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Abstract. We give the first conjectural construction of a monomial basis for the
coinvariant ring R(1,2)

n , for the symmetric group Sn acting on one set of bosonic (com-
muting) and two sets of fermionic (anticommuting) variables. Our construction inter-
polates between the modified Motzkin path basis for R(0,2)

n of Kim–Rhoades (2022) and
the super-Artin basis for R(1,1)

n conjectured by Sagan–Swanson (2024) and proven by
Angarone et al. (2024). We prove that our proposed basis has cardinality 2n−1n!, align-
ing with a conjecture of Zabrocki (2020) on the dimension of R(1,2)

n , and show how it
gives a combinatorial expression for the Hilbert series. We also conjecture a Frobenius
series for R(1,2)

n , including formulas for hook characters and the mµ coefficients.
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1 Introduction

The classical coinvariant ring R(1,0)
n = C[xn]/⟨C[xn]

Sn
+ ⟩ is the quotient of a polynomial

ring in n variables xn = {x1, . . . , xn} by Sn-invariant polynomials with no constant term.
It is well-known (see for example [11, Section 1.5]) to have dimension n!, Hilbert series
[n]q!, and Frobenius series

∑
λ⊢n

∑
T∈SYT(λ)

qmaj(T)sλ.

An important basis of the classical coinvariant ring is the Artin basis.
In 1994, Haiman [11] introduced the diagonal coinvariant ring R(2,0)

n = C[xn, yn]/
⟨C[xn, yn]

Sn
+ ⟩, which extends the classical coinvariant ring to two sets of n variables. Here

and throughout, Sn acts diagonally by permuting the indices of the variables. In 2002,
Haiman [12] proved that R(2,0)

n has dimension (n + 1)n−1, Hilbert series ⟨∇q,t(en), hn
1⟩,

and Frobenius series ∇q,t(en), using several deep results in algebraic geometry. A com-
binatorial formula for its Hilbert series was conjectured by Haglund and Loehr [10], and
eventually was proven as a consequence of the more general shuffle theorem, conjec-
tured by Haglund, Haiman, Loehr, Remmel, and Ulyanov [9] and proven by Carlsson
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and Mellit [5], which gives a combinatorial formula for ∇q,t(en). A monomial basis was
given by Carlsson and Oblomkov [6].

Recently, there has been interest (see [3, 2, 4, 21]) in extending the setting to include
coinvariant rings with k sets of n commuting variables xn, yn, zn, . . . and j sets of n anti-
commuting variables θn, ξn, ρn, . . . (which commute with xn, yn, zn, . . .). We denote this
by

R(k,j)
n = C[xn, yn, zn, . . .︸ ︷︷ ︸

k

, θn, ξn, ρn, . . .︸ ︷︷ ︸
j

]/⟨C[xn, yn, zn, . . .︸ ︷︷ ︸
k

, θn, ξn, ρn, . . .︸ ︷︷ ︸
j

]Sn
+ ⟩.

We briefly overview recent results on some special cases of R(k,j)
n for which there

has been significant progress. Kim and Rhoades [14] showed that the fermionic diago-
nal coinvariant ring R(0,2)

n = C[θn, ξn]/⟨C[θn, ξn]
Sn
+ ⟩ has dimension (2n−1

n ), confirming a
conjecture of Zabrocki [21]. They gave a combinatorial formula for its Hilbert series:

Hilb(R(0,2)
n ; u, v) = ∑

π∈Π(n)>0

udegθ(π)vdegξ(π), (1.1)

where Π(n)>0 denotes the set of modified Motzkin paths of length n. They also gave a
monomial basis for R(0,2)

n and found its Frobenius series [14, Theorem 6.1].
The superspace coinvariant ring is R(1,1)

n = C[xn, θn]/⟨C[xn, θn]
Sn
+ ⟩. Sagan and Swan-

son [18] conjectured, and Rhoades and Wilson [17] proved, that its Hilbert series is

