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On a conjecture of Dyer on the join in the weak
order of a Coxeter group
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Abstract. In his article of 2019, Dyer states some conjectures about the weak order of a
Coxeter group. Among them, one affirms that the extended weak order is a lattice and
gives an algebraic-geometric characterization of the join of two elements in this poset.
The first assertion has been recently proven for affine types by Barkley and Speyer. In
this paper, we prove the second for Coxeter groups of type A and I.
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1 Introduction

Coxeter groups are abstract groups having a simple presentation. They are very rele-
vant in mathematics, for instance, dihedral groups and, more generally, the symmetry
group of any regular polytope are Coxeter groups. They can be described in terms of
reflections, in particular, finite Coxeter groups coincide with finite Euclidean reflection
groups. Throughout the paper, we assume the reader familiar with basic properties of
Coxeter groups and we refer to [3] and [6] for any undefined notation.

Let (W, S) be a Coxeter system, so W is a Coxeter group and S its set of generators.
The set of reflections of W is T = {wsw−1 | w ∈ W, s ∈ S} and the elements of S are
called simple reflections. The Bruhat graph of W, B(W), is the directed graph having W
as vertex set and where there is an arrow from u to v, u t−→ v, if and only if there is t ∈ T
such that v = tu e ℓ(u) < ℓ(v), where ℓ denotes the length function.

One of the most important partial orders on W is the (right) weak order which can be
defined by the prefix property: u ≤R v if and only if a reduced expression for u is the
prefix of a reduced expression for v. It is well-known that (W,≤R) is a meet-semilattice
and so, when W is finite, it is a lattice. On the contrary, if W is infinite, (W,≤R) is never
a lattice.

In [4], Dyer introduces a generalization of this poset called extended weak order. Let
Φ+ be the set of positive roots of (W, S); then A ⊆ Φ+ is closed if for any α, β ∈ A,

{aα + bβ | a, b ∈ R≥0} ∩ Φ+ ⊆ A,
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is coclosed if its complement Ac is closed, and biclosed if it is both closed and coclosed. The
set of biclosed subsets of Φ+ is denoted by B(Φ+) and once it is ordered by inclusion,
gives rise to the so called extended weak order (B(Φ+),⊆). It generalizes the weak
order: when W is finite, the two posets are isomorphic, while if W is infinite, (W,≤R) is
isomorphic to a subposet of (B(Φ+),⊆).

A natural example of a biclosed subset of Φ+ is the inversion set of an element w ∈
W defined as: Φw = Φ+ ∩ w(Φ−) = {α ∈ Φ+ | ∃β ∈ Φ−, α = w(β)}. Indeed, let
α, β ∈ Φw and suppose there exist a, b ∈ R≥0 such that aα + bβ ∈ Φ+; then we know
w−1(α), w−1(β) ∈ Φ−. Therefore,

w−1(aα + bβ) = aw−1(α) + bw−1(β) ∈ Φ−,

namely, aα + bβ ∈ Φw. Similarly, if α, β ∈ Φc
w, then w−1(α), w−1(β) ∈ Φ+ and, under the

same assumptions, we get w−1(aα + bβ) ∈ Φ+, i.e. aα + bβ ∈ Φc
w. Actually, Dyer proved

that these are the only finite examples.

Lemma 1 ([4], §4.1). Let A ⊆ Φ+ and suppose A is finite. Then A ∈ B(Φ+) if and only if
there exists w ∈ W such that A = Φw.

In [4], Dyer conjectures that the extended weak order is a lattice for any Coxeter
system and states a second conjecture characterizing the (conjectural) join of two biclosed
sets in (B(Φ+),⊆). The first conjecture has been recently proven for affine types by
Barkley and Speyer in [1] thanks to a combinatorial description of biclosed sets they
gave in [2]; the second, to our knowledge, is still open even for finite Coxeter systems
and its original statement is the following.

Let τ : P(Φ+) → P(W) be the map from the power set of Φ+ to the power set of W
sending any A ⊆ Φ+ to the set

τ(A)={w∈ W | w = sα1 · · · sαn , ℓ(sα1) < ℓ(sα1sα2) < · · · < ℓ(sα1 · · · sαn), α1, . . . , αn ∈ A}.

Conjecture 2 ([4], Section 2.8). Let A, B ∈ B(Φ+); then the join of A and B in (B(Φ+),⊆)
is the following set:

{α ∈ Φ+ | sα ∈ τ(A ∪ B)}.

