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The Chow and augmented Chow polynomials
of Uniform Matroids
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Abstract. We provide explicit combinatorial formulas for the Chow polynomial and
for the augmented Chow polynomial of uniform matroids, thereby proving a conjec-
ture by Ferroni. These formulas refine existing formulas by Hampe and by Eur, Huh,
and Larson, offering a combinatorial interpretation of the coefficients based on Schu-
bert matroids. As a byproduct, we count Schubert matroids by rank, number of loops,
and cogirth.
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1 Introduction and main results

The Chow polynomial HM(x) and the augmented Chow polynomial HM(x) of a ma-
troid M are the Hilbert–Poincaré series of the Chow ring and of the augmented Chow
ring, respectively. These polynomials are known to be unimodal, palindromic, and γ-
positive, as proven in [7]. Both polynomials are also conjectured to be real-rooted, which
is only known for the augmented Chow polynomials of uniform matroids [7]. A second
proof of the γ-positivity, along with a combinatorial formula for the γ-expansion of
both HM(x) and HM(x), is provided in [14].

Let Uk,n be the uniform matroid on ground set [n] = {1, . . . , n} and of rank k, with
bases being all k-element subsets. As shown in [7, Theorem 1.11], the coefficients of
the Chow polynomial and of the augmented Chow polynomial of an arbitrary loopless
matroid M are term-wise maximized when M is a uniform matroid.

This paper proves a conjecture by Ferroni regarding the coefficients in the case of
uniform matroids and provides a monomial expansion for their Chow and augmented
Chow polynomials.
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Theorem 1.1 ([6, Conjecture]). The Chow polynomial and the augmented Chow polynomial of
the uniform matroid Uk,n are given by

HUk,n
(x) =

k−1

∑
m=0

#
{loopless Schubert matroids on the ground set [n]

of rank m + 1 and cogirth greater than n−k

}
· xm

HUk,n(x) =
k

∑
m=0

#
{ Schubert matroids on the ground set [n]

of rank m and cogirth greater than n−k

}
· xm .

Hampe showed in [10] that the Chow polynomial of the Boolean matroid Un,n is
the h-vector of the permutahedron, the n-th Eulerian polynomial An(t). Moreover, he
showed that the k-th Eulerian number counts loopless Schubert matroids on n elements
of rank k. Likewise, Eur, Huh, and Larson proved in [4] that the augmented Chow
polynomial of Un,n is the h-vector of the stellahedron, the n-th binomial Eulerian polyno-
mial Ãn(x). Here, the coefficients count Schubert matroids of corresponding rank but
are not necessarily loopless. Theorem 1.1 refines both of these representations.

In [9], Hameister, Rao, and Simpson give a combinatorial formula for the Chow
polynomial of the q-uniform matroid Uk,n(q) on ground set [n], the q-analog of the
uniform matroid which becomes Uk,n for q = 1. This formula is particularly useful in the
cases k = n and k = n − 1. It provides x · HUn−1,n

(x) = dn(x), where dn(x) denotes the n-
th derangement polynomial. More recently, Liao extended this result to the augmented
Chow polynomial in [11, Theorem 4.7], giving HUn−1,n(x) = An(x).

We prove Theorem 1.1 using combinatorial arguments. In particular, we provide
a combinatorial formula on the number of Schubert matroids on a fixed ground set,
according to their rank, cogirth, and number of loops.

1.1 Main results

For any nonempty subset I ⊆ {1, . . . , n}, consider the disjoint partition of I = I1 ∪ · · · ∪ Is
into maximal consecutive subsets such that min(Ij) < min(Ij+1). Define the multinomial
coefficient(

n
∆I

)
=

(
n

min(I1)− 1, min(I2)− min(I1), min(I3)− min(I2), . . . , min(Is)− min(Is−1)

)
,

which takes the differences of these minima of adjacent subsets. For I = {} being the
empty set, we set ( n

∆I) = 1.