Hilb(R(1,1)
n ; q; u) =

n

∑
k=1

un−k[k]q! Stirq(n, k), (1.2)

where Stirq(n, k) is a q-analogue of the Stirling numbers. The dimension of R(1,1)
n is the

ordered Bell number, which counts the number of ordered set partitions of {1, . . . , n}.
Sagan and Swanson [18] conjectured and Angarone, Commins, Karn, Murai, and
Rhoades [1] proved that a certain super-Artin set is a basis for R(1,1)

n . A Frobenius series
has been conjectured for R(1,1)

n [4, Equation 5.2].
Zabrocki [20] conjectured a Frobenius series for R(2,1)

n . Then D’Adderio, Iraci, and
Vanden Wyngaerd [8] introduced certain symmetric function operators Θ f , called Theta
operators, where f is any symmetric function, to extend Zabrocki’s conjecture to a con-
jectural Frobenius series for R(2,2)

n . They conjectured that

Frob(R(2,2)
n ; q, t; u, v) = ∑

k,ℓ≥0,
k+ℓ<n

ukvℓΘek Θeℓ∇q,t(en−k−ℓ), (1.3)

which is known as the Theta conjecture.
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The ring R(1,2)
n = C[xn, θn, ξn]/⟨C[xn, θn, ξn]

Sn
+ ⟩ is the main object of study in this

paper. Zabrocki [21] conjectured that the dimension of R(1,2)
n is 2n−1n!, and an ungraded

Frobenius series was conjectured by Bergeron [2]. The Theta conjecture specialized at t =
0 immediately gives a conjectural Frobenius series for R(1,2)

n , however, the specialization
can only be done after applying both of the Theta operators, so the resulting formula
does not easily simplify. Recently, Iraci, Nadeau, and Vanden Wyngaerd [13] have given
a conjectural Hilbert series and conjectural Frobenius series using the combinatorics of
segmented permutations. However, they did not propose a monomial basis.

Our first main contribution is a combinatorial construction of a set of monomials,
denoted by B(1,2)

n (Definition 3.1), which we conjecture to give a basis of R(1,2)
n (Conjec-

ture 3.2). If the conjecture holds, it implies the following combinatorial Hilbert series
(Proposition 3.5):

Hilb(R(1,2)
n ; q; u, v) = ∑

π∈Π(n)>0

udegθ(π)vdegξ(π) stairq(π). (1.4)

In support of this conjecture, we show that the cardinality of B(1,2)
n is 2n−1n! (Theo-

rem 3.6). By establishing a weight-preserving bijection between B(1,2)
n and the set of

segmented permutations SW(1n) (Theorem 5.2), it follows that our conjectural Hilbert
series is equivalent to a conjectural Hilbert series of Iraci, Nadeau, and Vanden Wyn-
gaerd [13].

Our second main contribution is a simple combinatorial formula for the conjectural
Frobenius series of R(1,2)

n (Conjecture 4.2):

Frob(R(1,2)
n ; q; u, v) = ∑

b∈B(1,2)
n

udegθ(b)vdegξ(b)qdegx(b)QAsc(b),n, (1.5)

where QS,n denotes the fundamental quasisymmetric function. We show that this is
equivalent to the conjectural Frobenius series of Iraci, Nadeau, and Vanden Wyngaerd
(Theorem 5.3). A benefit of using B(1,2)

n instead of segmented permutations is that de-
termining Asc(b) and degx(b) for b ∈ B(1,2)

n is typically more direct than determining
Split(σ) and sminv(σ) for σ ∈ SW(1n), which fulfill analogous roles.

Section 5 contains some applications demonstrating the utility of our constructions.
We give a formula for the mµ coefficient of our conjectural Frobenius series, which can
also be interpreted as a symmetric function identity. We give a formula for the coefficient
of a hook Schur function s(d+1,1n−d−1) in the symmetric function in Equation (1.5):

∑
k+ℓ<n

ukvℓq(
n−d−k−ℓ

2 )

[
n − 1 − d

ℓ

]
q

[
n − 1 − k

d

]
q

[
n − 1 − ℓ

k

]
q
,
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extending a result of Iraci, Nadeau, and Vanden Wyngaerd on column Schur functions
s(1n).

