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Molecules of affine fixed-point-free W-graphs
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Abstract.  RSK correspondence gives a bijection from a permutation to a pair of
semistandard Young tableaux with same shape. For the symmetric groups, Kazhdan
and Lusztig use the RSK correspondence to classify the molecules and cells of the S,-
graphs. To generalize this to the affine case, Chmutov, Pylyavskyy and Yudovina set
up an affine RSK correspondence, giving a bijection from an affine permutation to a
triple (P, Q, p) where P and Q are tabloids of same shape and p is a dominant weight.
Moreover, Chmutov, Lewis and Pylyavskyy use it to classify the affine molecules. Mar-
berg generalizes Kazhdan and Lusztig’s W-graphs, using affine fixed-point-free invo-
lutions as their indices. In this paper, we use affine RSK correspondence to classify the
molecules of Marberg’s S,,-graphs.

Keywords: Affine permutation, Kazhdan-Lusztig cells, Affine matrix-ball construc-
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1 Introduction

In an important paper [°], Kazhdan and Lusztig laid a basis for a new approach to
representation theory of Hecke algebras. Since then, this approach, called Kazhdan—
Lusztig theory, has been developed significantly. Of particular importance in this theory
are the objects called cells. Briefly, their definition is as follows. Each Hecke algebra
is associated with a Coxeter group W. Kazhdan and Lusztig define a pre-order <; on
elements of W. Some pairs v, w of elements of W satisfy both v <; w and w < v, in
which case we say that they are left-equivalent, denoted v ~;, w. Similarly one can define
right equivalence ~g. The respective equivalence classes are called the left cells and the
right cells.

Another way to describe cells is via the Kazhdan-Lusztig W-graph; it is a certain
directed graph whose vertices are the elements of W. The graph has the property that
v < w precisely when there is a directed path from v to w. Thus the cells are the strongly
connected components of the W-graph. Some edges of the W-graph are bidirected, i.e.,
between a pair of vertices v and w there is an edge v — w and an edge w — v. The
connected component of the subgraph of W-graph considering only the bidirected edges
are called molecules. Of course, v and w belong to the same Kazhdan-Lusztig cell if they
belong to the same molecule.
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In type A, cells and molecules can be determined by the Robinson-Schensted corre-
spendence. Two permutations are in the same left cell if and only if they have the same
recording tableau while two permutations are in the same right cell if and only if they
have the same insertion tableau. The bidirected edges are determined by Knuth moves,
and in this type, each left cells have only one molecules.

In affine type A, when W is an affine symmetric group, Chmutov, Pylyavskyy, and
Yudovina [”] described, via a combinatorial algorithm called the Affine Matrix Ball Con-
struction (AMBC), a bijection W — Q4om, where Q4o is the set of triples (P, Q, p) such
that P and Q are tabloids of the same shape and p is an integer vector (called a dominant
weight) satisfying certain inequalities that depend on P and Q. Relying on the work of
Shi on Kazhdan-Lusztig cells in affine type A, they show that this bijection affords a
description of cells analogous to the non-affine case: fixing the tabloid Q gives all affine
permutations in a left cell while fixing the tabloid P gives all affine permutations in a
right cell. The bidirected edges in this case (what Shi called star operations [7]) are natural
analogues of Knuth moves.

In [6], E. Marberg constructed two S,-graphs with affine fixed-point-free involutions
as their vertices. Analogue to the Kazhdan-Lusztig W-graphs, we can define the cells
and molecules via the graphs. In this paper, we use AMBC to determined the molecules
of one of the two S,-graphs. We have the following theorems.

Theorem 1.1. For two affine involutions w and v, they are in the same molecule in I'™
only if they have the same sign, and corresponding to tabloids of the same shape with
same dominant weight applying AMBC.

Note that this is just a necessary condition, which is not sufficient.

Theorem 1.2. The molecules of I']' with same sign, same shape and same dominant
weight are isomorphic to each other.

2 Preliminary

2.1 Affine permutations and involutions

Let n be a positive integer. Write Z for the set of integers and define [n] = {1,2,...,n}.
LetIN = {0,1,2,...}and P = {1,2,3, ... } be the sets of nonnegative and positive integers.

