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Enumerating 1324-avoiders with few inversions

Svante Linusson*1 and Emil Verkama†1

1Department of Mathematics, KTH Royal Institute of Technology, Stockholm, Sweden

Abstract. The problem of determining the number of 1324-avoiding permutations of
length n has received much attention. We work towards this goal by enumerating
avk

n(1324), the number of 1324-avoiding n-permutations with exactly k inversions, for
all k and n ≥ (k + 7)/2. This is achieved with a new structural characterization of
such permutations in terms of a new notion of almost-decomposability. In particular,
our enumeration verifies half of a conjecture of Claesson, Jelínek and Steingrímsson,
according to which avk

n(1324) ≤ avk
n+1(1324) for all n and k. Proving the full conjecture

would improve the best known upper bound for the exponential growth rate of the
number of 1324-avoiders from 13.5 to approximately 13.002.
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1 Introduction

A permutation π ∈ Sn contains a pattern τ ∈ Sm if there exist indices i1 < . . . < im such
that π(ia) < π(ib) if and only if τ(a) < τ(b) for all a, b ∈ [m]. Otherwise, π avoids τ. An
inversion in π is a pair of indices (i, j) such that i < j and πi > πj. We denote by Avn(τ)

the set of all permutations of length n avoiding τ, and by Avk
n(τ) ⊆ Avn(τ) those with

exactly k inversions. Furthermore, we set avn(τ) = |Avn(τ)| and avk
n(τ) = |Avk

n(τ)|.
Two patterns σ and τ are called Wilf equivalent if avn(σ) = avn(τ) for all n.

1.1 Avoiding 1324

Patterns of length four or lower are generally well understood, except for a single case:
the pattern 1324. The numbers avn(1324) have been determined computationally up to
n = 50 (sequence A061552 in the OEIS [16]), but in general not even the asymptotics are
well-understood. The Stanley–Wilf limit

L(τ) = lim
n→∞

avn(τ)
1/n

exists for all patterns τ due to the Marcus–Tardos theorem [2, 15], but when τ = 1324,
only loose bounds are know. Table 1 shows the timeline of the evolution of these bounds;
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currently they are 10.27 < L(1324) < 13.5 [4]. Conway, Guttmann and Zinn-Justin have
convincingly estimated that L(1324) ≈ 11.600 ± 0.003 [12].

Lower Upper

2004. Bóna [7] 288
2005. Bóna [8] 9
2006. Albert et al. [1] 9.47
2012. Claesson, Jelínek and Steingrímsson [11] 16
2014. Bóna [9] 13.93
2015. Bóna [10] 13.74
2015. Bevan [3] 9.81
2020. Bevan et al. [4] 10.27 13.5

Table 1: Best known upper and lower bounds for L(1324) throughout history.

One possible avenue towards improvement is suggested by a conjecture of Claesson,
Jelínek and Steingrímsson.

Conjecture 1.1 ([11, Conjecture 13]). For all nonnegative integers n and k,

avk
n(1324) ≤ avk

n+1(1324).

As was demonstrated in [11], the conjecture implies a new upper bound L(1324) ≤
exp

(
π
√

2/3
)
< 13.002, using the fact that avk

n(1324) is constant when the number k of
inversions is fixed and n ≥ k + 2. Our main result proves half of the conjecture.

Theorem 1.2. For all nonnegative integers k and n ≥ k+7
2 ,

avk
n(1324) = [xk]

(
P(x)2 − Rn(x)

1 − x

)
,

where
Rn(x) = 2(2 + x)xn−1P(x)2,

and P(x) is the generating function for the partition numbers. In particular,

avk
n+1(1324)− avk

n(1324) = [xk]Rn(x) ≥ 0,

and this difference has a combinatorial interpretation.

