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Abstract. Recently, Stanley and Grinberg introduced a symmetric function associated
to digraphs, called the Redei–Berge symmetric function. This function, however, does
not satisfy the deletion-contraction property, which is a very powerful tool for proving
various identities using induction. In this paper, we introduce an analogue of this
function in noncommuting variables which does have such property. Furthermore,
it specializes to the ordinary Redei–Berge function when the variables are allowed to
commute. This modification allows us to further generalize properties that are already
proved for the original function and to deduce many new ones.
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1 Introduction

In 2022, Stanley and Grinberg defined in [6] a symmetric function associated to digraphs
and named it the Redei–Berge function, in honor of two mathematicians, whose results
about the number of Hamiltonian paths in a digraph they managed to deduce in a new
way - using the theory of symmetric functions. Berge’s theorem says that if X is a
simple digraph and X is its complement, then the number of Hamiltonian paths of X is
congruent to the same number for X modulo 2 [1]. Redei’s theorem says that if X is a
tournament, then the number of Hamiltonian paths of X is odd [9].

The first version of the Redei–Berge function appeared in 1996, in Chow’s paper [3],
and later in Wiseman’s paper [11]. In [7], it is shown that this function is the image
of the isomorphism class of digraph under a certain canonical Hopf algebra morphism.
This reconceptualization is used to prove various properties of the Redei–Berge function,
including the deletion-contraction property for its principal evaluation - the Redei–Berge
polynomial. Unfortunately, unlike its principal evaluation, the Redei–Berge function
does not have the deletion-contraction property. However, the authors in [8] gave some
decomposition techniques that could serve as a replacement of this property.

In this paper, inspired by [5], we define an analogue of this symmetric function in
noncommuting variables. The reason for not letting the variables commute is the same as
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in [5], where the authors managed to deduce many results about the original chromatic
function by observing its analogue in noncommuting variables. Namely, although this
modification may seem like an additional complication, it allows us to keep track of each
vertex, which makes it possible for us to obtain the deletion-contraction property. This is
a powerful tool for proving various identities and for deriving generalizations of results
about the original Redei–Berge function from [6], [7] and [8] using induction.

2 Preliminaries

The algebra of quasisymmetric functions consists of formal power series of bounded
degree in variables x1, x2, . . . with coefficients in Q such that the coefficient of the mono-
mial xa1

1 xa2
2 · · · xak

k is equal to the coefficient of the monomial xa1
i1

xa2
i2
· · · xak

ik
whenever

i1 < i2 < · · · < ik. Fundamental quasisymmetric functions given by

FI = ∑
1≤i1≤i2≤···≤in

ij<ij+1 for each j∈I

xi1 xi2 · · · xin , I ⊆ [n − 1] (2.1)

form a basis of this algebra. For basics of quasisymmetric functions, see [10].
The algebra of symmetric functions consists of quasisymmetric functions that are in-

variant under the action of permutations on the set of variables. As a vector space, it has
many natural bases, see [10]. One such basis of this space consists of monomial symmet-
ric functions. For partition λ = (λ1, λ2, . . . , λn) of some integer, monomial symmetric
function mλ is defined as

mλ = ∑ xα1
i1

xα2
i2
· · · xαn

in ,

where the sum runs over all distinct permutations α = (α1, α2, . . . , αn) of λ and over all
sequences i1 < i2 < · · · < in of positive integers.

We will be particularly interested in the power sum basis. The ith power sum sym-
metric function is defined as

p0 = 1 and pi =
∞

∑
j=1

xi
j

for i ≥ 1. For partition λ = (λ1, λ2, . . . , λk), we define

pλ = pλ1 pλ2 · · · pλk .

Finally, the third basis of our interest consists of elementary functions. The ith ele-
mentary symmetric function is given by

e0 = 1 and ei = ∑
j1<j2<···<ji

xj1 xj2 · · · xji
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for i ≥ 1. For partition λ = (λ1, λ2, . . . , λk), we define

eλ = eλ1eλ2 · · · eλk .