Definition 2.1. The affine symmetric group S, is the group of bijections 7 : Z — Z satis-
fying (i +n) = n(i) +nforallie Z and n(1) + 7(2)+ -+ 7t(n) =142+ - +n.

We refer to elements of S, as affine permutations. A window for an affine permutation
7w e S, is a sequence of the form [7t(i + 1), 7t(i +2),...,7(i + n)] where i € Z. An
element 7t € S, is uniquely determined by any of its windows, and a sequence of n
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distinct integers is a window for some 7t € S, if and only if the integers represent each
congruence class modulo 7 exactly once.

Let s; for i € Z be the unique element of S, that interchanges i and i + 1 while
fixing every integer j ¢ {i,i + 1} + nZ. One has s; = s;,, for alli € Z, and {s1,55,...,5x}
generates the group S,,. With respect to this generating set, S, is the affine Coxeter group
of type A, _1. The parabolic subgroup S, = {s1,52,...,5,-1) C S, is the finite Coxeter
group of type A,_1; its elements are the permutations 7 € S, with 7t([n]) = [n].

A reduced expression for ™ € S, is a minimal-length factorization 7w = s;s;,---s;.
The length of m € S,, denoted ¢(7), is the number of factors in any of its reduced
expressions. The value of /(7r) is also the number of equivalence classes in the set
Inv(rt) = {(i,j) e ZxZ i < jand 7t(i) > 7t(j)} under the relation ~ on Z x Z with
(a,b) ~ (a', V) ifand only if a —a’ = b — b’ € nZ.

From here, let nn be an even integer. An affine involution is z € S, such thatz2 = 1. An
affine fixed-point-free involution is an affine involution z such that there are no x € [n]
with z(x) = x. The set of all involutions is denoted as I,, while the set of all fixed-point-
free involutions is denoted as F,,. On F;,, we define /FPF(z) = %(ﬁ(z) —5)

Definition 2.2. Given 7 € §,, define B(7) = %Z?:l |7t(i) — ry(72(i))|, where r,(i) for
i € Z denotes the unique element of [n] that satisfies r,(i) = i (mod n). For z € F,
define sgn,.(z) = (—=1)PR),

Let
0" =s153---5,.1 =[2,1,4,3,...,n,n—1] e I,
and
O =sp54---5, =[1,0,3,2,...,n—1,n—-2] e I,

so that sgn..,.(©F) = +1. We reserve the symbol © to denote one of the two elements of
{®*}. Define F, as the S,-conjugacy class of ®* and F,, as the S,-conjugacy class of
©~. One can show that

Ff ={ze Fy:sgngp(z) =1} and Fy ={ze Fy:sgngp(z) = -1} (2.1)

and hence that 7, = F,7 u F,;; see, e.g., [5, Theorem 5.4].

2.2 Tabloids

Let A = (Aq,...,Ay) be a partition of size > ;A; < n. A tabloid P of shape A is an
equivalence class of fillings of the Young diagram of shape A with elements of [77] under
identification of fillings that differ by reordering elements within rows. Here i denotes
the equivalence class of integers k = i (mod n). We think of the i-th row of a tabloid P
as a set P; < [n].



4 Yifeng Zhang

Example 2.3.
2
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These are several tabloids of shape (3,1). The first two tabloids are equal, since they
differ only by permuting elements within rows.

The order of elements in each row does not matter, but it is convenient to regard
elements of T; as being ordered with respect to the linear ordering 1 < --- < 7. In this
case we say that T is presented row-standard. In the remaining sections, we assume all
tabloids are presented row-standard. For a partition A - 1, define RSYT(A) to be the set
of row-standard Young tabloid of shape A.

We call the analogue of the descent set for tabloids the t-invariant, in reference to
Vogan’s (generalized) T-invariant [11].

Definition 2.4. For a tabloid T filled with all the elements of [7], define the t-invariant
by

7(T) := {i € [11] : i lies in a strictly higher row of T than i + 1}.
Example 2.5. The following tabloid T has 7(T) = {2,5, 8}.

