . . . , vbk

= ek, where Iµ = {b1 <

· · · < bk} and e1, . . . , ek is the standard basis of Ck.
The element Φ(V) is specified by labeling the region to the right of a crossing of βk,n,

which in turn corresponds to a non-crossed box □i,a of λ/µ, by the subspace spanned
by the elements vj where j belongs to the short labeling J(□i,a).

The inverse map Ψ : BS(βλ/µ) → S◦
λ/µ is obtained by reverse-engineering the con-

struction above, using the fact that βλ/µ is the product of interval braids, and the follow-
ing key identity:

(v1| . . . |vk)Bσj−1···σi(z1, . . . , zj−i) = (v1| · · · |vi−1|v′i| − vi| · · · | − vj−1|vj+1| · · · |vk) (5.2)

where v′i = vj + ∑
j−i
s=1 zsvi+s−1. As we will see below in an example, this will allow us

to construct the matrix Ψ(z1, . . . , zℓ) = (v1| . . . |vn) for (z1, . . . , zℓ) ∈ BS(βλ/µ). We will
get, however, that for every crossed box ⊠a,i ∈ λ/µ, ∆I′(⊠a,i)

(Ψ(z1, . . . , zℓ)) = ±1. This
accounts for the (C×)s-factor in Theorem 5.2.

Example 5.3. Let us carefully construct the maps in our running example. First, we
construct the map Φ : S◦

λ/µ → BS(βλ/µ). Let V ∈ S◦
λ/µ with MV = (v1| . . . |v12). Since

Iµ = {5, 6, 8, 11, 12}, we set v5 = e1, v6 = e6, v8 = e3, v11 = e4, v12 = e5. Reading the short
labels of the boxes corresponding to the crossings of βλ/µ (see Example 3.6), we obtain
that Φ(V) is given as in Figure 1. That this labeling satisfies the incidence conditions
(I1)–(I4) follows from the equations defining S◦

λ/µ. For example, let us verify that ⟨v1⟩ ⊆
⟨v3, v4⟩. From the Grassmann necklace Iλ/µ and Remark 2.4 in [14], we can find the
bounded affine permutation fλ/µ which is in bijection with Iλ/µ. In this case, fλ/µ(1) = 3
and this implies that ⟨v1, v2⟩ = ⟨v2, v3⟩. Thus, ⟨v1⟩ ⊆ ⟨v2, v3⟩. Similarly, we obtain
fλ/µ(2) = 4, and thus ⟨v2, v3⟩ = ⟨v3, v4⟩. Therefore, ⟨v1⟩ ⊆ ⟨v2, v3⟩ = ⟨v3, v4⟩. Let us
now construct the map Ψ : BS(βλ/µ) → S◦

λ/µ. Let (z1, . . . , z8) ∈ BS(βλ/µ). We define
V := Ψ(z1, . . . , z8) by specifying the columns of the matrix MV = (v1| . . . |v12). First, we
set (v5|v6|v8|v11|v12) = Ik, the k × k-identity matrix. After C1 in Figure 1 we see the new
vector v10, so we define v10 so that

(v5|v6|v8|v11|v12)B4(z1) = (v5|v6|v8|v10| − v11)

that we can do by (5.2). The braid C2 is empty so we skip it. Looking at C3 define v7 so
that

(v5|v6|v8|v10| − v11)B3(z2) = (v5|v6|v7| − v8| − v11).
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⟨v5⟩

⟨v5, v6⟩

⟨v5, v6, v8⟩

⟨v5, v6, v8, v11⟩ ⟨v5, v6, v8, v10⟩

⟨v5, v6, v7⟩

⟨v4 , v5⟩ ⟨v3, v4⟩

⟨v4⟩ ⟨v3⟩ ⟨v2⟩ ⟨v1⟩

Figure 1: The braid βλ/µ = (σ4)()(σ3)(σ2σ1)(σ2σ1)(σ1)(σ1) associated to λ/µ where
λ = (7, 7, 5, 3, 1) and µ = (3, 3, 2).

