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Abstract. We show that the periodic and free boundary q-Whittaker measures, two
models of random partitions, exhibit remarkable distributional symmetries. Equiv-
alently, we derive new identities for skew q-Whittaker functions related to bounded
Cauchy and Littlewood identities. These extend identities found by Imamura, Mucci-
coni, and Sasamoto, and in particular give new proofs of these identities.

1 Introduction

Many recent advances in the study of integrable probabilistic systems have been driven
by the study of probability measures on partitions defined in terms of symmetric func-
tions. The first such results focused on Schur measures, which are related to zero-
temperature growth models, see e.g. [18, 1]. Schur measures have a fermionic (i.e. deter-
minantal/Pfaffian) structure, which aids in asymptotics that are needed for probabilistic
applications. More recently, connections were made between generalizations of Schur
measures using Macdonald polynomials, and positive temperature models which have
no obvious fermionic structure. These were then studied using hard but ad hoc meth-
ods, see e.g. [2, 3, 7, 8]. These ideas have also been used to study stationary measures
for these systems, see e.g. [9, 10, 4].

Recently, Imamura, Mucciconi, and Sasamoto [15, 17] discovered new identities of
symmetric functions relating full- and half-space q-Whittaker measures to periodic and
free boundary Schur measures, leading to new asymptotic results for half-space models
in the Kardar–Parisi–Zhang universality class [12, 16]. They revealed that q-Whittaker
measures, while not fermionic, are intimately related with fermionic measures. Perhaps
even more surprising than the identities themselves is that the proof was via an intricate
bijection.

Our main results generalize these identities. Moreover, our methods are completely
different, and involve symmetric function arguments and the analysis of contour integral
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formulas for Macdonald polynomials. The expressions we work with have interpreta-
tions in terms of probability measures on partitions after suitable normalization, which
are called periodic and free boundary q-Whittaker measures. The Schur case has been
previously studied, see [6, 5, 16], and in the periodic setting, the Macdonald case has also
been considered [19]. We also give an interpretation in terms of the six vertex model, a
model coming from statistical mechanics, with connections to alternating sign matrices.

This extended abstract summarizes some of the results in [14] as well as in the forth-
coming paper [13]. In this paper, we take a symmetric function perspective, and only
remark on the interpretations for random partitions. We refer the reader to [14, 13] for
full details and proofs.

1.1 Main results

We now state our main results. We let Pλ/µ(x; q, t) and Qλ/µ(y; q, t) denote the Macdonald
polynomials and their duals respectively. We let (z; q)n = (1 − z) · · · (1 − qn−1z) with
n = ∞ possible. We let

hm(z; q) =
m

∑
k=0

(q; q)m

(q; q)k(q; q)m−k
zk (1.1)

denote the Rogers–Szegő polynomials, and following [22], for a partition λ, we let

hλ(a, b; q) = ∏
i≥1

am2i−1 hm2i−1(b/a; q)hm2i(ab; q), (1.2)

employing standard multiplicative notation λ = 1m12m2 · · · for partitions. In the fol-
lowing, the subscripts P and FB refer to periodic and free boundary. These terms refer to
the boundary conditions on probabilistic systems related to these identities, and have
appeared before [6, 5, 19].

Theorem 1.1. Let u and q be formal variables, and x and y two alphabets. We have that

ZP(n; x, y; u, q) := ∑
λ,µ:λ1≤n

u|µ|

(q; q)n−λ1

· Pλ/µ(x; q, 0)Qλ/µ(y; q, 0) (1.3)

is symmetric in the variables u and q.

Theorem 1.2. Let u, q, a, b, c, d be formal variables, and x an alphabet. We have that

ZFB(n; x; u, q, a, b, c, d) :=

∑
λ,µ:λ1≤n

hn−λ1(ab; q)hλ′(a, b; q)
(q; q)n−λ1 ∏i≥1(q; q)λi−λi+1

· Pλ/µ(x; q, 0) · u|µ|/2hµ′(c/
√

u, d/
√

u; q) (1.4)

is symmetric in the variables u and q, and separately symmetric under any permutation of the
variables a, b, c, d. Here λ′ denotes the conjugate partition associated to λ.
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Example 1.3. In the case n = 1 and where x, y are single variables, one can explicitly
evaluate