Full results with proofs advertised in this extended abstract, along with some exten-
sions to type B, can be found in [15].

2 Background

In this section, we describe the Kim–Rhoades basis for R(0,2)
n [14] and the super-Artin

basis for R(1,1)
n conjectured by Sagan–Swanson [18] and proven by Angarone, Commins,

Karn, Murai, and Rhoades [1].
Define the set of modified Motzkin paths of length n, Π(n)>0, to be the set of all paths

π = (p1, . . . , pn) in Z2 such that each step pi is one of:

(a) an up-step (1, 1),

(b) a horizontal step (1, 0) with decoration θi,

(c) a horizontal step (1, 0) with decoration ξi,

(d) or a down-step (1,−1) with decoration θiξi,

where the first step must be an up-step, and subsequently, the path never goes below
the horizontal line y = 1.1

Define the weight wt(pi) of a step pi of a modified Motzkin path to be its decoration,
or 1 if it does not have a decoration. Then define the weight wt(π) of a modified Motzkin
path π ∈ Π(n)>0 to be the product of the weights of each step pi, that is,

wt(π) := ∏
pi∈(p1,...,pn) =π

wt(pi).

Definition 2.1 ([14]). The Kim–Rhoades basis B(0,2)
n is the set of all weights of the modified

Motzkin paths π ∈ Π(n)>0, that is,

B(0,2)
n := {wt(π) |π ∈ Π(n)>0}.

For an example, see Figure 1.

Theorem 2.2 ([14]). The Kim–Rhoades basis B(0,2)
n is a basis for R(0,2)

n .

1Kim and Rhoades defined the modified Motzkin paths in a slightly different manner, where there
are no decorations on the down-steps, but they still contribute θiξi to the weight. Furthermore, they
defined the decorations to be just θ or ξ instead of θi and ξi. Converting between these conventions is
straightforward.
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θ3ξ3
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ξ2 ξ3

ξ2ξ3

Figure 1: The basis B(0,2)
3 . Each modified Motzkin path is labeled with its correspond-

ing monomial.

Next, we recall the super-Artin basis, defined by Sagan and Swanson. Let χ(P) be
1 if the proposition P is true, and 0 if the proposition P is false. Let θT denote the
ordered product θt1 · · · θtk for any subset T = {t1 < · · · < tk} ⊆ {1, . . . , n}. For any
T ⊆ {2, . . . , n}, define the α-sequence α(T) = (α1(T), . . . , αn(T)) recursively by the initial
condition α1(T) = 0 and for 2 ≤ i ≤ n,

αi(T) = αi−1(T) + χ(i ̸∈ T).

Definition 2.3 ([18]). The super-Artin set is

B(1,1)
n := {xαθT | T ⊆ {2, . . . , n} and α ≤ α(T) componentwise}.

See Figure 2 for an example. The following result was conjectured by Sagan and
Swanson, and was proven by Angarone, Commins, Karn, Murai, and Rhoades.

Theorem 2.4 ([1]). The super-Artin set B(1,1)
n is a basis for R(1,1)

n .

We assume familiarity with the basics of symmetric function theory (see for exam-
ple [16, Chapter I] or [19, Chapter 7]). Let mλ, eλ, hλ, pλ, and sλ denote respectively
the monomial, elementary, complete homogeneous, power-sum, and Schur symmetric
functions in infinitely many variables.

Finally, we record the definitions of the multigraded Hilbert and Frobenius series
of R(2,2)

n (see for example [2]). For R(k,j)
n with k, j ≤ 2, we can further specialize the

following. Setting t = 0 gives us the series for (1, 2), etc. R(2,2)
n decomposes as a direct

sum of multihomogenous components, which are Sn-modules:

R(2,2)
n =

⊕
r1,r2,s1,s2≥0

(R(2,2)
n )r1,r2,s1,s2 .
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1 x3 x2 x2x3 x2
3

x2x2
3

θ2

x3θ3 x2x3θ3θ3 x2θ3

x3θ2 θ2θ3

Figure 2: The basis B(1,1)
3 . The α-sequence is shown as the outline of all boxes, and

those xi used for a particular basis element are shaded in gray.