In this paper, we prove Conjecture 2 in the case of Coxeter systems of type A and I.
Since both types are finite, we use a re-formulation of Conjecture 2 which was presented
to us by Hohlweg [5] and that we describe in what follows.

The weak order is characterized by inversion sets: for any u, v ∈ W, u ≤R v if and
only if Φu ⊆ Φv. As mentioned earlier, if W is finite, by Lemma 1, the map w 7→ Φw is
an isomorphism between the posets (W,≤R) and (B(Φ+),⊆); when W is infinite, the
map w 7→ Φw is still an injective morphism. Note that the extended weak order always
has a maximal element which is Φ+, while the weak order does not have one.
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We use the classical bijection between reflections and positive roots, (see [6, Sec-
tion 1.14]), to work with the left-reflection set TL(w) = {t ∈ T | ℓ(tw) < ℓ(w)} instead of
the inversion set Φw. In this setting, u ≤R v if and only if TL(u) ⊆ TL(v); in particular,
every element w ∈ W is uniquely identified by TL(w) or equivalently by Φw.

Definition 3 ((u, v)-Bruhat path). Let u, v ∈ W and consider the Bruhat graph B(W). A
(u, v)-Bruhat path is any (directed) path in B(W) starting from the vertex e and whose edges
have labels in the set TL(u) ∪ TL(v). We denote by VW(u, v) the set of vertices of all the (u, v)-
Bruhat paths in B(W).

The conjecture can be re-formulated as follows:

Conjecture 4. Let W be a finite Coxeter group and u, v ∈ W. Then

TL(u ∨R v) = T ∩ VW(u, v).

Conjecture 4 states that the left-reflection set of the join u ∨R v is the set of reflections
reached by all possible (u, v)-Bruhat paths.

We show that the two formulations are equivalent in the finite case.

Theorem 5. Let W be a finite Coxeter group. Then Conjecture 2 and Conjecture 4 are equivalent.

Proof. Since W is a finite Coxeter group, then by Lemma 1, we know that any element
of B(Φ+) is of the form Φw for some w ∈ W. So, if we consider Φu, Φv ∈ B(Φ+); then
Conjecture 2 says that

Φu ∨ Φv = {α ∈ Φ+ | sα ∈ τ(Φu ∪ Φv)} = {αt ∈ Φ+ | t ∈ τ(Φu ∪ Φv)}. (1.1)

Since the posets (W,≤R) and (B(Φ+),⊆) are isomorphic, then Φu ∨ Φv = Φu∨Rv and
this set corresponds to the left-reflection set TL(σ ∨R τ) through the classical bijection of
positive roots with reflections. We need to unpack equation (1.1) using the definition of
the function τ: a reflection t is in τ(Φu ∪ Φv) if there exist α1, . . . , αn ∈ Φu ∪ Φv such that
t = sα1 · · · sαn and

ℓ(sα1) < ℓ(sα1sα2) < · · · < ℓ(sα1 · · · sαn). (1.2)

Hence, it is sufficient to show that this condition on a reflection t ∈ T is equivalent to
t ∈ VW(u, v). Since t is a reflection, t = t−1 = sαn sαn−1 · · · sα1 and equation (1.2) implies
ℓ(sα1) < ℓ(sα2sα1) < · · · < ℓ(sαn · · · sα1). Finally, recalling the correspondence between
Φw and TL(w), we get

α1, . . . , αn ∈ Φu ∪ Φv ⇐⇒ sα1 , . . . , sαn ∈ TL(u) ∪ TL(v),

therefore, t ∈ VW(u, v) as we have the path

e
sα1−→ sα1

sα2−→ sα2sα1

sα3−→ · · · · · · sαn−→ sαn · · · sα1 = t.

So, Conjecture 2 and Conjecture 4 are equivalent whenever W is a finite Coxeter group.
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2 Dihedral groups

We start verifying Conjecture 4 for the case of finite dihedral groups, I2(m). They rep-
resent the most simple examples for this conjecture since they are generated by only
two reflections S = {s, r} with the relation (sr)m = e. For instance, consider I2(4), the
symmetry group of the square, here we have s ∨R r = srsr and TL(s) ∪ TL(r) = {s, r};
therefore any reflection in T = {s, r, srs, rsr} is a vertex of a (s, r)-Bruhat path. Indeed,
we have the following two paths:

e s−→ s r−→ rs s−→ srs, e r−→ r s−→ sr r−→ rsr.