Qol| Gl

T :=

= SN[ NI
W[ \JI| H=|

2.3 AMBC

Here we briefly recall some notations from [”] and [!] and discuss the relations between
the affine matrix-ball construction (abbreviated AMBC) and Kazhdan-Lusztig cells.

For T = (Ty,...,T;) € RSYT(A) and i € [1,] — 1] we define Ich;(T), called the local
charge in row 7 of T, as follows. Suppose that T; = (ay,...,as) and T;y1 = (by,...,by).
Then Ich;(T) is the smallest d € IN such that a;_4 < b; for [ € [d + 1,t]. Pictorially, this
measures necessarily shift of T; to the right so that (T;, T;;1) becomes a standard Young
tableau (of skew shape). For example, if T; = (3,5,7,8) and T;;1 = (1,2,4,6) then we
have Ich;(T) = 2 which can be obtained from the following picture.

35|78 3(5(7|8
112416 11246

For P,Q € RSYT(A) where A = (Aq,...,A;), we define the symmetrized offset con-
stants with respect to (P, Q), denoted by s(P, Q) = (s1,...,s;) € Z!, as follows.

0 ifi=10r)Li>/\i+1,
S; =
! s;_1+1ch; _1(P) —1ch; 1(Q) otherwise.
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In other words, we have s; —s; 1 = Ich; _1(P) — Ich; 1(Q) whenever A; 1 = A;. (See [,
Definition 5.8] and [!, Theorem 5.10] for the equivalent definitions.) It is easy to show
that for tabloids P, Q, R of the same shape, we have s(P, Q) + s(Q, R) = s(P, R), thus in
particular s(P, Q) +s(Q,P) = s(P,P) = 0.

and Q = Then Ich(P) = 0,Ichy(P) =

\Ol| ool \JI

5
2
6

6 [| BN YN
=]~ Wi

2
Example 2.6. Let P = | 3
1

6
8
9
1,1ch1(Q) = 2, and Ichy(Q) = 0. Thus it follows that s(P, Q) = (0, -2, —1).

For A = (Aq,...,Ay) and p = (py,...,pr), we define rev,(p) to be the integer vector
obtained from p by reversing the order of elements corresponding to the parts of the
same length in A. For example, if A = (2,2,1,1,1) and p = (3,1,5,2,4) then we have
revy(p) = (1,3,4,2,5). We say that p € Z') is dominant with respect to (P, Q) if —(p —
s(P,Q)) is non-increasing, or equivalently rev,(p —s(P, Q)) is non-decreasing.

Example 2.7. In the Example 2.6 the vector p = (2,0,2) € Z3 is dominant with respect to
(P, Q) because p —s(P, Q) = (2,2,3) is a nondecreasing sequence.

We set

Q:= | | RSYT(A) x RSYT(A) x Z'™,
Abn
Qdom = {(P,Q,p) € Q) | p is dominant with respect to

(P, Q) with Zpi =0forp = (p1-- /Pd)}-

We define ®: S;, — Qgom by w — (P(w), Q(w), p(w)) to be the bijection defined in [2]
using the affine matrix-ball construction. Also, let ¥: Q) — S, be the surjection defined
by the backward AMBC. Then by [?, Theorem 5.12] we have ¥|n, = ®'. Both AMBC
and backward AMBC were explained in great detail in both [”] and [!].

For the left and right descent set L(w) and R(w) for w, we have

Proposition 2.8. For any permutation w, L(w) = T(P(w)) and R(w) = t(Q(w)).

2.4 Affine FPF graphs and molecules
The following definitions are from Stembridge’s papers [, 10].

Definition 2.9. For an algebra A, an I-labeled graph for a finite set I is a triple I’ = (V, w, v)
where

(i) V is a finite vertex set;
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(i) w:V xV — Aisamap;
(iii) v: V — P(I) is a map assigning a subset of I to each vertex.

We view I as a weighted directed graph on the vertex set V with an edge x Wby, y if

w(x,y) # 0.

Now assume that (W, S) is a Coxeter system and H is the corresponding Iwahori-
Hecke algebra.