We denote the multigraded Hilbert series by

Hilb(R(2,2)
n ; q, t; u, v) := ∑

r1,r2,s1,s2≥0
dim

(
(R(2,2)

n )r1,r2,s1,s2

)
qr1tr2us1vs2 ,

and the multigraded Frobenius series by

Frob(R(2,2)
n ; q, t; u, v) := ∑

r1,r2,s1,s2≥0
F char

(
(R(2,2)

n )r1,r2,s1,s2

)
qr1tr2us1vs2 ,

where F denotes the Frobenius characteristic map and char denotes the character. Recall
that ⟨Frob(R(2,2)

n ; q, t; u, v), hn
1⟩ = Hilb(R(2,2)

n ; q, t; u, v).

3 The conjectural monomial basis

The goal of this section is to interpolate between the Kim–Rhoades basis and the super-
Artin basis to construct a new set B(1,2)

n , which we conjecture to be a basis for R(1,2)
n .

We generalize the α-sequence as follows. Let ξS denote the ordered product ξs1 · · · ξsk

for any subset S = {s1 < · · · < sk} ⊆ {1, . . . , n}. For any T, S ⊆ {2, . . . , n}, define the
generalized α-sequence α(T, S) = (α1(T, S), . . . , αn(T, S)) recursively by the initial condi-
tion α1(T, S) = 0 and for 2 ≤ i ≤ n,

αi(T, S) = αi−1(T, S)− 1 + χ(i ̸∈ T) + χ(i ̸∈ S).
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Definition 3.1. We let

B(1,2)
n := {xαθTξS | θTξS ∈ B(0,2)

n and 0 ≤ αi ≤ αi(T, S) for all i ∈ {1, . . . , n}}.

See Figure 3 for an example of B(1,2)
n at n = 3.

1 x3 x2 x2x3 x2
3 x2x2

3

θ2

θ2

θ3

x3θ3

ξ2

ξ2

θ3

x2x3θ3

ξ3

x3ξ3

ξ3

x2x3ξ3

θ3

θ3

ξ3

ξ3

θ3

x2θ3

ξ3

x2ξ3

θ2

x3θ2

ξ2

x3ξ2

θ2 θ3

θ2θ3

θ3ξ3

θ3ξ3

ξ2 θ3

ξ2θ3

θ3ξ3

x2θ3ξ3

θ2 ξ3

θ2ξ3

ξ2 ξ3

ξ2ξ3

Figure 3: The basis B(1,2)
3 . Below each modified Motzkin path is the outline of the

generalized α-sequence, and those xi used for a particular basis element are shaded
in gray. Note that the outline of the generalized α-sequence can be determined by the
following rule: in each position i, the column of boxes extends up until its right side is
one unit below the path above it.

We are ready to present our main conjecture.

Conjecture 3.2. The set B(1,2)
n is a basis for R(1,2)

n .

Remark 3.3. B(1,2)
n specializes to the super-Artin basis B(1,1)

n by setting all ξi = 0, and
B(1,2)

n specializes to the Kim–Rhoades basis B(0,2)
n by setting all xi = 0.
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Next, we consider the implications of Conjecture 3.2 on the Hilbert series of R(1,2)
n .

Define
stairq(π) := ∏

k∈α(T(π),S(π))

[k + 1]q,

where T(π) and S(π) are determined by which elements in {2, . . . , n} appear as indices
for θi and ξi respectively in the weight of the modified Motzkin path π.

Example 3.4. For the modified Motzkin path π =

θ3

,

we have that T(π) = {3} and S(π) = ∅, so α({3},∅) = (0, 1, 1). Thus stairq(π) =
[1]q[2]q[2]q. Observe in Figure 3 that there are 4 basis elements corresponding to π.