ZP(1; x, y; u, q) =
(1 − uq)(1 + xy)
(1 − u)(1 − q)

ZFB(1; x; u, q, a, b, c, d) =
(1 + a)(1 + b)(1 + c)(1 + d)(1 + x) + (1 − a)(1 − b)(1 − c)(1 − d)(1 − x)

2(1 − u)(1 − q)

(1.5)

and see the symmetry properties given by Theorems 1.1 and 1.2. One can also compute
the n → ∞ limits, which are important as normalization constants to define probability
measures on partitions. For alphabets x = (x1, . . . ) and y = (y1, . . . ), the partition
function ZP(∞; x, y; u, q) was computed in [19] as

1
(u; u)∞(q; q)∞

∏
i,j

1
(xiyj; u, q)∞

, (1.6)

where (z; q, t)∞ = ∏k,l≥0(1 − qktlz) is a two-parameter version of the q-Pochhammer
symbol. We can compute ZFB(∞; x; u, q, a, b, c, d) to be

1
(u; u)∞(q; q)∞(uq; u, q)∞

∏
s∈
{

ab,ac,ad,
bc,bd,cd

} 1
(s; u, q)∞

∏
i

s∈{a,b,c,d}

1
(sxi; u, q)∞

∏
i<j

1
(xixj; u, q)∞

. (1.7)

As we explain later in the text, these symmetries are actually consequences of explicit
contour integral formulas for both expressions when the alphabets are finite.

Remark 1.4. Theorems 1.1 and 1.2 generalize identities in [17]. In particular, the equal-
ities ZP(n; x; q, 0) = ZP(n; x; 0, q) and ZFB(n; x; q, 0, a, 0,

√
qa, 0) = ZFB(n; x; 0, q, a,

√
qa, 0)

recover Theorems 10.11 and 10.12 in [17] respectively.

Remark 1.5. The expressions (1.3) and (1.4) can be viewed as the probability that λ1 +
χ ≤ n after suitably normalizing, where λ1 is the first part of a random partition and χ is
an independent random variable. The corresponding measures on partitions are known
as periodic and free boundary q-Whittaker measures.

We next state some related identities involving skew Hall–Littlewood polynomials.
The expressions turn out to evaluate to Macdonald and Koornwinder polynomials. The
free boundary version is essentially derived in [11], and generalizes Theorem 4.7 of [21].
We first state the periodic version, which to our best knowledge appears to be new.

Theorem 1.6. Fix two alphabets x = (x1, . . . , xM) and y = (y1, . . . , yN), and let (x, y−1)
denote the combined alphabet (x1, . . . , xM, y−1

1 , . . . , y−1
N ). We have that

∑
λ,µ:λ1≤n

(t; t)mn(µ)

(t; t)mn(λ)
u|µ| · Pλ/µ(x; 0, t)Qλ/µ(y; 0, t) =

1
(u; u)n

(
N

∏
j=1

yn
j

)
PnN(x, y−1; u, t), (1.8)
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where the left hand side features skew Hall–Littlewood polynomials, and the right hand side is a
Macdonald polynomial in parameters (u, t).

Next, we state the free boundary version, which as mentioned can already be found in
[11], although written in a very different language. In fact, it could also be proven using
the techniques of [21]. We let Kλ(x; q, t, a, b, c, d) denote the Koornwinder polynomials.

Theorem 1.7. Fix an alphabet x = (x1, . . . , xN), and let n denote a non-negative integer. We
have that

∑
λ,µ:λ1≤2n

hλ(a, b; t)
hm2n(λ)(ab; t)

· Pλ/µ(x; 0, t) · u|µ|/2

∏i(t; t)mi(µ)
hµ(c/

√
u, d/

√
u; t) =

Cn(u, t, a, b, c, d)

(
N

∏
i=1

xn
i

)
KnN(x; u, t, a, b, c, d),

(1.9)

where the left hand side features skew Hall–Littlewood polynomials, and the right hand side is a
Koornwinder polynomial in parameters (u, t, a, b, c, d), and Cn(u, t, a, b, c, d) is given by

∏2n−2
i=n−1(abcdui; t)∞

∏n
i=1(ui; t)∞ ∏n−1

i=1 (abui; t)∞ ∏n−1
i=0 ∏s∈{ac,ad,bc,bd,cd}(sui; t)∞

. (1.10)

Remark 1.8. It would be interesting if our results could be lifted to the Macdonald setting
(i.e. allowing both q and t to be non-zero), and indeed the periodic Macdonald measure
has already been studied [19]. This is unclear, although we have checked some obvious
attempts at generalizing these identities which do not seem to work. Note that the
definition of hλ needs to be changed, see [22] for some discussion of this. Since special
cases have a bijective proof [17], it’s natural to ask for bijective proofs of Theorems 1.1
and 1.2. This seems to require new ideas, and we leave it as an open problem.