Definition 2.10. An S-labeled graph I' = (V,w,v) is a W-graph if the free A-module
generated by V can be given an H-module structure with

Hgx = {Ux_l s¢v(x) forscSandxe V.
-0 X+ Zer}s¢y(y) w(x,y)y s e v(x)

Example 2.11. There exist a unique ring homomorphism H — H with v — v~! and

Hs; — H 1. we denote this map by H — H, and refer to it as the bar operator of H. Write
< for the Bruhat order on W. By well-known results of Kazhdan and Lusztig [3], for
each w € W there is a unique H,, € H with

H,=H,eHy,+ Z v_l.Z[v_l]Hy.

y<w

The elements {H,,}yecw form an A-basis for H, called the Kazhdan—Lusztig basis. Define
hyy € Z[v™!] for x,y € W such that H, = > ew hxyHx, and let j(x,y) be the coefficient

of v=1in hyy. Finally, let

0, otherwise

v(x) ={se S:l(sx) < {(x)} and w(x,y) = {y(x,y) if v(x) ¢ v(y)

for x,y e W. Then T = (W, w, v) is a W-graph [7].

We turn back to the case W = §S,. Let M = A-span{M; : z € F,} and N =
A-span{N; : z € F,} denote the free .A-modules with bases given by the symbols M,
and N, for z € F,. We call {M,},cr, and {N.},cr, the standard bases of M and N/,
respectively. Let S = {s1,52,...,5n1}.

Proposition 2.12 ([ 12, Corollary 4.15]). Both M and N have unique H-module structures
such that if s € S and z € F,, then we have

M;zs (7P (szs) > (FPF(z)

HsM; = { vM, (FPF(sz5) = (FPF(2)
Mgys + (v —v )M, £FPF(szs) < (FPF(2)
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and
Nazs (FPF(sz5) > (FPF(2)

HsN; = { —v7IN, (FPF(sz5) = (FPF(2)
Ngs + (v =0 V)N, £FPF(szs) < (FPF(2).

Rains and Vazirani’s general theory of quasiparabolic sets gives us for free the H-
module structures described in the previous result. These modules are potentially inter-
esting to study on their own. We note a few special properties which follow from results
in [6].

We write f — f for the automorphism of A interchanging v and v=!. A map U — V
of A-modules is A-antilinear if x — y implies ax — ay for all a € A.

Corollary 2.13 ([12, Corollary 4.16]). The H-modules M and N have the following prop-
erties:

(a) There are unique A-antilinear maps M — M and N' — N, which we write as
X — X, with

HM = H-M and Mg = Mg and HN =H-Nand Ng = Ng

forall M e M, N € NV, and ©® € {®*}. Moreover, both of these maps are involu-
tions.

(b) The H-modules M and N have unique A-bases {M, }cr, and {N, },cr, satisfying
M, =M, eMc+ > v 'Z[o'|M, and N,=N,eNe+ > 0 'Z[v']N,

wW<gx w<gXx

where both sums are over w € F,,. We refer to these as the canonical bases of M and

N.

Define m,, and n,, for x,y € F, as the polynomials in Z[v!] such that

My = Z my, My and My = Z Ny Ny.

Xegn xegn

Let ym(x,y) and un(x,y) denote the coefficients of v 1in m,, and ny,. Define vy, vn:
F n > P(S ) by

Vm(x) = {s €S :sxs <p x} and Vn(x) ={se€S:x <psxs}
where S = {s1,5,...,54} < S, Finally, let wm: F x Fy, — Z be the map with
wml,y) = Pm (X, Y) + pm(y, %) Vm(X) & Vm(y)
0 Vm (X) < vm(y).

Define wn: Fy x F; — Z by the same formula, but with pyn and vy replaced by un and
Vn.



8 Yifeng Zhang

Corollary 2.14 ([0, Theorem 3.26]). Both I = (Fy, Wm,Vm) and I} = (F,, wn,Vn) are
Sn-graphs.

We call these graphs affine FPF graphs. The strongly connected components in a
W-graph I are called cells. The connected components with respect to bidirected edges
are called molecules. It is generally an interesting problem to determine the cells and
molecules in a given W-graph.