A digraph X is a pair X = (V, E), where V is a finite set and E is a collection
E ⊆ V × V. Elements u ∈ V are vertices and elements (u, v) ∈ E are directed edges of
the digraph X. If V has n elements, a V-listing is a list of all vertices with no repetitions,
i.e. a bijective map σ : [n] → V. We write ΣV for the set of all V-listings. For a V-listing
σ = (σ1, . . . , σn) ∈ ΣV , define the X-descent set as

XDes(σ) = {1 ≤ i ≤ n − 1|(σi, σi+1) ∈ E}.

Grinberg and Stanley associated to a digraph X a generating function for X-descent
sets and named it the Redei–Berge symmetric function, see [6].

UX = ∑
σ∈ΣV

FXDes(σ). (2.2)

If X = (V, E) is a digraph, its complementary digraph is the digraph X = (V, (V ×
V) \ E) and its opposite digraph is Xop = (V, E′), where E′ = {(v, u) | (u, v) ∈ E}.

Definition 2.1. Let X = (V, E) be a digraph and let SV be the group of permutations of V.
Then, we define

SV(X) = {σ ∈ SV | each non-trivial cycle of σ is a cycle of X},

SV(X, X) = {σ ∈ SV | each cycle of σ is a cycle of X or a cycle of X}.

For a permutation σ, let type(σ) denote the partition whose entries are the lengths of
the cycles of σ.

Theorem 2.2. [6] If X = (V, E) is a digraph, then

UX = ∑
σ∈SV(X,X)

(−1)φ(σ)ptype(σ),

with φ(σ) = ∑γ(ℓ(γ)− 1), where the summation runs over all cycles γ of σ that are cycles in
X and ℓ(γ) denotes the length of the cycle γ. Consequently, UX is a symmetric function.

We say that a loopless digraph X = (V, E) is a tournament if for every two distinct
vertices u, v ∈ V exactly one of (u, v) and (v, u) is an edge of X. Previous theorem is
used in [6] to prove the following corollary.
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Corollary 2.3 ([6]). If X = (V, E) is a tournament, then

UX = ∑
σ∈SV(X)

all cycles of σ have odd length

2ψ(σ)ptype(σ),

where ψ(σ) denotes the number of nontrivial cycles of σ.

The authors in [7] gave another interpretation of this function, which will be more
convenient for defining our generalization.

Definition 2.4. Let X = (V, E) be a digraph. For a coloring of vertices with positive integers
f : V → P, a V-listing σ = (σ1, . . . , σn) ∈ ΣV is called ( f , X)-friendly if

f (σ1) ≤ f (σ2) ≤ · · · ≤ f (σn) and

f (σj) < f (σj+1) for each j ∈ [n − 1] satisfying (σj, σj+1) ∈ E.

Denote by ΣV( f , X) the set of all ( f , X)-friendly V-listings and by δ f : ΣV → {0, 1}
its indicator function. For a coloring f : V → P we write x f = ∏v∈V x f (v).

Theorem 2.5 ([7]). The Redei–Berge symmetric function UX of a digraph X = (V, E) satisfies

UX = ∑
f :V→P

∑
σ∈ΣV

δ f (σ)x f .

For digraphs X = (V, E) and Y = (V′, E′) we define the product X ·Y as the digraph
on the disjoint union V ⊔ V′ with the set of directed edges E ∪ E′ ∪ {(u, v) | u ∈ V, v ∈
V′}. The following properties will be generalized in our paper.

Theorem 2.6 ([7]). For any digraph X, UX = UXop . Consequently, if X is a tournament, then
UX = UX.

Theorem 2.7 ([7]). For any two digraphs X and Y, UX·Y = UX · UY.

As we have noted in the introduction, the deletion-contraction property does not hold
for the Redei–Berge function. Nevertheless, some decomposition techniques for UX that
could replace deletion-contraction can be found in [8].