Example 1.2. The set I = {2, 3, 5, 7, 8} is partitioned into {2, 3} ∪ {5} ∪ {7, 8}, the multi-
nomial coefficient is(

n
∆I

)
=

(
n

2 − 1, 5 − 2, 7 − 5

)
=

(
n

1, 3, 2

)
=

n!
1! 3! 2! (n − 6)!

for n ≥ 8.
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A descent in a sequence of integers a = (a1, . . . , am) is a position i such that ai > ai+1.
The descent set of a is the set of descents, Des(a) = {i ∈ {1, . . . , m − 1} | ai > ai+1}.
Its size gives the number of descents, denoted by des(a). This notation also applies
to permutations when written in one-line notation. Let E(m, D) denote the number of
permutations in Sm that have descent set D.
Define nc(m) to be the set of all subsets of {1, . . . , m} that contain no consecutive integers.

Theorem 1.3. The Chow polynomial of the uniform matroid Uk,n is given by any of the following
expansions:

HUk,n
(x) = ∑

I⊆{1,...,k}
1∈I

(
n

∆I

)
x|I|−1 (1.1)

= ∑
D∈nc(k−1)

1/∈D

E(n, D) · x|D| · (1 + x)k−1−2·|D| (1.2)

= ∑
σ∈Sk

Des(σ)∈nc(k−1)
σ(1)<σ(2)

(
n − σ(k)
k − σ(k)

)
· xdes(σ) · (1 + x)k−1−2·des(σ) . (1.3)

We deduce Equations (1.2) and (1.3) from the γ-expansion given in [14, Theorem 1.1].
We then prove (1.1) by comparing the coefficients with (1.2).

In the same way, we get a similar version of Theorem 1.3 for the augmented case.

Theorem 1.4. The augmented Chow polynomial of the uniform matroid Uk,n is given by any of
the following expansions:

HUk,n(x) = ∑
I⊆{1,...,k}

(
n

∆I

)
x|I| (1.4)

= ∑
D∈nc(k−1)

E(n, D) · x|D| · (1 + x)k−2·|D| (1.5)

= ∑
σ∈Sk

Des(σ)∈nc(k−1)

(
n − σ(k)
k − σ(k)

)
· xdes(σ) · (1 + x)k−2·des(σ) .

The γ-expansions given in (1.2) and (1.5) are also covered in [12].

Remark 1.5 (Multivariate analogues). In Section 3, we define the multivariate Chow
polynomial and the multivariate augmented Chow polynomial as multivariate versions
of HM(x) and of HM(x). We prove Theorems 1.3 and 1.4 by proving their multivariate
analogs.
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We show in Section 3, how to translate Theorem 1.1 into (1.1) and (1.4). Thereby,

• I ⊆ [n] indexes a set of Schubert matroids,

• 1 ∈ I ensures that these are loopless, and

• max(I) ≤ k ensures that their cogirth is greater than n − k.

Example 1.6. We compute the Chow polynomial of U3,5 using all given ways in Theo-
rem 1.3. Using (1.1), we get

HU3,5
(x) =

(
5
0

)
· x|{1}|−1 +

(
5
0

)
· x|{1,2}|−1 +

(
5

0, 2

)
· x|{1,3}|−1 +

(
5
0

)
· x|{1,2,3}|−1

=1 + x + 10x + x2 ,

using (1.2), we get

HU3,5
(x) =E(5, {}) · x0 · (1 + x)2−2·0 + E(5, {2}) · x1 · (1 + x)2−2·1

=(1 + x)2 + 9x ,

and (1.3) finally gives

HU3,5
(x) =

(
5 − 3
3 − 3

)
· x0 · (1 + x)2︸ ︷︷ ︸

σ=123

+

(
5 − 2
3 − 2

)
· x1 · (1 + x)0︸ ︷︷ ︸

σ=132

+

(
5 − 1
3 − 1

)
· x1 · (1 + x)0︸ ︷︷ ︸

σ=231

=

(
2
0

)
· (1 + x)2 +

(
3
1

)
· x +

(
4
2

)
· x

=(1 + x)2 + 3x + 6x .