Hence, T ∩ VI2(4)(s, r) = T = TL(srsr). Now, consider s ∨R srs = srs; we know TL(s) ⊆
TL(srs) = {s, srs, rsr}, so any (s, srs)-Bruhat path has labels in TL(srs). This implies

{s, srs, rsr} ⊆ T ∩ VI2(4)(s, srs).

Furthermore, since a simple reflection is in a (u, v)-Bruhat path if and only if it is an ele-
ment of TL(u) ∪ TL(v), we get r /∈ VI2(4)(s, srs); yielding TL(s ∨R srs) = T ∩ VI2(4)(s, srs).

Theorem 6. Let u, v ∈ I2(m); then

TL(u ∨R v) = T ∩ VI2(m)(u, v).

Proof. First, suppose that u ≰R v and v ≰R u. This implies that u∨R v = w0, the maximal
element. Since TL(u∨R v) = T, we need to check that any reflection is a vertex of a (u, v)-
Bruhat path. This is not hard as it suffices to notice that the reduced expressions of u and
v begin with two different letters. Thus, both r and s are in TL(u) ∪ TL(v). This yields
that any element of the group is a vertex of a (u, v)-Bruhat path since s and r generate
the group, so T = T ∩ VI2(m)(u, v).

We are left to prove the other case: u ≤R v or v ≤R u. We can suppose that both
u ̸= w0 and v ̸= w0, otherwise we would get {s, r} ⊆ TL(u) ∪ TL(v) and we could
conclude as above. Assume, without loss of generality, that u ≤R v and the reduced
expression of u starts with s. Then the reduced expression of v is either (sr)h or (sr)hs
for some h ∈ Z≥0 and, in both cases,

TL(v) = {s, srs, . . . , (sr)ds}, (2.1)

for some d ∈ Z≥0, where some expressions may not be reduced. Since u ∨R v = v,
we have to check that TL(v) = T ∩ VI2(m)(u, v). Furthermore, u ≤R v is equivalent to
TL(u) ⊆ TL(v), so, in this case, (u, v)-Bruhat paths have labels in TL(v). Naturally,
TL(v) ⊆ VI2(m)(u, v), so it suffices to check that (T \ TL(v)) ∩ VI2(m)(u, v) = ∅. We split
the proof in two cases.
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Figure 1: B(I2(m)), if m is even.
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Figure 2: B(I2(m)), if m is odd.

Case 1: all the expressions in the set in (2.1) are reduced, equivalently, d < m−1
2 .

We need to check which vertices we can get in a generic (u, v)-Bruhat path. We can take
a look at the Bruhat graphs in Figures 1 and 2.

Let (sr)is and (sr)js be respectively the first and the second labels of a Bruhat path.
Then the third vertex of the path is

(sr)js(sr)is = (sr)j(rs)i =

{
(sr)j−i, if j > i,
(rs)i−j, otherwise,

(2.2)

where the last equality distinguishes between two possible reduced expressions. More-
over, by definition of Bruhat path, we also need to require that the length increases from
a vertex to its subsequent, hence, in equation (2.2) we ask that

ℓ((sr)is) < ℓ((sr)js(sr)is) ⇐⇒
{

2i + 1 < 2(j − i), if j > i,
2i + 1 < 2(i − j), otherwise.

The second inequality is necessarily false, so, the reduced expression of the third vertex
can only be of the form (sr)l, with l < d. Let (sr)ks be the third label of the path; then
the next vertex is

(sr)ks(sr)l = (sr)k(rs)l−1r =

{
(sr)k−ls, if k > l − 1,
(rs)l−k−1r, otherwise,

where, of course, we have to require that the length increases, i.e.