The proof relies on a new notion of almost decomposable permutations, and is available
in its entirety in our preprint [13]. The following subsection motivates this by defining
decomposable permutations, and explains the constants avk

k+2(1324).
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1.2 Direct sums and decomposability

For two permutations σ ∈ Sn and τ ∈ Sm, we define the direct sum σ ⊕ τ ∈ Sn+m by

(σ ⊕ τ)(i) =

{
σ(i) if i ≤ n,
n + τ(i − n) if i > n.

For example, 231 ⊕ 21 is obtained in the following way.

×

2

×

3
×
1

⊕ ×

2
×
1

=
×

2

×

3
×
1

×

5

×

4

If a permutation π is the direct sum of two nonempty permutations, we call π decom-
posable, and otherwise indecomposable. We can write π uniquely as a direct sum

π = π(1) ⊕ π(2) ⊕ . . . ⊕ π(c),

where each component π(i) is indecomposable (and nonempty). The formula (see [11,
Lemma 8])

comp(π) + inv(π) ≥ |π|,

where comp(π), inv(π) and |π| denote the number of components, the number of
inversions and the length of π, respectively, indicates that a permutation with few
inversions should have many components. In particular, if inv(π) ≤ |π| − 2, then
comp(π) ≥ |π| − inv(π) ≥ 2. It is easy to see that a decomposable permutation π

avoids 1324 if and only if it is of the form

π = π(1) ⊕ 1 ⊕ 1 ⊕ . . . ⊕ 1 ⊕ π(2), (1.1)

where π(1) avoids 132 and π(2) avoids 213. The inversion table b1b2 . . . bn of a 132-avoider
of length n, defined by bi = |{j > i : πj < πi}|, is weakly decreasing and therefore –
with the exclusion of trailing 0’s – an integer partition of inv(π). It follows that

avk
n(132) = avk

n(213) = p(k)

for all n ≥ k + 1, where p(k) is the kth partition number. Hence, (1.1) gives

avk
n(1324) = [xk]P(x)2,

where P(x) = ∑k≥0 p(k)xk and n ≥ k + 2 [11, Proposition 15].
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1.3 Interpreting the main result

Observe that due to the preceding discussion, Conjecture 1.1 trivially holds (with equal-
ity) for all n ≥ k + 2. Our main result, Theorem 1.2, improves this to n ≥ k+7

2 , and there-
fore essentially proves half of the conjecture, along with providing an enumeration for
those values of avk

n(1324). The strategy is to find an injection Avk
n(1324) → Avk

n+1(1324)
and analyze it in order to enumerate the permutations not contained in its image. The
injection relies on almost decomposability, which is related to normal decomposability, so
it is not surprising that the partition numbers show up.

It is useful to keep in mind Table 2, in which the entry on row n and column k
equals avk

n(1324). Conjecture 1.1 is equivalent to the statement that each column of the
diagram is weakly increasing as n increases. The blue cells indicate the constant parts
of each column; the sequence 1, 2, 5, 10, 20, . . . comes from the generating function P(x)2.
The red cells contain the new numbers enumerated by Theorem 1.2. Specifically, the
sequence of numbers in the blue and red cells on row n is given by the first 2n − 6
coefficients of the generating function P(x)2 − Rn(x)/(1 − x).

n\k 0 1 2 3 4 5 6 7 8 9 10 11 12
1 1
2 1 1
3 1 2 2 1
4 1 2 5 6 5 3 1
5 1 2 5 10 16 20 20 15 9 4 1
6 1 2 5 10 20 32 51 67 79 80 68 49 29 . . .
7 1 2 5 10 20 36 61 96 148 208 268 321 351 . . .
8 1 2 5 10 20 36 65 106 171 262 397 568 784 . . .
9 1 2 5 10 20 36 65 110 181 286 443 664 985 . . .

10 1 2 5 10 20 36 65 110 185 296 467 714 1077 . . .
11 1 2 5 10 20 36 65 110 185 300 477 738 1127 . . .
12 1 2 5 10 20 36 65 110 185 300 481 748 1151 . . .