For a modified Motzkin path π, let degθ(π) = |T(π)| and let degξ(π) = |S(π)|.

Proposition 3.5. Assuming Conjecture 3.2, it follows that the Hilbert series of R(1,2)
n is

Hilb(R(1,2)
n ; q; u, v) = ∑

π∈Π(n)>0

udegθ(π)vdegξ(π) stairq(π).

We show that the proposed basis B(1,2)
n has Zabrocki’s conjectured dimension, using a

similar argument to Corteel–Nunge [7, Lemma 17] which enumerates marked Laguerre
histories.

Theorem 3.6. The cardinality of B(1,2)
n is 2n−1n!.

4 A conjectural Frobenius series

The goal of this section is to demonstrate how the conjectural basis can be used to
propose a Frobenius series for R(1,2)

n .
For any subset S ⊆ {1, . . . , n − 1}, the fundamental quasisymmetric function QS,n is

defined by
QS,n = ∑

a1≤a2≤···≤an,
ai<ai+1 if i∈S

za1za2 · · · zan .

We need the following definitions, which are motivated by related definitions of Iraci,
Nadeau, and Vanden Wyngaerd on segmented permutations. For any b ∈ B(1,2)

n , write

b = ±
n

∏
i=1

xαi
i θ

βi
i ξ

γi
i ,
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for some exponents αi ∈ Z≥0 and βi, γi ∈ {0, 1}. Since this is an ordered product,
reordering the factors may change the sign, however, for our purposes the sign does not
matter. Then define i to be an ascent of b if and only if one of the following occurs:

• βi < βi+1;

• βi = βi+1 = 1 and αi ≥ αi+1 + γi+1; or

• βi = βi+1 = 0 and αi < αi+1 + γi+1.

For b ∈ B(1,2)
n , we say that Asc(b) := {i ∈ {1, . . . , n − 1} | i is an ascent of b}.

Example 4.1. Consider b = x2x2
4θ4θ5ξ5 ∈ B(1,2)

5 , which has α2 = 1, α4 = 2, β4 = 1, β5 = 1,
γ5 = 1, and all other exponents are 0. This has ascents at i = 1 (since β1 = β2 = 0 and
α1 < α2 + γ2), at i = 3 (since β3 < β4), and at i = 4 (since β4 = β5 = 1 and α4 ≥ α5 + γ5).
Thus Asc(b) = {1, 3, 4}.

Now we can state a conjectural Frobenius series for R(1,2)
n in terms of the set B(1,2)

n .

Conjecture 4.2.

Frob(R(1,2)
n ; q; u, v) = ∑

b∈B(1,2)
n

udegθ(b)vdegξ(b)qdegx(b)QAsc(b),n.

We will see further evidence for this conjecture with Theorem 5.3.

5 The proposed basis and segmented permutations

In this section, we establish a q, u, v-weight preserving bijection between our proposed
basis B(1,2)

n and the set of segmented permutations SW(1n). A segmented permutation σ is
a permutation of {1, . . . , n}, where between any letters, there may be a vertical bar |. For
example, the segmented permutations of length 2 are 12, 1|2, 21, 2|1. Denote the set of all
segmented permutations on {1, . . . , n} by SW(1n).2 The cardinality of SW(1n) is 2n−1n!.

Define a map ψ : B(1,2)
n −→ SW(1n) as follows. For any b ∈ B(1,2)

n , we write it as

b = ±
n

∏
i=1

xαi
i θ

βi
i ξ

γi
i ,

for some αi ∈ Z≥0 and βi, γi ∈ {0, 1}. We always have α1 = β1 = γ1 = 0; start the
corresponding segmented permutation with 1. Then, as i ranges from 2 up through n,
do exactly one of the following for each i:

2The notation SW(1n) comes from the more general class of segmented Smirnov words, of which seg-
mented permutations form a proper subset.