ℓ((sr)l) < ℓ((sr)ks(sr)l) ⇐⇒
{

2l < 2(k − l) + 1, if k > l − 1,
2l < 2(l − k − 1) + 1, otherwise.
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Again, the second inequality is false, so we can only get a vertex whose reduced ex-
pression is (sr)bs, with b < d. At this point, it is easy to note that any reflection whose
reduced expression is of the form (rs)ir, cannot be a vertex of the path. Furthermore,
any other reflection in T \ TL(v) cannot be a vertex of a (u, v)-Bruhat path. Indeed, let
t be such a reflection; then its reduced expression is (sr)js, with d < j ≤ m−1

2 . Now,
if t ∈ VI2(m)(u, v), from previous calculations, we know that it must be the product of
(sr)is and (sr)l which are respectively the labels of the edge which ends in t and the
vertex preceding t. Moreover, as we already observed, i and l must be smaller than d
and i > l − 1. So, (sr)is(sr)l = (sr)i−ls = (sr)js, and i − l ≤ d − l < j − l < j. Which is a
contradiction, yielding T ∩ VI2(m)(u, v) = TL(v).

Case 2: the set in (2.1) contains expressions that are not reduced.
Now, if m is even, we rewrite the elements of TL(v) only using reduced expressions as

TL(v) = {s, srs, . . . , (sr)
m
2 −1s, (rs)

m
2 −1r, (rs)

m
2 −2r . . . , (rs)m−d−1r},

whereas if m is odd we write it as

TL(v) = {s, srs, . . . , (sr)
m−1

2 s = (rs)
m−1

2 r, (rs)
m−3

2 r . . . , (rs)m−d−2r}.

We discuss both cases at the same time. Note that any reflection whose reduced expres-
sion starts with s is in TL(v). We consider k := min{n ∈ Z≥0 | (rs)nr ∈ TL(v)} and prove
that if 0 ≤ j < k, then (rs)jr /∈ VI2(m)(u, v).
Suppose (rs)jr ∈ VI2(m)(u, v), with 0 ≤ j < k; then the first label of the path must be
(sr)is for some i < j, since we need to start with a reflection that is shorter in length. At
this point, we have two possibilities for the second label of the path. If it is (rs)lr, for
some k ≤ l ≤ d, then the third vertex of the path is

(rs)lr(sr)is = (rs)l(rs)i+1 =

{
(rs)l+i+1, if l + i + 1 ≤ m

2 ,
(sr)m−l−i−1, otherwise.

(2.3)

Note that, since l ≥ k, the first case of equation (2.3) gives an element which is already
longer than (rs)jr, so we do not consider it.
If the second label is (sr)ls, for some i < l ≤ d, then, as we computed earlier, the
reduced expression of the third vertex is (sr)b. So, whatever is the reduced expression
of the second label, in order for (rs)jr to be a vertex of the path, the third vertex is (sr)b

for some b. Starting from this vertex, if we label the third edge by (sr)ls, with l < m−1
2 ,

then, as in case 1, we get a fourth vertex whose reduced expression is (sr)cs, for some
c. Hence, we would be back to a vertex with the same form of the second one. For this
reason, we only have to discuss the other possibility. If the third label is (rs)lr, with
k ≤ l ≤ d, then the fourth vertex of the path is

(rs)lr(sr)b = (rs)l+br =

{
(rs)l+br, if l + b ≤ m−1

2 ,
(sr)m−l−b−1s, otherwise.

(2.4)



Join in the weak order 7

The first case of equation (2.4) is a reduced expression of the form we are looking for, but
its length is necessarily more than 2k+ 1. This means that we cannot get (rs)jr, with j < k
as a vertex of a (u, v)-Bruhat path. This concludes the proof, as TL(v) = T ∩ VI2(m)(u, v)
and TL(u ∨R v) = TL(v).

3 Symmetric groups

We consider the combinatorial description of the Coxeter system (W, S) of type An−1,
where W is the symmetric group Sn and S = {(i i + 1) | i ∈ [n − 1]} is the set of
simple transpositions; moreover, the set of reflections is given by the transpositions:
T = {(i j) | 1 ≤ i < j ≤ n}. We denote a permutation with its one-line notation
σ = σ(1)σ(2) · · · σ(n) and we call inversion of σ a pair (i, j) ∈ [n]× [n], such that i < j
and σ(i) > σ(j). The set of inversions of σ is denoted by Inv(σ) and its cardinality by
inv(σ), which is known to be equal to ℓ(σ), the Coxeter length of σ. Observe that if
i, j ∈ [n] are such that i < j and σ ∈ Sn, the following are equivalent:

(i) (a b) ∈ TL(σ); (ii) (σ−1(b), σ−1(a)) ∈ Inv(σ); (iii) (a, b) ∈ Inv(σ−1).