Table 2: The numbers avk
n(1324).

The differences avk
n+1(1324)− avk

n(1324) are displayed in Table 3. The blue 0’s come
from the constant part of each column, and the numbers in the red cells are given by
Rn(x). The diagram also shows that n ≥ k+7

2 is the best possible bound for our method:
if n < k+7

2 (and k ≥ 7), then avk
n+1(1324)− avk

n(1324) no longer equals [xk]Rn(x). An
expanded version of Table 2 is available at https://akc.is/inv- mono/ courtesy of
Anders Claesson.

https://akc.is/inv-mono/
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n\k 0 1 2 3 4 5 6 7 8 9 10 11 12 13
1 0 1
2 0 1 2 1
3 0 0 3 5 5 3 1
4 0 0 0 4 11 17 19 15 9 4 1
5 0 0 0 0 4 12 31 52 70 76 67 49 29 14 . . .
6 0 0 0 0 0 4 10 29 69 128 200 272 322 333 . . .
7 0 0 0 0 0 0 4 10 23 54 129 247 433 672 . . .
8 0 0 0 0 0 0 0 4 10 24 46 96 201 397 . . .
9 0 0 0 0 0 0 0 0 4 10 24 50 92 166 . . .

10 0 0 0 0 0 0 0 0 0 4 10 24 50 100 . . .
11 0 0 0 0 0 0 0 0 0 0 4 10 24 50 . . .
12 0 0 0 0 0 0 0 0 0 0 0 4 10 24 . . .

Table 3: The numbers avk
n+1(1324)− avk

n(1324).

2 Almost decomposable permutations

We will often utilize the plots {(i, πi) : i ∈ [n]} (in cartesian coordinates) of permutations
π ∈ Sn. Inverting π corresponds with reflecting its plot across the line y = x, and the
reverse-complement rc(π)i = n + 1− πn+1−i rotates the plot by 180 degrees. Both π−1 and
rc(π) preserve 1324-avoidance and the number of inversions of π, so these are useful
operations for us.

We also use the Rothe diagram of π, which is obtained from the plot of π by drawing
lines to north and east from each point (i, πi), and marking the empty coordinate points
– these points are the inversions of π. The following figure shows an example.

245169783 =

×

×
×

×

×

×

×
×

×

Definition 2.1. For π ∈ Sn and i ∈ [n], we denote by π ∖ πi the unique permutation in
Sn−1 that is order-isomorphic to π1 . . . πi−1πi+1 . . . πn. We say that π ∖ πi is obtained
by deleting entry πi from π.
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Definition 2.2. A permutation π ∈ Sn is called almost decomposable if it is indecompos-
able, but at least one of π ∖ 1, π ∖ n, π ∖ π1, π ∖ πn is decomposable.

For example, consider the indecomposable permutation π = 245169783. Since π ∖
1 = 13458672 = 1 ⊕ 2347561 is decomposable, π is almost decomposable. Notice that
π ∖ 3 = 23415867 = 2341 ⊕ 1 ⊕ 312 is also decomposable.

Almost-decomposability means that deleting one of the points from the ‘boundary’
of the plot of the permutation makes it decomposable. Here are the plots of π ∖ 1 and
π ∖ 3.

×

×
×

×

×

×
×

×

×
π ∖ 1

×

×
×

×

×

×

×
×

×

π ∖ 3

An important detail in Section 3, where the injection Avk
n(1324) → Avk

n+1(1324) is
constructed, is that e.g. both π ∖ 1 and π ∖ n can be decomposable when π is almost
decomposable. However, not all combinations are possible, and this is critical.

Proposition 2.3. Let π ∈ Sn be indecomposable. If π ∖ 1 is decomposable then π ∖ π1 is
indecomposable, and similarly if π ∖ n is decomposable then π ∖ πn is indecomposable.