All three polynomials coincide with HU3,5
(x) = 1 + 11x + x2.

The following corollary was proven in [7]. We reprove the results by ordering the
sets I within the monomial expansions (1.1) and (1.4), according to the minimum of
their last maximal consecutive subset Is, where I = I1 ∪ · · · ∪ Is is the partition into
maximal consecutive subsets.

Corollary 1.7 ([7, Theorem 1.9]). We have

HUk,n
(x) =

k−1

∑
j=0

(
n
j

)
dj(x) (1 + x + · · ·+ xk−1−j) ,

HUk,n(x) = 1 + x ·
k−1

∑
j=0

(
n
j

)
Aj(x) (1 + x + · · ·+ xk−1−j) ,

where dj(x) is the j-th derangement polynomial, and Aj(x) is the j-th Eulerian polynomial.
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Note that Theorems 1.3 and 1.4 hold at the level of multivariate polynomials as al-
ready mentioned in Remark 1.5. An analogue of Corollary 1.7 does not seem to hold.

Write

HUk,n
(x) =

k−1

∑
i=0

c(i)k,n xi and HUk,n(x) =
k

∑
i=0

c(i)k,n xi .

The formulas that we get from the monomial expansions (1.1) and (1.4) for the co-
efficients c(m)

k,n and c(m)
k,n indicate, that the coefficients give the size of a set. The se-

quences (c(1)k,n)n≥k for fixed k are sums of binomials. In the non-augmented case, we
get a connection to Grassmannian permutations. A permutation w ∈ Sn is called Grass-
mannian if it has at most one descent.

Corollary 1.8. For k ≥ 2, the coefficient c(1)k,n is the number of Grassmannian permutations of
length n avoiding a (fixed) permutation σ ∈ Sk with des(σ) = 1.

Proof. This follows by [8, Theorem 3.3], which provides the same formula for the num-
ber of Grassmannian permutations of length n avoiding a (fixed) permutation σ ∈ Sk

with des(σ) = 1 as we get for c(1)k,n.

This leads to the following open problem:

Open Problem. Describe c(m)
k,n and c(m)

k,n as sizes of sets of permutations of length n ac-
cording to certain restrictions.

2 Background

2.1 R-labeling

Let P = (P,≤) be a finite graded poset of rank n with minimal element 0̂ and maximal
element 1̂. The set of edges of P is denoted by E(P). For a labeling λ : E(P) → Z and
for a maximal chain F = {0̂ = F0 < F1 < · · · < Fn = 1̂}, let λF = (λ1, . . . , λn)
with λi = λ(Fi−1 < Fi) be its edge-labeling sequence . We call λ an R-labeling if every
interval of P admits a unique maximal chain F with strictly increasing edge-labeling
sequence λF = (λ1 < λ2 < · · · < λn).

2.2 Matroids

Let M be a matroid on the ground set E and with bases B. We recall some definitions
and notations for matroids. The rank rk(M) of M is the size of any basis of M. The set
of flats of M ordered by inclusion forms a geometric lattice of rank rk(M), the lattice of
flats denoted by L(M). The dual matroid M∗ of M is the matroid on the same ground
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set E and with bases {E \ B | B ∈ B}. An element x ∈ E is a loop in M if it is not
contained in any basis. A coloop in M is a loop in the dual matroid M∗. A circuit C ⊆ E
is a dependent set of M, such that C \ {x} is independent for all x ∈ C. The girth of M
is the cardinality of the smallest circuit, and the cogirth of M is the girth of M∗.

Let [n] = {1, . . . , n}, and let ([n]k ) be the set of all subsets of [n] that have size k.

2.2.1 Uniform matroids

For n ≥ k, the uniform matroid Uk,n is the matroid on the ground set [n] with set of
bases ([n]k ). Its lattice of flats L(Uk,n) consists of all subsets of size smaller than k together
with the maximal element [n], ordered by inclusion.

2.2.2 Schubert matroids

We use the definition of Schubert matroids given in [5] for the fixed ground set [n].
For π ∈ Sn, let ≤π be the total order on [n] given by the one-line notation of π, that is

π(1) ≤π π(2) ≤π · · · ≤π π(n) .