1.2 Organization

The rest of the paper is organized as follows. In Section 2, we give some notation and
background on Macdonald polynomials. In Section 3, we give contour integral formulas
which imply Theorems 1.1 and 1.2. In Section 4, we give interpretations for ZP and ZFB
in terms of vertex models.

2 Preliminaries

This section reviews background on symmetric functions and Macdonald polynomials,
and we refer the reader to [20] for further details. A partition is a finite non-increasing
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sequence of positive integers λ = (λ1 ≥ λ2 ≥ · · · ≥ λk), and we call k the length, denoted
l(λ), and |λ| = ∑i≥1 λi its size. It is useful to view a partition as its Young diagram, where
we place λi boxes in the ith row from top to bottom, so that each row is aligned on the
left. We define the conjugate partition λ′ as the partition obtained from λ by reflecting its
Young diagram, switching the rows and columns. We will let mi(λ) denote the number
of occurrences of i in λ.

Let x = (x1, x2, . . . ) be a formal alphabet, and Pλ(x; q, t) denote the Macdonald poly-
nomials, defined as the unique symmetric functions orthogonal with respect to the inner
product defined by

⟨pλ, pµ⟩ = δλ,µzλ ∏
i

1 − qλi

1 − tλi
, (2.1)

where pλ = ∏i≥1 pλi , pk = ∑i≥1 xk
i , and zλ = ∏i mi(λ)!imi(λ), and whose change of basis

to the monomial symmetric functions is upper triangular with respect to the dominance
ordering on partitions. We let Qλ(x; q, t) denote the dual basis. Macdonald polynomials
satisfy a Cauchy identity, which states that

∑
λ

Pλ(x; q, t)Qλ(y; q, t) = ∏
i,j

(txiyj; q)∞

(xiyj; q)∞
=: Π(x, y; q, t). (2.2)

For a skew Young diagram λ/µ, the skew Macdonald polynomials Pλ/µ(x; q, t) are then
defined by

⟨Pλ/µ, Qν⟩ = ⟨Pλ, QµQν⟩ (2.3)

for all Qν, and Qλ/µ is defined similarly. They satisfy a branching rule, meaning that if
we specialize into two sets of variables (x, y), then

Pλ/µ(x, y; q, t) = ∑
ν

Pλ/ν(x; q, t)Pν/µ(y; q, t). (2.4)

There is an important involution ωq,t on the ring of symmetric functions ωq,t, which
satisfies ωq,t(Pλ/µ(x; q, t)) = Qλ′/µ′(x; t, q), and ωq,t(Qλ/µ(x; q, t)) = Pλ′/µ′(x; t, q). We
will be interested in two special cases of the Macdonald polynomials. When q = 0, the
Macdonald polynomials are called the Hall–Littlewood polynomials, and when t = 0, they
are called the q-Whittaker polynomials.

We now give some contour integral formulas for the Hall–Littlewood polynomials
which we will need. These could be given for general Macdonald polynomials, but cer-
tain constants become much more complicated. Specialize to n variables z = (z1, . . . , zn).
Following Chapter VI, Section 9 of [20], given two Laurent polynomials f , g in z (or
more generally any formal series such that the product below is well-defined), we let
⟨ f , g⟩′n = 1

n! [ f (z)g(z−1)∆(z; q, t)]1, where [·]1 means we take the constant term in z, and

∆(z; q, t) = ∏
i ̸=j

(ziz−1
j ; q)∞

(tziz−1
j ; q)∞

. (2.5)
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Macdonald polynomials are orthogonal with respect to this inner product. If f and g are
Laurent polynomials, then

⟨ f , g⟩′n =
1
n!