The following result is our strucural characterization of Avk
n(1324) for k ≤ 2n − 7.

Its proof relies on an intricate case-by-case analysis, the details of which are available in
[13].

Theorem 2.4. Each indecomposable permutation in Avk
n(1324), where k ≤ 2n − 7, is almost

decomposable.

The bound k ≤ 2n − 7 is tight, since e.g.

π = [3, 6, 1, 2, 7, . . . , n, 4, 5]

is 1324-avoiding with 2n − 6 inversions, and neither decomposable nor almost decom-
posable. Here is the plot of the first such permutation, π = 3612745.

3612745 =
×

×

×
×

×

×
×
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Interestingly, the same permutation π has been used before to exemplify that two
1324-avoiding permutations can have the same profile: π and π−1 have the same left-to-
right minima and right-to-left maxima in the same positions [5].

3 The injection

Denote by Dk
n and Ak

n the sets of decomposable and almost decomposable permutations
in Avk

n(1324), respectively. In this section we will construct injections

g : Dk
n −→ Avk

n+1(1324) and f : Ak
n −→ Avk

n+1(1324),

with disjoint images, for all n and k. If k ≤ 2n − 7 then all permutations in Avk
n(1324)

are decomposable or almost decomposable by Theorem 2.4, so our mappings combine
to an injection

Avk
n(1324) −→ Avk

n+1(1324).

In particular, this verifies Conjecture 1.1 for all k ≤ 2n − 7.
First of all, any π ∈ Dk

n can be written in the form

π = π(1) ⊕ 1 ⊕ . . . ⊕ 1︸ ︷︷ ︸
m times

⊕ π(2)

for some m ≥ 0 by (1.1). This allows us to set

g(π) = π(1) ⊕ 1 ⊕ . . . ⊕ 1︸ ︷︷ ︸
m+1 times

⊕ π(2) ∈ Dk
n+1.

The image g(Dk
n) is exactly the set of all permutations in Avk

n+1(1324) with at least three
components, and g is clearly injective. Note that when n ≥ k + 2, g is a bijection.

We will define f in a similar way. Let π ∈ Ak
n.

1. If π ∖ π1 is decomposable, let f (π) be the permutation with f (π)1 = π1 and
f (π)∖ π1 = g(π ∖ π1).

2. If π ∖ 1 is decomposable, let f (π) = f (π−1)−1.

3. Otherwise, let f (π) = (rc ◦ f ◦ rc)(π), where rc(π) is the reverse-complement.

Remark 3.1. The mapping f preserves 1324-avoidance and the number of inversions.
Moreover, the permutations in its image have at most two components.

Example 3.2. Consider the permutation π = 35126874 ∈ Av8
8(1324). Here are the plots

of π and rc(π).
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×

×

×
×

×

×
×

×

π

×

×
×

×

×
×

×

×

rc(π)

We can see that π ∖ 1 and π ∖ π1 are both indecomposable, whereas π ∖ πn is decom-
posable. Therefore rc(π) ∖ rc(π)1 is decomposable. The following figure shows the
permutations rc(π)∖ rc(π)1, g(rc(π)∖ rc(π1)) and ( f ◦ rc)(π).

×
×

×

×
×

×
×

rc(π)∖ rc(π)1

×
×

×
×

×
×

×
×

g(rc(π)∖ rc(π)1)

×

×
×

×
×

×
×

×
×

( f ◦ rc)(π)

Finally, we get the following.

f (π) = (rc ◦ f ◦ rc)(π) = 341267985 =

×
×

×
×

×
×

×
×

×

Theorem 3.3. The function f : Ak
n → Avk

n+1(1324) is injective for all n and k. Furthermore,
avk

n(1324) ≤ avk
n+1(1324) whenever k ≤ 2n − 7.

This is not obvious; a complete proof is available in [13].