Moving on to C4, define v4 so that

(v5|v6|v7| − v8| − v11)Bσ2σ1(z3, z4) = (v4| − v5| − v6| − v8| − v11)

where we have once again used (5.2). This allows us to recover every vector v1, . . . , v12,
except for v9, since 9 does not appear in Figure 1. However, the equations of S◦

λ/µ imply
that v9 is a scalar multiple of v10, and we can recover v9 by requiring that ∆5,6,8,9,12 = 1.
Let us discuss the compatibility between cluster structures, by looking at the cluster
variables in BS(βλ/µ) attached to the crossings of C4 = σ2σ1. These are

∆[2],[2]BC1C2C3σ2(z1, z2, z3) = ∆[2],[2]BC1C2C3C4(z1, z2, z3, z4)

and ∆[1],[1]BC1C2C3C4(z1, z2, z3, z4).

By construction,

∆[2],[2]BC1C2C3C4(z1, z2, z3, z4) = ∆[2],[2](v4| − v5| − v6| − v8| − v11)

= −det(v4|v5|e3|e4|e5) = −det(v4|v5|v8|v11|v12)

and similarly ∆[1],[1]BC1C2C3C4(z1, z2, z3, z4) = det(v4|v6|v8|v11|v12). Looking at Exam-
ple 3.6 these are, possibly up to signs, the corresponding cluster variables in S◦

λ/µ.

6 Splicing

Let β = β1β2 be a decomposition of the braid β ∈ Br+k . We let U(β1, β2) ⊆ BS(β) be
the open set obtained by the non-vanishing of the cluster variables corresponding to the
last appearance of each letter in β1. Note that U(β1, β2) has a cluster structure, obtained
from the cluster structure in BS(β) by freezing the cluster variables just described.

Theorem 6.1. Let β = β1β2 ∈ Br+k and U(β1, β2) be as above. Then, we have a quasi-cluster
isomorphism

U(β1, β2) ∼= BS(β1)× BS(β2).
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The idea behind the previous result is as follows. We let β1 = σi1 · · · σiℓ1
, β2 =

σj1 · · · σjℓ2
. Then, BS(β) consists of sequences of flags:

F•
std = F•

0
i1→ F•

1
i2→ · · ·

iℓ1→ F•
ℓ1

j1→ F•
ℓ1+1

j2→ · · ·
jℓ2→ F•

ℓ1+ℓ2
⋔ F•

ant. (6.1)

The conditions on U(β1, β2) imply that F•
ℓ ⋔ F•

ant, so we can try to separate (6.1) as:

F•
0

i1→ F•
1

i2→ · · ·
iℓ1→ F•

ℓ1
and F•

ℓ1

j1→ F•
ℓ1+1

j2→ · · ·
jℓ2→ F•

ℓ1+ℓ2
. (6.2)

The first chain of flags belongs to BS(β1). The second chain of flags, however, does not
belong to BS(β2), because it would have to start with the standard flag for this to be the
case. So the isomorphism in Theorem 6.1 is obtained upon a simultaneous translation of
all the flags in the second chain of (6.2).

Now let µ ⊆ λ be partitions fitting inside a k × (n − k)-rectangle. By definition, we
have a decomposition βλ/µ = C1 · · ·Cn−k. Pick 1 ≤ j ≤ n − k, and let β1 = C1 · · ·Cj,
and β2 = Cj+1 · · ·Cn−k, so that we have a decomposition βλ/µ = β1β2 and we can apply
Theorem 6.1. Note that the set U = Uj can be obtained as the non-vanishing locus
all the cluster variables corresponding to the j-th column of the k × (n − k)-box which,
up to variables associated to crossed boxes, correspond to the letters of Cj. Note also
that β1 = βλ1,j/µ1,j and β2 = βλ2,j/µ2,j , where λ1,j, µ1,j and λ2,j, µ2,j are as defined in the
introduction. Thus, we obtain the following result:

Theorem 6.2. With the notation as above, we have a quasi-isomorphism of cluster varieties.

Uj(S◦
λ/µ)

∼= S◦
λ1,j/µ1,j × S◦

λ2,j/µ2,j

In [10] we also give a way of understanding this result in a linear algebraic way.

Example 6.3. In our running Example 3.1, take j = 5. Then, we need to freeze the
variable x7−5,1 = x2,1 = ∆3,6,8,11,12, which is the only non-frozen variable in the fifth
column. We have λ1,5 = (5, 5, 5, 3, 1), µ1,5 = µ = (3, 3, 2), while λ2,5 = (2, 2) and
µ2,5 = ∅.

•

•••

•••

•••

•

•••

•

∼=

•

•

•••

•••

•

•

•

×

•

••

•
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