Theorem 2.8 ([8]). If X = (V, E) is a digraph that is not a disjoint union of paths, then

UX = ∑
S⊆E,S ̸=∅

(−1)|S|−1UX\S. (2.3)

Theorem 2.9 ([8]). If e1, e2, . . . , ek is a list of edges that form a directed cycle in a digraph
X = (V, E), then

UX = ∑
S⊆{e1,e2,...,ek}

S ̸=∅

(−1)|S|−1UX\S.
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We now introduce the space of our particular interest - the vector space of the non-
commutative symmetric functions. Noncommutative symmetric functions will be in-
dexed by the elements of partition lattice. Let Πn denote the lattice of set partitions of
[n] = {1, 2, . . . , n} ordered by refinement. For π ∈ Πn, we write π = B1/B2/ . . . /Bl
if the Bi’s are the blocks of π. Let λ(π) denote the integer partition of n whose parts
correspond to the block sizes of π. If λ(π) = (1r1 , 2r2 , . . . , nrn), we will write |π| for
r1!r2! · · · rn! and π! for 1!r12!r2 · · · n!rn .

We define the noncommutative monomial symmetric function, mπ, by

mπ = ∑
i1,i2,...,in

xi1 xi2 · · · xin ,

where the sum is over all sequences i1, i2, . . . , in of positive integers such that ij = ik if and
only if j and k are in the same block of π. It is easy to see that letting the variables com-
mute transforms mπ to |π|mλ(π). The noncommutative monomial symmetric functions
are linearly independent over C and we call their span the algebra of noncommutative
symmetric functions.

Another basis of this space consists of the noncommutative power sum symmetric
functions given by

pπ = ∑
π≤σ

mσ = ∑
i1,i2,...,in

xi1 xi2 · · · xin , (2.4)

where the second sum is over all positive integer sequences such that ij = ik whenever j
and k are in the same block of π. Clearly, if we let the variables commute, we transform
pπ into pλ(π).

Finally, the third basis we will be interested in contains the noncommutative elemen-
tary symmetric functions, defined by

eπ = ∑
i1,i2,...,in

xi1 xi2 · · · xin ,

where the sum runs over all sequences i1, i2, . . . , in of positive integers such that ij ̸= ik if
j and k are in the same block of π. Allowing the variables commute transforms eπ into
π!eλ(π). In [4], it is shown that

pπ =
1

µ(0̂, π)
∑

σ≤π

µ(σ, π)eσ, (2.5)

where 0̂ denotes the minimal element and µ denotes the Möbius function of Πn.
For basics of symmetric and quasisymmetric functions in noncommuting variables,

see [2], [5]. Note that these functions are different from the noncommuting symmetric
functions studied by Gelfand.

It is obvious that these functions are invariant under the usual action of the symmetric
group, hence, these functions are symmetric in the usual sense. On the other hand,
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we will need to define another action of the symmetric group Sn on this space, which
permutes the positions of the variables. For δ ∈ Sn, we define δ ◦ (xi1 xi2 · · · xin) =
xi

δ−1(1)
xi

δ−1(2)
· · · xi

δ−1(n)
, which we extend linearly to the whole space of quasisymmetric

functions in noncommuting variables. It is clear that δ ◦ mπ = mδ(π) and that δ ◦ pπ =
pδ(π), where δ(π) denotes a partition obtained from π by permuting the elements of the
blocks of π by δ.

We define the induction operation on monomials, denoted by ↑, as

(xi1 xi2 . . . xin−2 xin−1) ↑= xi1 xi2 . . . xin−2 x2
in−1

and extend it linearly to the space of noncommutative quasisymmetric functions. We
can easily see how this operation affects the monomial and the power sum symmetric
functions. For π ∈ Πn−1, let π + (n) ∈ Πn denote the partition π with n inserted into
the block containing n − 1. Then, mπ ↑= mπ+(n) and pπ ↑= pπ+(n).

3 The Redei–Berge function in noncommuting variables

Inspired by the work of Gebhard and Sagan [5], in this section we define the central
object of our paper - the noncommutative Redei–Berge symmetric function. As we have
already mentioned, our definition will be motivated by Theorem 2.5.

Definition 3.1. For a digraph X = (V, E) with vertices labeled v1, v2, . . . , vn in fixed order, its
Redei–Berge function in noncommuting variables, denoted as WX, is

WX = ∑
f :V→P

∑
σ∈ΣV

δ f (σ)x f (v1)
x f (v2) · · · x f (vn).