If n = 2 then one can show that I'' and I'}; both decompose into just two cells given
by F,7 and F,, .

3 Affine Knuth moves and involutive transformation

Definition 3.1. Let i € Z. Two affine permutations w and w' are connected by a Knuth
move at position i if all of the following hold:

e for all j such that j =i (mod n), we have w'(j) = w(j + 1) and w'(j + 1) = w(j);
e for all j such thatj#i (mod n),j#i+1 (mod n), we have w'(j) = w(j);

e at least one of w(i +2) and w(i — 1) is numerically between w(i) and w(i + 1).

We denote it as w f;? w'. Also, we write w Tl{ w if w(i +2) and w(i — 1) are not

numerically between w(i) and w(i + 1).

Definition 3.2. Let n > 3. For a tabloid T and each integer 1 < i < n, the dual equivalence
operator D; is the map acting on T by

si(T) ifie T(T\t(si(T)), i £ 1€ 7(s;(T)\t(T)

Di(T) := oritTlet(T)\t(s;(T )) ZET( i(T)\T(T)
T otherwise.

For x,y € [n], we say x <7 y if y appears above x and x <t y if y appears above x
or in the same row as x. Then we have D;(T) = s;(T) if and only if one of the following
happens: i+ 1 <7i+2 <7, i<ri+2<7i+1,i+1<7i-1<7i,i<7i—-1<ri+1.

Definition 3.3. Let T = (T, T, ---) be a tabloid of shape A and suppose that i € T;
forsome 1 < i <nmand 1 <t <1 = I(A). We define 6§(T,i) = (4,02,---,0;) and
((T,i) = (11,12, -+ ,1;) as follows. Here [—] is the Iverson bracket.

e If At = A;_1, then we put §(T, i) = 0. Otherwise, 8(T, i) = ([A; = A])1<jr.
(T, i) = ([j = thigj<t = ([F € TiDh<jst-
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Theorem 3.4 ([!, Theorem 3.11]). Suppose w is an affine permutation with ®(w) =
(P,Q,p) and @'~ w. Then ®(w') = (P, Di(Q),p +1(Q, 1) ~ (Q, ).

Definition 3.5. Let i € Z. Two affine permutations w and w’ are connected by a dual
Knuth move at position i if w™! and (w’)~! are connected by a Knuth move at position i.

. i . i . i
We denote it as w ~ w’. We also write w ~ wif w ~ w.

Proposition 3.6 ([, Proposition 5.10]). Suppose w is an affine permutation with ®(w) =

(P,Q,p) and @' - w. Then ®(w') = (D;(P), Q,p (P, 1) + (P, ).
Definition 3.7. Let i € Z. Two affine involutions z and z’ are connected by an involutive

transformation at position i if there exist an affine permutations w such that z Tl{ w ;iiKJ z'.

. 1
We denote it as w ~ w'.
t

Corollary 3.8 ([4, Proposition 5.10]). Suppose w is an affine involution with ®(w) =
(P, P,p). Then w' ]i’ w if and only if ®(w') = (D;(P), Di(P), p).
t

Theorem 3.9. If x,y € I, have x ,I’; yand A :={i—1,i,i+ 1} then
t

X if x(A) # A and x(i) is between x(i — 1) and x(i + 1)
(i—1,i)x(i—1,1) if x(A) # A and x(i + 1) is between x(i — 1) and x(i)

I (i,i4+1)x(i,i+1) if x(A) # A and x(i — 1) is between x(i) and x(i + 1)
(i—-1i+1x(i—1,i+1) ifx(A)=A.

4 Shift and Knuth moves

Define w = [2,--- ,n,n + 1]. Then we have the following proposition.

Proposition 4.1 ([4, Proposition 5.5]). Suppose w is an affine permutation with ®(w) =
(P,Q,p). Then

CD((UZU) = ((,U(P), Q/p - S<P/ Q) + S(CU(P), Q) + 5(Q/ 1’1)),
D(ww ) = (P,w(Q),p —s(P,Q) +s(P,w(Q)) — 6(Q, n)).