4 Enumerating the difference

The goal of this section is to describe the set of permutations

Rk
n+1 := Avk

n+1(1324) \
(

g(Dk
n) ∪ f (Ak

n)
)

for all k ≤ 2n − 7. We will assume that k ≤ 2n − 7 throughout.
Rk

n+1 consists of the following collections; for details, see [13].
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(a) Permutations σ ∈ Avk
n+1(1324) with σ1 = n + 1 or σn+1 = 1. They are enumerated

by [xk]
(
2xnP(x)2).

(b) Permutations σ ∈ Avk
n+1(1324) with σ2 = n + 1 or σn+1 = 2. These permutations

are enumerated by [xk]
(
2xn−1P(x)2).

(c) Permutations σ ∈ Avk
n+1(1324) such that σ ∖ 1, σ ∖ σ1, σ ∖ (n + 1) and σ ∖ σn+1 all

have at most two components. However, one can show no such permutations exist.

(d) Let h denote the natural extension of the left-inverse of f to all permutations σ ∈
Avk

n+1(1324) such that comp(σ) ≤ 2, σ1 ̸= n + 1, σn+1 ̸= 1 and

max{comp(σ ∖ i) : i = 1, n + 1, σ1, σn+1} ≥ 3.

This last part of Rk
n+1 consists exactly of the permutations σ ∈ Avk

n+1(1324) with
σ1, σ2 ̸= n + 1 and σn+1 ̸= 1, 2, such that f (h(σ)) ̸= σ. One can prove that (up
to symmetry), all of these permutations have the structure described in Figure 1,
leading to the enumeration [xk]

(
2xn−1P(x)2).

×

×

×
×

τ(1)

τ(2)

σ

Figure 1: A permutation σ satisfying the as-
sumptions of (d). Note that τ := σ ∖ {σ1, σn+1}
is decomposable, and that σ1 is placed just
above the first component of τ, with σn+1 one
step higher. It is easy to check that f (h(σ)) ̸= σ.

The collections described above are disjoint and their union is Rk
n+1, so we get

avk
n+1(1324)− avk

n(1324) = |Rk
n+1| = [xk]

(
2(2 + x)xn−1P(x)2).

This proves Theorem 1.2.

5 Further directions and conjectures

This section contains discussion of three topics: extending our method; repeated differ-
ences of the numbers avk

n(1324); and the unimodality of the sequences

av0
n(1324), av1

n(1324), . . . , av(n
2)

n (1324).
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Extending almost-decomposability. A natural idea is to delete more than one point
from the boundary of the plot of a permutation to make it decomposable. For example,
one could imagine handling our earlier counterexample π = 3612745 by deleting entries
1 and 2. However, some permutations with as few as 2n − 5 inversions behave poorly in
this respect. One example is

π = [3, 4, . . . , n − 4, n − 2, 1, n, 2, n − 1, n − 3].

Consider the case of n = 7; it is not clear which points should be deleted to make π

decomposable.

×

×

×

×

×

×

×3517264 =

Question 5.1. Is there a generalization of almost-decomposability by which the upper
bound 2n − 7 could be improved?

Question 5.2. Does almost-decomposability have other uses?

Repeated differences. We want to understand the numbers avk
n(1324) also for k >

2n − 7. Studying the numbers when k ≤ 3n − 15 we have found a tantalising pattern.
We here extend the study of differences from Theorem 1.2 to repeated differences. In
what follows we will write avk

n for avk
n(1324). Let

br,n :=
(

av2n+r−3
n+3 − av2n+r−3

n+2
)
−

(
av2n+r−4

n+2 − av2n+r−4
n+1

)
−

((
av2n+r−5

n+2 − av2n+r−5
n+1

)
−

(
av2n+r−6

n+1 − av2n+r−6
n

))
.

(5.1)

For example, by inspecting Table 3,

b0,8 =
(

av13
11 − av13

10
)︸ ︷︷ ︸

=100

−
(

av12
10 − av12

9
)︸ ︷︷ ︸

=92

−
((

av11
10 − av11

9
)︸ ︷︷ ︸

=50

−
(

av10
9 − av10

8
)︸ ︷︷ ︸

=46

)
= 4.