∮
C

dz1

2πiz1
· · ·

∮
C

dzn

2πizn
f (z)g(z−1)∆(z; q, t), (2.6)

where C is positively oriented and chosen to include 0 and no other poles.
We now give a well-known contour integral formula for the skew Hall–Littlewood

polynomials. A similar formula holds for the q-Whittaker polynomials.

Lemma 2.1. Let x = (x1, . . . ) be an alphabet of arbitrary size. If l(λ) ≤ n, then

Pλ/µ(x; 0, t) =
(t; t)n−l(λ)

(1 − t)n ⟨Pλ(z; 0, t), Qµ(z; 0, t)Π(z, x; 0, t)⟩′n. (2.7)

This equality can either be viewed formally, or if xi ∈ C, then the contours defining ⟨, ⟩′n should
be chosen to be circles centered at 0 and include all xi.

3 Contour integral formulas

At the heart of our approach are exact contour integral evaluations for ZP and ZFB.
In this section, we state the contour integral formulas and as well as some additional
symmetries which appear.

3.1 Contour integral formulas for ZP

We begin by stating a contour integral formula for ZP.

Theorem 3.1. Let x = (x1, . . . , xM) and y = (y1, . . . , yN), and let C be a positively oriented
circle centered at 0. Then

ZP(n; x, y; u, q) = cn

∮
C

dz1

2πiz1
· · ·

∮
C

dzn

2πizn
∏
i,j
(1 + z−1

i xj)∏
i,j
(1 + ziyj)∆̃(z; q, u), (3.1)

where

cn =
(1 − uq)n

n!(1 − q)n(1 − u)n , ∆̃(z; q, u) = ∏
i ̸=j

(1 − quziz−1
j )(1 − ziz−1

j )

(1 − qziz−1
j )(1 − uziz−1

j )
. (3.2)

Theorem 1.1 follows immediately as a consequence of Theorem 3.1, since the inte-
grand and prefactor are both manifestly symmetric in u and q. Another easy conse-
quence is that

(
∏j y−n

j

)
ZP(n; x, y; u, q) is symmetric in the combined alphabet (x, y−1),
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as after factoring out ∏i zN
i from the second product in the integrand, it clearly exhibits

the same symmetry.
The key tool in proving Theorem 3.1 is the following complementation formula for

q-Whittaker functions, which appears to be new.

Proposition 3.2. Let N ≥ 1, x = (x1, . . . , xN), and let µ ⊆ λ such that λ1 ≤ n. Then

(q; q)n−µ1

(q; q)n−λ1

Qλ/µ(x; q, 0) = P(nN ,µ)/λ(x−1; q, 0)
N

∏
i=1

xn
i . (3.3)

Proof sketch of Theorem 3.1. The case N = 0 can be handled separately, so we assume
N ≥ 1. After applying Proposition 3.2, one can then apply the branching rule to the sum
to obtain an expression with a single q-Whittaker function:

∑
µ:µ1≤n

1
(q; q)n−µ1

u|µ|P(nN ,µ)/µ(x; q, 0). (3.4)

After applying the Macdonald involution to turn the q-Whittaker functions into Hall–
Littlewood functions, we can use Lemma 2.1 to express the sum as a contour integral.
The Macdonald involution can then be undone, giving the desired expression.

3.2 Contour integral formulas for ZFB

We begin by noting the following freedom to take a = b = c = d = 0:

Lemma 3.3. Let x be an alphabet, and let (x, a, b, c, d) denote the combined alphabet consisting
of x plus the four variables (a, b, c, d). Then

ZFB(n; x; u, q, a, b, c, d) = ZFB(n; (x, a, b, c, d); u, q, 0, 0, 0, 0). (3.5)

Sketch of proof. We prove the lemma separately for the variables (a, b) and (c, d) via the
branching rule. For (a, b), this essentially follows from Theorem 4.1 of [22]. For (c, d),
this is a direct computation.

We now state a contour integral formula for ZFB in the case a = b = c = d = 0,
from which we can recover the general formula. The proof is somewhat similar to that
of Theorem 3.1, except that we can skip the first step. In particular, it follows from the
contour integral formula given by Lemma 2.1 (after applying the Macdonald involution
to both sides) and a Littlewood identity for q-Whittaker polynomials.