From the definition, it is not quite clear that this expression gives us a symmetric
function in noncommuting variables. However, it is obvious that WX is a quasisymmetric
function in noncommuting variables. Furthermore, WX depends not only on X, but also
on the labeling of its vertices. Clearly, if we let variables commute, we transform WX
into UX.

Example 3.2. Let Kn = (V, V × V) denote the complete digraph on n vertices. For a function
f : V → P, there is a friendly listing of V if and only if f (u) ̸= f (v) for any two distinct
vertices u, v ∈ V. Moreover, for such function, there is exactly one friendly listing. In other
words, WKn = e([n]), hence

Un = n!en.

Example 3.3. Let Dn = (V, ∅) be the discrete digraph on n vertices. For a function f : V → P

such that f [V] contains k values c1 < c2 < · · · < ck, there are | f−1[{c1}]|! · · · | f−1[{ck}]|!
listings that are friendly with f . Therefore,

WDn = ∑
π∈Πn

π!mπ.
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Certain properties of the Redei–Berge function in noncommuting variables can be
directly deduced from its definition. The following proposition is a generalization of
Theorem 2.6. We list the vertices of Xop and X in the same order as in X.

Theorem 3.4. For any labeled digraph X = (V, E),

WX = WXop .

If X is a labeled tournament, then
WX = WX.

Proof. If σ = (σ1, σ2, . . . , σn) is an f -friendly listing of V in X, it induces a unique f -
friendly listing of V in Xop in the following way. First, we need to list these vertices
in non-decreasing order with regard to f . Furthermore, we list the vertices with the
same f value in σ-reversing order. This is because, if f (σi) = f (σi+1), then (σi, σi+1)
is not an edge of X. Therefore, (σi+1, σi) is not an edge of Xop, so the conditions from
Definition 2.4 are satisfied.

If X and Y are digraphs with labeled vertices, then we label the vertices of X · Y by
listing the vertices of X first in the same order as in X and then the vertices of Y in the
same order as in Y. The following is a generalization of Theorem 2.7.

Theorem 3.5. For any two labeled digraphs,

WX·Y = WX · WY.

Proof. Let X = (V, E) and Y = (V′, E′) be labeled digraphs. If f : V → P and g : V′ → P

are two functions, then they induce a unique function, denoted as f g : V ⊔ V′ → P and
vice-versa. Likewise, if σ ∈ ΣV( f , X) and σ′ ∈ ΣV′(g, Y), then there is a unique listing
in ΣV⊔V′( f g, X · Y) that corresponds to the pair (σ, σ′). Namely, we need to list these
vertices in non-decreasing order with regard to f g. Further, the vertices with the same
f g value, need to be arranged by listing the vertices from Y first in σ′ order and then the
vertices from X in σ order. This is because, if v ∈ V precedes v′ ∈ V′, then, since (v, v′) is
an edge of X ·Y, we would need to have f g(v) < f g(v′). In the same manner, any listing
in ΣV⊔V′( f g, X · Y) uniquely splits to a pair of listings from ΣV( f , X)× ΣV(g, Y).

In order to show that WX satisfies the deletion-contraction property, we need a dis-
tinguished edge. If the vertices of X are labeled v1, v2, . . . , vn, we would like this edge to
be exactly (vn−1, vn). To obtain such a labeling, we will define an action of the symmet-
ric group Sn on the set of vertices v1, v2, . . . , vn by δ(vi) = vδ(i) for δ ∈ Sn. Clearly, the
following statement holds.

Proposition 3.6 (Relabeling proposition). For any digraph X, δ ◦ WX = Wδ(X).
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The deletion of an edge e ∈ E from a digraph X = (V, E) is the digraph X \ e =
(V, E \ {e}). The contraction of X by e = (u, v) ∈ E is the digraph X/e = (V′, E′), where
V′ = V \ {u, v} ∪ {e} and E′ contains all edges in E with vertices different from u, v ∈ V
and additionally for w ̸= u, v we have

• (w, e) ∈ E′ if and only if (w, u) ∈ E and

• (e, w) ∈ E′ if and only if (v, w) ∈ E.