If π = id is the identity permutation, this gives the usual total order 1 < 2 < · · · < n.
For subsets I = {i1 < · · · < ik}, J = {j1 < · · · < jk} ⊆ [n] with |I| = |J|, we write

I ≤π J if im ≤π jm for each m ∈ {1, . . . , k} .

For a set I ∈ ([n]k ), and for a permutation π ∈ Sn, the Schubert matroid SI,π is the
matroid on the ground set [n] with bases{

J ∈
(
[n]
k

) ∣∣ I ≤π J
}

.

Schubert matroids are a special class of lattice path matroids, sometimes also called nested
matroids [10], generalized Catalan matroids [2] or shifted matroids [1].

3 Sketches of proofs of the main results

In this section, we introduce multivariate versions of the Chow polynomial and of the
augmented Chow polynomial which become the usual polynomials when all variables
are set equal. We then derive Theorem 1.3 and Theorem 1.4 from their multivariate
analogs. In Section 3.3, we study Schubert matroids to translate Theorem 1.1 into (1.1)
and (1.4). The main tool for this translation is Theorem 3.5 in which we count Schubert
matroids on a fixed ground set, according to rank, cogirth, and the number of loops.
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3.1 Multivariate Chow and augmented Chow polynomials

The lattice of flats L(M) of a matroid M always admits an R-labeling [13, Proposition
2.2]. Fix such an R-labeling λ, then, by [14, Theorem 1.1], the Chow polynomial of M is
given by

HM(x) = ∑
F

xdes(λF ) · (1 + x)rk(M)−1−2·des(λF ) , (3.1)

where the sum ranges over all maximal chains F whose edge-labeling sequence λF has
no consecutive descents, Des(λF ) ∈ nc(k − 1), and with 1 /∈ Des(λF ).

The augmented Chow polynomial of M is given by

HM(x) = ∑
F

xdes(λF ) · (1 + x)rk(M)−2·des(λF ) , (3.2)

where the sum ranges over all maximal chains F whose edge-labeling sequence λF has
no consecutive descents, Des(λF ) ∈ nc(k − 1).

Define the multivariate Chow polynomial of M by

HM(x) = ∑
F

1/∈Des(λF)

 ∏
i∈Des(λF )

xi

 ·

 ∏
i∈{1,...,k−1}

i,i+1/∈Des(λF )

(1 + xi)

 ∈ N[x1, . . . , xrk(M)−1]

and define the multivariate augmented Chow polynomial of M by

HM(x) = ∑
F

 ∏
i∈Des(λF )

xi

 ·

 ∏
i∈{0,...,k−1}

i,i+1/∈Des(λF )

(1 + xi)

 ∈ N[x0, . . . , xrk(M)−1] .

Here, both sums range over all maximal chains F in L(M) such that Des(λF ) ∈ nc(k− 1)
contains no consecutive elements. Setting all xi = x, we get back the usual Chow and
augmented Chow polynomials of M, respectively, as given in (3.1) and (3.2).

The motivation for the multivariate versions is combinatorial, see Remark 3.1. Since
both the Chow polynomial and the augmented Chow polynomial arise as Hilbert series
of a graded ring, a natural question is whether the given multivariate polynomials can
be interpreted as multigraded Hilbert series.

Remark 3.1 (A combinatorial natural choice for the multivariate version). Chow poly-
nomials and augmented Chow polynomials are evaluations of the Poincaré-extended ab-
index, which is a polynomial in the variable y with coefficients in the non-commutative
ring Z⟨a, b⟩. This polynomial was introduced in [3] and encodes the positions of ascents
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and descents of edge-labeling sequences of maximal chains. By applying the evalua-
tion approach from [14, Theorem 2.6] to the identity given in [3, Corollary 2.11] and
distinguishing descents by their position, we derive the multivariate forms presented
here.