Theorem 3.4. Let x = (x1, . . . , xN), and let C be a positively oriented circle centered at 0 of
radius r, with 1 < r < u−1/2. Then ZFB(n; x; u, q, 0, 0, 0, 0) equals

1
n!(1 − q)n

∮
C

dz1

2πiz1
· · ·

∮
C

dzn

2πizn
∏
i,j
(1 + zixj)∏

i ̸=j

zi − zj

zi − qzj

× ∏
i

z2
i

(z2
i − 1)(1 − uz2

i )
∏
i<j

(zizj − q)
(zizj − 1)

(1 − uqzizj)

(1 − uzizj)
.

(3.6)
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Notice that the integrand is no longer symmetric in u and q, but nevertheless Theo-
rem 1.2 can be derived from Theorem 3.4 by studying its residues inductively. We now
sketch the proof of Theorem 1.2 given Theorem 3.4.

Proof sketch of Theorem 1.2. With Lemma 3.3, the symmetry of (a, b, c, d) is clear, and for
the (u, q) symmetry, we may take a = b = c = d = 0 without loss of generality, which
we assume for the rest of the proof. We may assume that the contours C are circles with
radius r < q−1/2.

Let I(n; z) denote the integrand in (3.6) (including the prefactor). We will show
the symmetry of u and q by inductively evaluating the residues of I(n; z). In fact, for
technical reasons we induct on the statement that the integral of F(z)I(n; z) is symmetric
in (u, q) for any meromorphic function F(z) such that: 1) F(z) is symmetric in the zi, 2)
F(z) is symmetric in (u, q), 3) the poles of F(z) in the variable zi are independent of zj
for all j, and lie outside the contour C.

The poles in the variable zn of F(z)I(n; z) lying within C fall into one of three cate-
gories: 1) zn = qzj, 2) zn = ±1, 3) zn = z−1

j . We show that the residues of zn at these
poles are symmetric in (u, q) in each case.

In case 1), it is not hard to see that the residue actually contains no poles in zj within
the contour C. Thus, the residue is 0 and may be ignored. In case 2), we can check
that reszn=±1 F(z)I(n;z)

I(n−1;z1,...,zn−1)
satisfies conditions 1), 2), and 3), and so by induction is symmetric

in (u, q). Finally, in case 3), we can use symmetry to assume j = n − 1, and check that
res

zn=z−1
n−1

F(z)I(n;z)

I(n−2;z1,...,zn−2)
satisfies conditions 1), 2), and 3), and so by induction the integral over

z1, . . . , zn−2 is (u, q) symmetric. But then the final integral over zn−1 must also have this
property.

Remark 3.5. In fact, a more careful analysis of the proof reveals that there are contour
integral formulas for ZFB that exhibit all the expected symmetries. Due to lack of space,
we have not included them here, but they will appear in [13].

It is no longer obvious from the formula that ZFB exhibits additional symmetries in
the variables x, so we prove this separately.

Proposition 3.6. We have that(
∏

i
x−n/2

i

)
ZFB(n; x; u, q, a, b, c, d) (3.7)

is invariant under the simultaneous inversion of both xi and a.

Remark 3.7. Note that Proposition 3.6 implies that
(

∏i x−n/2
i

)
ZFB(n; x; u, q, a, b, c, d) ex-

hibits type D symmetry in the variables xi, rather than the type BC symmetry that
appears in Theorem 1.7. We do not have a good a priori explanation for this.



Symmetries of periodic and free boundary q-Whittaker measures 9

4 Vertex model interpretations

In this section, we give interpretations for ZP and ZFB in terms of vertex models, after
applying a Macdonald involution to replace q-Whittaker with Hall–Littlewood functions.

4.1 Six vertex model

Let u, t be formal variables, and let x = (x1, . . . , xM) and y = (y1, . . . , yN) be finite
alphabets. Let p(z) = 1−z

1−tz . The six vertex model is a measure on configurations of arrows
along the edges of a lattice. The allowed configurations at a vertex, along with their
weights, are given below

p(z) 1 − p(z) tp(z) 1 − tp(z) 1 1

Here, the parameter z is allowed to change from vertex to vertex. We will now define
two specific latticestwo specific lattice with some unusual geometries that our models
will live on. with some unusual geometries that our models will live on.