Therefore, for σ, τ ∈ Sn, we have σ ≤R τ if and only if Inv(σ−1) ⊆ Inv(τ−1). Before
proving the conjecture for symmetric groups, we check its statement in the following
example.

1234

13242134 1243

2143 13422314

3142 241323413214 4123 1432

3241 2431 3412 4213

3421 4231 4312

4321

3124 1423

4132

Figure 3: Hasse diagram of (S4,≤R) from example 7.

Example 7. Consider σ = 3124 and τ = 1423 in S4. We have TL(σ) = {(1 3) , (2 3)},
TL(τ) = {(2 4) , (3 4)} and from Figure 3 we see that σ ∨R τ = 4312, so TL(σ ∨R τ) =
{(1 3) , (1 4) , (2 3) , (2 4) , (3 4)}. Let us verify that the conjecture holds for this example, i.e.

TL(σ ∨R τ) = T ∩ VS4(σ, τ). (3.1)
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4213 3412 4132 3241

3214 4123 3142 1432

1423 13423124

1324 1243

1234

4231 3421 4312

4321

(3 4)(2 3)

(2 4)

(2 3)

(1 3)
(2 4)

(3 4)

(3 4)

(1 3)

(3 4) (2 4) (1 3)
(2 3)

(1 3)(1 3)

(2 4)

(3 4)(1 3)

(1 3)

(3 4)

(2 3)
(2 4)

(3 4)

(1 3) (2 3)

(2 3)

(1 3)

(3 4)

(3 4)

1324 1243

3214 1432

4231

(2 4)

Figure 4: A subgraph of B(S4) representing every possible (σ, τ)-Bruhat path where
reflections are highlighted.

By definition of (σ, τ)-Bruhat path, we have TL(σ) ∪ TL(τ) ⊆ T ∩ VS4(σ, τ), as TL(σ) ∪ TL(τ)
is the set of labels of (σ, τ)-Bruhat paths; furthermore we have the path

1234
(1 3)−−→ 3214

(3 4)−−→ 4213
(1 3)−−→ 4231 = (1 4) ,

thus, (1 4) ∈ VS4(σ, τ) and TL(σ∨R τ) ⊆ T∩VS4(σ, τ). Now, since T \TL(σ∨R τ) = {(1 2)},
we can look at all possible (σ, τ)-Bruhat paths represented in Figure 4 and check that (1 2) /∈
VS4(σ, τ), so equation (3.1) holds. We can also argue that (1 2) is a simple reflection, therefore it
is a vertex of a (σ, τ)-Bruhat path if and only if it is in TL(σ) ∪ TL(τ).

In order to prove Conjecture 4 we use a known result about left-reflection sets of the
join of two permutations. First, we say a set of transpositions J ⊆ T is transitively closed
if for any (i j) , (j k) ∈ J with i < j < k, then (i k) ∈ J. Recall that (i j) ∈ TL(σ) if and
only if i < j and σ−1(i) > σ−1(j), so TL(σ) is transitively closed. The following theorem
is well-known and its proof can be found in [7, Theorem 1(b)].

Theorem 8. Let σ, τ ∈ Sn and denote by Jtc the transitive closure of a subset J ⊆ T; then

TL(σ ∨R τ) = (TL(σ) ∪ TL(τ))
tc.
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We prove the conjecture by double inclusion. We start by showing that any left-
reflection of the join σ ∨R τ is a vertex of a (σ, τ)-Bruhat path. A Bruhat path is called
palindromic if its sequence of labels is palindromic.

Theorem 9. Let σ, τ ∈ Sn and consider t ∈ TL(σ ∨R τ); then there exists a palindromic (σ, τ)-
Bruhat path from e to t.

Proof. Let t = (a b), with 1 ≤ a < b ≤ n and suppose t ∈ TL(σ) ∪ TL(τ); then e t−→ t is a
palindromic (σ, τ)-Bruhat path. On the other hand, if t /∈ TL(σ) ∪ TL(τ), by Theorem 8,
there is a chain a = i0 < i1 < i2 < · · · < il−1 < il = b, with l ≥ 2, such that (ir ir+1) ∈
TL(σ) ∪ TL(τ), for any r ∈ {0, 1, . . . , l}. Furthermore, t is obtained by the product of
transpositions as follows:

t = (a b) = (a i1) (i1 i2) · · · (il−2 il−1) (il−1 b) (il−2 il−1) · · · (a i1) .