3.2 Uniform matroids

An R-labeling on L(M) can be constructed by any total order on the atoms of L(M),
see [13, Proposition 2.2]. For the uniform matroid Uk,n, the usual total order 1 < · · · < n
yields the R-labeling λ, defined by

λ(S ≺ T) = min(T \ S) . (3.3)

In particular, the entries in the sequence λF = (λ1, . . . , λk) for a maximal chain F
in L(Uk,n) are all different.

Applying this R-labeling to the definition of the multivariate Chow polynomial and
of the multivariate augmented Chow polynomial results in the following proposition.

Proposition 3.2. The multivariate Chow polynomial of the uniform matroid Uk,n is given by

HUk,n
(x) = ∑

D∈nc(k−1)
1/∈D

E(n, D) ·
(

∏
i∈D

xi

)
·

 ∏
i∈{1,...,k−1}

i,i+1/∈D

(1 + xi)



= ∑
σ∈Sk

Des(σ)∈nc(k−1)
σ(1)<σ(2)

(
n − σ(k)
k − σ(k)

)
·

 ∏
i∈Des(σ)

xi

 ·

 ∏
i∈{1,...,k−1}
i,i+1/∈Des(σ)

(1 + xi)


and the multivariate augmented Chow polynomial of the uniform matroid Uk,n is given by

HUk,n(x) = ∑
D∈nc(k−1)

E(n, D) ·
(

∏
i∈D

xi

)
·

 ∏
i∈{0,...,k−1}

i,i+1/∈D

(1 + xi)



= ∑
σ∈Sk

Des(σ)∈nc(k−1)

(
n − σ(k)
k − σ(k)

)
·

 ∏
i∈Des(σ)

xi

 ·

 ∏
i∈{0,...,k−1}
i,i+1/∈Des(σ)

(1 + xi)

 .
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Theorem 3.3. The multinomial Chow polynomial and the multinomial augmented Chow poly-
nomial of the uniform matroid Uk,n are given by

HUk,n
(x) = ∑

I⊆{1,...,k}
1∈I

(
n

∆I

)
∏

i∈I\{1}
xi−1 , and

HUk,n(x) = ∑
I⊆{1,...,k}

(
n

∆I

)
∏
i∈I

xi−1 .

Sketch of the proof. We only sketch the proof for the non-augmented case. For positive
integers k ≤ n, let

Fk,n(x) = ∑
I⊆{1,...,k}

1∈I

(
n

∆I

)
∏

i∈I\{1}
xi−1 .

Comparing coefficients, we show that Fk,n(x) = HUk,n
(x). Fix a subset S ⊆ {1, . . . , k − 1}.

The coefficient of xS = ∏i∈S xi in Fk,n(x) and in HUk,n
(x), respectively, is given by

[xS]Fk,n(x) =
(

n
∆{1} ∪ (S + 1)

)
and [xS]HUk,n

(x) = ∑
D

E(n, D)

where S + 1 = {s + 1 | s ∈ S}, and where the sum on the right ranges over all sub-
sets D ⊆ {min(S1), . . . min(Sj)} with 1 /∈ D. The right-hand side is

[xS]HUk,n
(x) = ∑

D⊆{min(S1),... min(Sj)}
1/∈D

E(n, D)

= #
{

w ∈ Sn
∣∣ Des(w) ⊆ {min(S1), . . . min(Sj)}

}
=

(
n

min(S1), min(S2)− min(S1), . . . , min(Sj)− min(Sj−1), n − min(Sj)

)
,

which equals the coefficient of xS in Fk,n(x).

Proof of Theorems 1.3 and 1.4. This follows by setting xi = x in Proposition 3.2 and Theo-
rem 3.3.

3.3 Schubert matroids

Recall Ferroni’s conjecture stated in Theorem 1.1, saying that the coefficient of xm in the
Chow and in the augmented Chow polynomials of the uniform matroid Uk,n are given
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by

[xm]HUk,n
(x) = #

{ loopless Schubert matroids on the ground set [n]
of rank m + 1 and cogirth greater than n−k

}
for 0 ≤ m ≤ k − 1 ,

[xm]HUk,n(x) = #
{ Schubert matroids on the ground set [n]

of rank m and cogirth greater than n−k

}
for 0 ≤ m ≤ k .