Anders Claesson has kindly provided us with data of avk
n for k, n ≤ 45, and it appears

that for a fixed r ≥ 0, br,n is constant for all n ≥ 10 + r. Up to r = 9, these constants are

4, 8, 14, 28, 52, 88, 150, 244, 390, 612.

Conjecture 5.3. The numbers br,n are equal for a fixed r with n ≥ 10+ r (call them br) and they
satisfy

∑
r≥0

brxr =
2(1 + x)(2 − x2)

1 − x
P(x)2,

where P(x) is again the generating function for the partition numbers.
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Remark 5.4. To guess the formula in Conjecture 5.3 one really only needs four numbers
b0, b1, b2, b3 since the numerator is a degree 3 polynomial, but it is true for all 10 numbers
we have.

Remark 5.5. If Conjecture 5.3 is proven we could still not determine the numbers avk
n

for all k ≤ 3n − 15 since we also would need starting values when n = 10 + r of(
av2n+r−5

n+2 − av2n+r−5
n+1

)
−

(
av2n+r−6

n+1 − av2n+r−6
n

)
. That sequence starts

12, 24, 41, 120, 274, 553, 1098, 2055.

Improved bounds and unimodality. Let c ≤ 1 be a constant such that the maximal
value of each sequence

(
avk

n(1324)
)

k occurs with k ≤ c · (n
2), and assume that Conjec-

ture 1.1 is true. Then, using the same technique as in [11, Theorem 17], we find that

L(1324) ≤ exp
(
π
√

2c/3
)
.

Incidentally, c = 21/23 ≈ 0.913 gives L(1324) ≤ 11.6004, which is in the range of the
estimation from [12]. Such a large improvement is unrealistic with the current approach.
Indeed, large 1324-avoiders generally have many inversions [14]. Note that c > 0.813,
since c = 0.813 gives L(1324) ≤ 10.263, contradicting the known lower bound 10.27.

Question 5.6. Is there a constant c < 1 such that the maximal value of each sequence(
avk

n(1324)
)

k occurs with k ≤ c · (n
2)?

This line of thinking leads to another natural question: is avk
n(1324) unimodal in k?

It is well-known (see [6] for a nice proof) that
(
sk

n
)

k is log-concave, where sk
n denotes

the number of all permutations (not required to avoid any pattern) of length n with k
inversions. As far as we know, there are no similar nontrivial results for the pattern
avoiding case. The sequences (avk

n(1324)
)

k are unimodal in the data we have, but we
have not found a proof. Of special interest would be the positions of the ‘tops’ of the
unimodal sequences, due to the discussion above.

Conjecture 5.7. The sequence
(
avk

n(1324)
)(n

2)

k=0 is unimodal for each n.

Acknowledgements

We are grateful to Anders Claesson and Bjarki Ágúst Guðmundsson, who provided us
with data for the numbers avk

n(1324), for k, n ≤ 45 (see https://akc.is/inv-mono/).
Anders Claesson furthermore correctly guessed the generating function Rn(x) = 2(2 +
x)xn−1P(x)2 for the differences avk

n+1(1324)− avk
n(1324).

Both authors were funded by the Swedish Research Council, VR, grant 2022-03875.

https://akc.is/inv-mono/


12 Svante Linusson and Emil Verkama

References

[1] M. H. Albert, M. Elder, A. Rechnitzer, P. Westcott, and M. Zabrocki. “On the Stanley-Wilf
limit of 4231-avoiding permutations and a conjecture of Arratia”. Adv. in Appl. Math. 36.2
(2006), pp. 96–105. doi.

[2] R. Arratia. “On the Stanley-Wilf conjecture for the number of permutations avoiding a
given pattern”. Electron. J. Combin. 6 (1999), Note, N1, 4. doi.