Now, we define the following palindromic path and show that it is a (σ, τ)-Bruhat path.
We do this in two steps.

e
(a i1)−−−→ (a i1)

(i1 i2)−−−→ (i1 i2) (a i1)
(i2 i3)−−−→ · · · (i1 i2)−−−→ (a i1) (a b)

(a i1)−−−→ (a b) . (3.2)

Step 1: we check that for any k ∈ [l − 1],

inv((ik ik+1) · · · (i1 i2) (a i1)) > inv((ik−1 ik) · · · (i1 i2) (a i1)). (3.3)

Recall that the number of inversions of a permutation is equal to its length. We use the
following notation:

(ik ik+1) · · · (i1 i2) (a i1) =
[

a i1 i2 · · · ik ik+1
ik+1 a i1 · · · ik−1 ik

]
, (3.4)

in which we denote only the indexes that are involved in our computation. Likewise, we
have

(ik−1 ik) · · · (i1 i2) (a i1) =
[

a i1 i2 · · · ik ik+1
ik a i1 · · · ik−1 ik+1

]
. (3.5)

From (3.4) and (3.5), we see that

inv((ik ik+1) · · · (i1 i2) (a i1))
= inv((ik−1 ik) · · · (i1 i2) (a i1)) + (ik+1 − ik) + (ik+1 − ik − 1)

(3.6)

as in (ik ik+1) · · · (i1 i2) (a i1) we have (ik+1 − ik) more inversions in which the first index
is a and (ik+1 − ik − 1) more inversions in which the second index is ik+1 and the first is
not a. Thus, equation (3.6) yields

inv((ik ik+1) · · · (i1 i2) (a i1)) = inv((ik−1 ik) · · · (i1 i2) (a i1)) + 2(ik+1 − ik)− 1
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and, since 2(ik+1 − ik)− 1 > 0, for any k ∈ [l − 1], the inequality in (3.3) is satisfied.
Step 2: we call σk := (il−k il−k+1) · · · (il−2 il−1) (il−1 b) · · · (i1 i2) (a i1) and check that

inv(σk−1) < inv(σk), for any k ∈ {2, 3, . . . , l}. We use the notation introduced earlier
getting

σk−1 =

[
a i1 i2 · · · il−k+1 b
b a i1 · · · il−k il−k+1

]
and

σk =

[
a i1 i2 · · · il−k il−k+1 b
b a i1 · · · il−k−1 il−k+1 il−k

]
.

We note that σk has (il−k+1 − il−k − 1) less inversions in which the last index is il−k+1
and (il−k+1 − il−k) more inversions in which the second index is b. Thus,

inv(σk) = inv(σk−1)− (il−k+1 − il−k − 1) + (il−k+1 − il−k) = inv(σk−1) + 1 > inv(σk−1),

for any k ∈ [l]. So, we proved that the path in (3.2) is indeed a palindromic (σ, τ)-Bruhat
path.

Theorem 9 implies TL(σ ∨R τ) ⊆ T ∩ VSn(σ, τ), so we are left to prove the converse
inclusion. In order to do that, we first prove a property of Bruhat paths from e to a
reflection (a b) ∈ T.

Lemma 10. Let (a b) ∈ Sn with a < b; then all the edges of a Bruhat path from e to (a b) are
labeled by elements of Tab := {(i j) | a ≤ i < j ≤ b}.

Proof. Let (i1 j1) , (i2 j2) , . . . , (ih jh) ∈ T be the labels of the edges of a Bruhat path from
e to (a b) listed from last to first, i.e. (a b) = (i1 j1) · · · (ih−1 jh−1) (ih jh) .
We prove that (ir jr) ∈ Tab, for any r ∈ [h], by induction on r. Since (a b) is the last
vertex of the path, then the last edge is labeled by an element of TL((a b)) ⊆ Tab, thus,
(i1 j1) ∈ Tab verifying the base case of induction. Suppose r > 1 and assume, by induc-
tive hypothesis, that (il jl) ∈ Tab, for any l ∈ [r − 1]. Since the length in a Bruhat path
must increase at every step, we know that

(ir jr) ∈ TL((ir−1 jr−1) · · · (i1 j1) (a b)). (3.7)