Consider a periodic lattice formed by taking M × N lattices (where all vertices have
degree 4) and joining the left and bottom of one to the right and top of the next. A con-
figuration of the quasi-periodic M × N six vertex model is an assignment of arrows traveling
through the edges of this lattice, with the requirement that arrows enter from infinity
on the left, i.e. the only local configuration of the six below allowed to occur infinitely
often is the first. We write SP(M, N) for the set of all configurations. See below for an
example when M = 4 and N = 3, where the dark gray line indicates the identification
of the top and bottom edges and the light gray indicates the different 4 × 3 lattices:

. . . W(σ) = 4

Given σ ∈ SP(M, N), we let W(σ) denote the number of times arrows exit the top of
any rectangle including the first one. In the above example, W(σ) = 4 (assuming arrows
remain horizontal from infinity). We define the weight wt(σ) of a configuration to be the
infinite product over all vertices of local weights given above, where in the kth rectangle
at the (i, j)th vertex, we set z = uk−1xiyj (we number rectangles from right to left, and
the graph is infinite only to the left).

Let u, t, a, b, c, d be formal variables, and let x = (x1, . . . , xN) be a finite alphabet. Let
r1(z) = 1−z2

(1+az)(1+bz) and r2(z) = 1−z2

(1+cz/
√

u)(1+dz/
√

u) . For our next lattice, we need to
introduce boundary vertices where arrows may enter or exit the system. They have the
following local weights:
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r1(z) 1 − r1(z) −abr1(z) 1 + abr1(z) r2(z) 1 − r2(z) −cdr2(z) 1 + cdr2(z)

A triangular lattice of size N is obtained by taking the subset of an N × N lattice on or
below the diagonal (so the vertices on the diagonal have degree 2). Now, join triangular
lattices of size N along with their reflections across the diagonal in an alternating fashion,
with the left joined to the right or the bottom joined to the top. A configuration of the
quasi-open six vertex model of size N is an assignment of arrows traveling through the
edges of the lattice like before, except that they may now enter and exit at the vertices
of degree 2. We again require they enter from infinity on the left, which means that
eventually, the arrows will enter from the left diagonal of one triangle and exit the right
of the previous triangle. We write SFB(N) for the set of all configurations. See below for
an example, where the light gray triangles indicate the different triangular lattices:

. . .
W(σ) = 5

Given σ ∈ SFB(N), we let W(σ) denote the number of times arrows exit the top of
any triangle plus the number of times arrows do not exit the right of any triangle (this
does not include any diagonal boundary). In the above example, W(σ) = 5 (assuming
arrows remain horizontal from infinity). We define the weight wt(σ) to be the infinite
product over all vertices of the local weights given above, where in the kth triangle at the
(i, j)th vertex, we set z = u(k−1)/2xixj (again numbering right to left).

4.2 A vertex model interpretation

We now express ZP and ZFB as sums over six vertex model configurations.

Theorem 4.1. Let x = (x1, . . . , xM) and y = (y1, . . . , yN). We have

(u; u)∞(t; t)∞ ∑
σ∈SP(M,N),k,l∈N

W(σ)+k+l≤n

uk

(u; u)k

tl

(t; t)l
wt(σ; x, y; t) = ωt,0

(
ZP(n; x, y; u, t)
ZP(∞; x, y; u, t)

)
. (4.1)

Theorem 4.2. Let x = (x1, . . . , xM). We have

∑
σ∈SFB(N),k∈N

W(σ)+k≤n

γk wt(σ) = ωt,0

(
ZFB(n; x; u, t, a, b, c, d)
ZFB(∞; x; u, t, a, b, c, d)

)
, (4.2)
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where
γk = [zk]

F(z; u, t, a, b, c, d)
F(1; u, t, a, b, c, d)

(4.3)

with F(z; u, t, a, b, c, d) given by

(abcdz2; u, t)∞

(uz; u)∞(qz; q)∞(uqz; u, q)∞(abcdz; u, q)∞
∏

s∈
{

ab,ac,ad,
bc,bd,cd

} 1
(sz; u, q)∞

. (4.4)

The proofs of these theorems involve vertex model arguments using the Yang–Baxter
and reflection equations.

Remark 4.3. Setting n = 0 and applying the Macdonald involution, these identities can
be used to compute the partition functions ZP(∞; x, y; u, q) and ZFB(∞; x; u, q, a, b, c, d).
In particular, the proofs only require that the right hand sides are normalized so that
their n → ∞ limit is 1.
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