Moreover, if w is an affine involution, then ®(www™!) = (w(P)

£
=
=
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Proposition 4.2. Suppose x, y are affine involutions, then x ,IL y if and only if wxw™! e
t

-1

It
wyw

1

Proposition 4.3. Suppose w is an affine involution, then w and www™" cannot be con-

nected by a sequence of involutive transformation.

Theorem 4.4. Suppose w is an affine involution with ®(w) = (P, P,p). For each P’ with
same shape as P, let w' = ¥(P’, P/, p). Then there exist i € [n], such that w and w'w'w ™’
are connected by a sequence of involutive transformations.

5 Bidirected edges
In this section, we discuss about the bidirected edges for I'}' and I'};, which is an analogue
of Lemma 3.10 of [/].

Lemma 5.1. There is a bidirected edge in the S,-graph '™ between x < y € JF,, if and
only if there exist {s,t} = {s;_1,s;}, such that txt < x < sxs =y < tyt.

In this case, we label this bidirected edge by i.
Proposition 5.2. There is a bidirected edge in the S,;-graph I'™ between x, y € F; labeled
i if and only if x fi/ v.
Lemma 5.3. There is a bidirected edge in the S,-graph I'? between x < y € F, if and
only if there exist {s,t} = {s;_1,s;}, such that txt < x < sxs =y < tyt.

In this case, we label this bidirected edge by i.
Definition 5.4. Suppose x,y € Fy,. Forje {i —1,i,i + 1} let

o)) = {’.“(j) A L G.)
j ifj#£x(j)e{i—1,i,i+1}.

: i , .
Then, we define x ~y for some 1 <i < n if
nlt

X if v(i) is between v(i — 1) and v(i + 1)
y=1({—-1ix(i—1,i) ifv(i+1) is between v(i —1) and v(i)
(i,i+1)x(i,i+1) ifv(i—1)is between v(i) and v(i + 1).

If x ~ Y, we say that they are connected by an n-involutive transformation.
nlt

Theorem 5.5. There is a bidirected edge in the S,-graph I'? between x,y € F, labeled i

if and only if x ;ﬁ y.



Molecules of affine fixed-point-free W-graphs 11

6 Molecules of affine fpf graph

Theorem 6.1. For w,v € F;, they are in the same molecule in I'}! if and only if they are
connected by a sequence of involutive transformations.

Corollary 6.2. For two affine involutions w and v, they are in the same molecule in I}
only if they have the same sign, and corresponding to tabloids of the same shape with
same dominant weight applying AMBC.

Note that this is just a necessary condition, which is not sufficient, according to
Proposition 4.3. Moreover, we have the following example.
For n = 4, by definition of molecule, we can find such two molecules:

{I4,3,2,1],[-4,3,2,9],[3,—4,1,10],[-5,4,9,2], [4,-5,10,1], [4,11, -6, 1]}
and
{l0,-1,6,5],[0,7,-2,5],[7,0,-3,6],[-1,8,5,-2],[8,—1,6,—-3],[-8,—1,6,13]}.

All of them have the same sign +1 and are corresponding to tabloids of the same shape
0]
with same dominant weight .

Although we cannot distinguish between these molecules with same sign, same shape
and same dominant weight, there exist a graph isomorphism between these molecules.

Theorem 6.3. The molecules of I']' with same sign, same shape and same dominant
weight are isomorphic to each other.

Proposition 6.4. The number of molecules of I';' with the same shape A and same dom-
inant weight p is the smallest i such that w'(P(A)) and P(A) are connected by a sequence
of dual equivalence operators. Moreover, this number is independent from the weight p.

We denote this number by o(A) and call it the order of A. Recall that a|b means a
divides b for two integers a,b. Moreover, a|b|c means a|b and b|c.

Proposition 6.5. We have 2|o(A)|n. Specifically, o((1,1,---,1)) = n and o((3, 5)) = 2.
Proposition 6.6. Every molecule of I']! has a single minimal element.

Theorem 6.7. For w,v € F,, they are in the same molecule in I'} if and only if they are
connected by a sequence of n-involutive transformation.
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