10 J. Lentfer

(a) if βi = γi = 0: insert “|i” or “i|” in such a way as to create a new block consisting
of only i at position αi + 1 from the rightmost block in the permutation (indexing
starting at 1);

(b) if βi = 1 and γi = 0: insert i as the last element of an existing block, at position
αi + 1 from the rightmost block in the permutation;

(c) if βi = 0 and γi = 1: insert i as the first element of an existing block, at position
αi + 1 from the rightmost block in the permutation;

(d) if βi = γi = 1: insert i to replace a “|” and thus merge two adjacent blocks into one
block, which is now at position αi + 1 from the rightmost block in the permutation.

Upon completing this process, the output is some segmented permutation σ in SW(1n).

Example 5.1. Consider b = x2x2
4θ4θ5ξ5, which has α2 = 1, α4 = 2, β4 = 1, β5 = 1, γ5 = 1,

and all other exponents are 0. Start building a segmented permutation with 1. At i = 2,
we are in case (a), so we insert 2| to get 2|1, so that 2 is in a new block at position
1 + 1 = 2 from the right. At i = 3, we are in case (a), so we insert |3 to get 2|1|3, so that
3 is in a new block at the right. At i = 4, we are in case (b), so we insert 4 as the last
element of the block at position 2 + 1 = 3 from the right, giving 24|1|3. At i = 5, we
are in case (d), so we insert 5 to replace a “|” and merge two blocks which is now in the
rightmost position, giving 24|153.

In a segmented permutation σ, an ascent (resp. descent) is an index i such that σi <
σi+1 (resp. σi > σi+1) and there is no vertical bar | between σi and σi+1. A consequence
of the bijection is the following, where statistics sminv(σ) and Split(σ) on segmented
permutations are defined in [13].

Theorem 5.2. The map ψ : B(1,2)
n −→ SW(1n) is a q, u, v-weight preserving bijection. For any

b ∈ B(1,2)
n , we have degθ(b) = k, the number of ascents in ψ(b), degξ(b) = ℓ, the number of

descents in ψ(b), degx(b) = sminv(ψ(b)), and Asc(b) = Split(ψ(b)).

Let SW(1n, k, ℓ) denote the set of segmented permutation of length n with exactly k
ascents and ℓ descents. Now, we are able to establish the equivalence of our conjectural
Frobenius series (Conjecture 4.2) with a conjectural Frobenius series of Iraci, Nadeau,
and Vanden Wyngaerd. This can also be interpreted as a symmetric function identity.

Theorem 5.3.

∑
b∈B(1,2)

n

udegθ(b)vdegξ(b)qdegx(b)QAsc(b),n = ∑
k+ℓ<n

ukvℓ ∑
σ∈SW(1n,k,ℓ)

qsminv(σ)QSplit(σ),n.
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Define the symmetric function SF(n, k, ℓ) = ∑σ∈SW(1n,k,ℓ) qsminv(σ)QSplit(σ),n by the in-
ner sum on the right hand side of Theorem 5.3 For a composition α ⊨ n, let Set(α) :=
(α1, α1 + α2, . . . , α1 + · · ·+ αℓ−1). We have a formula for the mµ coefficient of SF(n, k, ℓ).

Theorem 5.4. Let µ ⊢ n. For any fixed k, ℓ, we have that

⟨SF(n, k, ℓ), hµ⟩ = ∑
b∈B(1,2)

n ,
degθ(b)=k,
degξ(b)=ℓ,

Asc(b)⊆Set(µ)

qdegx(b).

We derive the following formula for hook Schur functions s(d+1,1n−d−1), using the com-
binatorics of our conjectural basis. This generalizes a result on column Schur functions
s(1n) [13, Theorem 5.6], which is recovered at d = 0. To get the complete conjectural sign
character, multiply by ukvℓ and sum over all k + ℓ < n.

Theorem 5.5. For 0 ≤ d ≤ n − 1,

⟨SF(n, k, ℓ), s(d+1,1n−d−1)⟩ = q(
n−d−k−ℓ

2 )

[
n − 1 − d

ℓ

]
q

[
n − 1 − k

d

]
q

[
n − 1 − ℓ

k

]
q
.
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