[3] D. Bevan. “Permutations avoiding 1324 and patterns in Łukasiewicz paths”. J. Lond. Math.
Soc. (2) 92.1 (2015), pp. 105–122. doi.

[4] D. Bevan, R. Brignall, A. Elvey Price, and J. Pantone. “A structural characterisation of
Av(1324) and new bounds on its growth rate”. European J. Combin. 88 (2020). 103115. doi.

[5] M. Bóna. “Permutations avoiding certain patterns: the case of length 4 and some general-
izations”. Discrete Math. 175.1 (1997), pp. 55–67. doi.

[6] M. Bóna. “A combinatorial proof of the log-concavity of a famous sequence counting
permutations”. Electron. J. Combin. 11.2 (June 2004), Note 2, 4. doi.

[7] M. Bóna. “A simple proof for the exponential upper bound for some tenacious patterns”.
Adv. in Appl. Math. 33.1 (2004), pp. 192–198. doi.

[8] M. Bóna. “The limit of a Stanley-Wilf sequence is not always rational, and layered patterns
beat monotone patterns”. J. Combin. Theory Ser. A 110.2 (2005), pp. 223–235. doi.

[9] M. Bóna. “A new upper bound for 1324-avoiding permutations”. Combin. Probab. Comput.
23.5 (2014), pp. 717–724. doi.

[10] M. Bóna. “A new record for 1324-avoiding permutations”. Eur. J. Math. 1.1 (2015), pp. 198–
206. doi.

[11] A. Claesson, V. Jelínek, and E. Steingrímsson. “Upper bounds for the Stanley-Wilf limit of
1324 and other layered patterns”. J. Combin. Theory Ser. A 119.8 (2012), pp. 1680–1691. doi.

[12] A. R. Conway, A. J. Guttmann, and P. Zinn-Justin. “1324-avoiding permutations revisited”.
Adv. in Appl. Math. 96 (2018), pp. 312–333. doi.

[13] S. Linusson and E. Verkama. “Enumerating 1324-avoiders with few inversions”. 2024.
arXiv:2408.15075.

[14] N. Madras and H. Liu. “Random pattern-avoiding permutations”. Algorithmic probability
and combinatorics. Vol. 520. Contemp. Math. Amer. Math. Soc., Providence, RI, 2010,
pp. 173–194. doi.

[15] A. Marcus and G. Tardos. “Excluded permutation matrices and the Stanley-Wilf conjec-
ture”. J. Combin. Theory Ser. A 107.1 (2004), pp. 153–160. doi.

[16] OEIS Foundation Inc. “The On-Line Encyclopedia of Integer Sequences”. Published elec-
tronically at http://oeis.org. 2024.

https://dx.doi.org/10.1016/j.aam.2005.05.007
https://dx.doi.org/10.37236/1477
https://dx.doi.org/10.1112/jlms/jdv020
https://dx.doi.org/10.1016/j.ejc.2020.103115
https://dx.doi.org/10.1016/S0012-365X(96)00140-9
https://dx.doi.org/10.37236/1889
https://dx.doi.org/10.1016/j.aam.2003.07.003
https://dx.doi.org/10.1016/j.jcta.2004.07.014
https://dx.doi.org/10.1017/S0963548314000091
https://dx.doi.org/10.1007/s40879-014-0020-6
https://dx.doi.org/10.1016/j.jcta.2012.05.006
https://dx.doi.org/10.1016/j.aam.2018.01.002
https://arxiv.org/abs/2408.15075
https://dx.doi.org/10.1090/conm/520/10259
https://dx.doi.org/10.1016/j.jcta.2004.04.002
http://oeis.org

	Introduction
	Avoiding 1324
	Direct sums and decomposability
	Interpreting the main result

	Almost decomposable permutations
	The injection
	Enumerating the difference
	Further directions and conjectures