In this section, we study the Schubert matroid on the fixed ground set [n] to determine
the values of the right-hand side.

The Schubert matroid SI,π for I ∈ ([n]k ) and π ∈ Sn has bases
{

J ∈ ([n]k ) | I ≤π J
}

.
The rank of SI,π is k, the size of the set I, but its loops and cogirth depend on both I
and π.

Proposition 3.4. Let n ≥ k be positive integers, and let I ⊆ {1, . . . , n} and π ∈ Sn.
Let minπ(I) denote the minimal, and let maxπ(I) denote the maximal element in I with re-
spect to the order ≤π.

1. SI,π has loops {π(1), π(2), . . . , π(m − 1)} where π(m) = minπ(I).

2. SI,π has cogirth n + 1 − c where π(c) = maxπ(I).

3. SI,π = Sπ−1(I),id with π−1(I) =
{

π−1(i) | i ∈ I
}

.

Sketch of the proof. An element x ∈ [n] is a loop in SI,π if x is smaller than every element
in I, which proves the first statement. The third statement follows immediately by the
definition of the total order. The second statement follows from the observation, that the
cogirth of SI,π is greater than n − c if and only if maxπ(I) ≤ π(c).

Theorem 3.5. The number of Schubert matroids on the ground set [n] of rank m, with ℓ loops,
and having cogirth n + 1 − k is

∑
I⊆{ℓ+1,...,k}

ℓ+1,k∈I
|I|=m

(
n

∆I

)
.

Sketch of the proof. By Proposition 3.4, the number of Schubert matroids on the ground
set [n] of rank m, with ℓ loops, and having cogirth n − k is

∑
I⊆{ℓ+1,...,k}

ℓ+1,k∈I
|I|=m

#
{
Sπ(I),π | π ∈ Sn

}
.

The group Sn acts on the set of Schubert matroids by τ ∗ SI,π = Sτ(I),τπ. By the orbit-
stabilizer theorem and by Lagrange’s theorem, we have

#
{
Sπ(I),π | π ∈ Sn

}
=

n!

#
{

π ∈ Sn | Sπ(I),π = SI,id

} .
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A permutation π ∈ Sn satisfies Sπ(I),π = SI,id if and only if it can be written as a product
of permutations π = π(0)π(1) · · ·π(s) such that for j ∈ {0, . . . , s}

π(j) ∈ Sym({mj, mj + 1, . . . , mj+1 − 1}) with mj =


1, j = 0,
min(Ij), 1 ≤ j ≤ s − 1,
n + 1, j = s,

where I = I1 ∪ · · · ∪ Is ⊆ [n] is the disjoint partition into maximal consecutive subsets
such that min(Ij) < min(Ij+1). Thus, the multinomial coefficient ( n

∆I) gives the size of

the orbit
{
Sπ(I),π | π ∈ Sn

}
.

We deduce Theorem 1.1 from Theorem 3.5.

Proof of Theorem 1.1. This is an immediate consequence of Theorem 3.5, as the polynomi-
als coincide with the monomial expansions given in Theorem 1.3 and Theorem 1.4.

Example 3.6. Let I = {2, 3, 5, 7, 8} = {2, 3} ∪ {5} ∪ {7, 8}. The stabilizer of the Schubert
matroid SI,id on the ground set [n], for n ≥ 8, is isomorphic to

Sym({1})× Sym({2, 3, 4})× Sym({5, 6})× Sym({7, . . . , n}) ∼= S1 ×S3 ×S2 ×Sn−6 .

Thus, the size of the orbit
{
Sπ(I),π | π ∈ Sn

}
equals the multinomial coefficient ( n

∆I),
that is

#
{
Sπ(I),π | π ∈ Sn

}
=

n!
#(S1 ×S3 ×S2 ×Sn−6)

=
n!

1! 3! 2! (n − 6)!
=

(
n

∆I

)
.
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