Call β := (ir−1 jr−1) · · · (i1 j1) (a b) and suppose (ir jr) /∈ Tab and note that, since we
assume ir < jr, equation (3.7) is equivalent to

β−1(ir) > β−1(jr). (3.8)

Recall that by inductive hypothesis, ik, jk ∈ {a, a + 1, . . . , b}, for any k ∈ [r − 1] and
distinguish 3 cases:
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1. if {ir, jr} ∩ {a, a + 1, . . . , b} = ∅, then equation (3.8) implies

ir = (a b) (i1 j2) · · · (ir−1 jr−1) (ir) > (a b) (i1 j2) · · · (ir−1 jr−1) (jr) = jr,

but ir < jr from which we get a contradiction;

2. if ir < a while jr ∈ {a, a + 1, . . . , b}, then by equation (3.8), we get ir > β−1(jr); but
β−1(jr) ∈ {a, a + 1, . . . , b} so, we have a contradiction since a > ir;

3. if ir ∈ {a, a + 1, . . . , b}, jr > b, equation (3.8) yields β−1(ir) > jr and, since β−1(ir) ∈
{a, a + 1, . . . , b}, again we end up with a contradiction.

Therefore, necessarily (ir jr) ∈ Tab, so, by induction, every edge of a Bruhat path from e
to (a b) is labeled by a reflection in Tab.

Before giving the proof of the last part of the conjecture we observe that if σ ∈ Sn is
product of elements of Tab, then σ(k) ∈ {a, a + 1, . . . , b}, for any k ∈ {a, a + 1, . . . , b} and
σ(i) = i, for any i ∈ [n] \ {a, a + 1, . . . , b}.

Theorem 11. Let σ, τ ∈ Sn; then

TL(σ ∨R τ) = T ∩ VSn(σ, τ).

Proof. By Theorem 9, we only need to prove that any (a b) ∈ VSn(σ, τ) is in TL(σ ∨R τ).
Theorem 8 guarantees that we can show this by proving that (a b) is in the transitive
closure of TL(σ) ∪ TL(τ); i.e. there exists a chain a = i1 < i2 < · · · < ih = b such that(
ij ij+1

)
∈ TL(σ) ∪ TL(τ), for any j ∈ [h − 1].

Let us consider a (σ, τ)-Bruhat path from e to (a b):

e
(j0 j1)−−−→ (j0 j1)

(j2 j3)−−−→ (j2 j3) (j0 j1)
(j4 j5)−−−→ · · · · · · (jk−1 jk)−−−−→ (a b) ,

which implies
(a b) = (jk−1 jk) (jk−3 jk−2) · · · (j0 j1) . (3.9)

At this point, the crucial idea is to note that, since (a b) maps a to b, among the labels of
this path there must be transpositions of the following form: (a c1) , (c1 c2) , . . . , (cs b) ,
where we do not assume that for any j ∈ [s − 1], we have cj < cj+1. Indeed, in the
product of equation (3.9) these transpositions map a to b. Now, we can observe that, by
Lemma 10, c1, c2, . . . , cs ∈ {a, a + 1, . . . , b} and, to prove that (a b) ∈ (TL(σ) ∪ TL(τ))

tc, it
is sufficient to show that a < c1 < c2 < · · · < cs < b.

We already know that a < c1 and cs < b, hence it suffices to prove that cr < cr+1,
for any r ∈ [s − 1]. Let β be the first vertex of the path from which starts an edge
labeled by (cr cr+1) and such that β(a) = cr. Now, if we suppose cr > cr+1, then, since
inv((cr cr+1) β) > inv(β), we get

β−1(cr) > β−1(cr+1). (3.10)
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Observe that, by what we noticed before, (3.10) implies a = β−1(cr) > β−1(cr+1), but
since cr+1 ≥ a, then we have β−1(cr+1) ≥ a as by Lemma 10, β is product of transposi-
tions in Tab. This is absurd, so, we obtain cr < cr+1 for any r ∈ [s − 1] and, finally,

(a b) ∈ (TL(σ) ∪ TL(τ))
tc = TL(σ ∨R τ)

which concludes the proof.

4 Concluding remarks

We are working on generalizing the proof of Conjecture 4 for all classical Coxeter groups.
Our approach is based on a case by case analysis that uses the combinatorial descrip-
tion of any group. We are also interested in finding a uniform proof, possibly using
properties of the associated root system or of the Coxeter arrangement.
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