Note that the above operation of edge contraction on digraphs is different from the usual
one since it takes into account the orientation of the contracting edge.

Theorem 3.7 (Deletion-contraction). Let X = (V, E) be any digraph with vertices labeled
v1, v2, . . . , vn and let e = (vn−1, vn) be an edge in X. Then,

WX = WX\e − WX/e ↑, (3.1)

where the vertex obtained by contraction in X/e is labeled vn−1.

Proof. For any f : V → P, ΣV( f , X) ⊆ ΣV( f , X \ e). On the other hand, the difference
ΣV( f , X \ e) \ ΣV( f , X) contains all V-listings σ = (σ1, . . . , σn) with properties

f (σ1) ≤ · · · ≤ f (σn),

f (σi) < f (σi+1) for (σi, σi+1) ∈ E \ {e} ,

(vn−1, vn) = (σj, σj+1) for some j = 1, . . . , n − 1 and f (vn−1) = f (vn).

Such a listing determines the V′-listing

σ̂ =


(e, σ3, . . . , σn), j = 1,

(σ1, . . . , σj−1, e, σj+2, . . . , σn), 1 < j < n − 1,
(σ1, . . . , σn−2, e), j = n − 1

on the set of vertices V′ of the digraph X/e. Let f̃ : V′ → P be the coloring induced

by f with f̃ (w) =

{
f (w), w ̸= e,

f (vn−1) = f (vn), w = e
. Then σ̂ is a ( f̃ , X/e)-friendly V′-listing.

Any ( f̃ , X/e)-friendly V′-listing for some coloring f̃ : V′ → P is obtained uniquely in
this way. Hence, the coefficients of x f (v1)

x f (v2) · · · x f (vn) = x f̃ (v1)
x f̃ (v2)

. . . x f̃ (vn−1)
↑ of the

left and the right side of Equation (3.1) are the same.

According to Proposition 3.6, the deletion-contraction formula from the previous the-
orem can be applied to any digraph containing an edge that is not a loop. Inductively,
we can remove all edges that are not loops. Since Example 3.3 tells us that discrete di-
graphs have symmetric Redei–Berge function and since loops do not affect this function,
we get the following.
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Theorem 3.8. The Redei–Berge function in noncommuting variables of any digraph is symmet-
ric.

The deletion-contraction property allows us to derive recurrence relations dealing
with some types of familiar digraphs. Unfortunately, the Redei–Berge function does not
behave especially nice over disjoint union of digraphs.

Example 3.9. Let Pn denote the path digraph with labeled vertices v1, v2, . . . , vn and with edges
(vi, vi+1) for i ∈ [n − 1]. Applying deletion-contraction to (vn−1, vn), we obtain that for n ≥ 2

WPn = WPn−1∪D1 − WPn−1 ↑ .

We are now able to prove the generalization of Theorem 2.2. For a permutation
σ ∈ Sn, let Type(σ) be the partition of the set {1, 2, . . . , n} whose blocks correspond to
the cycles of the unique cycle decomposition of σ. If { fi} is a basis of some vector space
V and v ∈ V, let [ fi]v denote the coefficient of fi in the expansion of v in this basis.

Theorem 3.10. If X = (V, E) is a digraph with labeled vertices v1, v2, . . . , vn, then

WX = ∑
σ∈SV(X,X)

(−1)φ(σ)pType(σ),

with φ(σ) = ∑γ(ℓ(γ)− 1), where the summation runs over all cycles γ of σ that are cycles in
X and ℓ(γ) denotes the length of the cycle γ.

Proof. We prove this theorem using induction on the number of edges that are not loops
in X. If X does not have such edges, then WX = WDn since loops do not affect our
function. According to Example 3.3, we have that

WX = ∑
π∈Πn

π!mπ. (3.2)

On the other hand, any permutation of vertices of X is in the set SV(X, X) due to the
fact that X is the complete digraph on n vertices. Also, φ(σ) = 0 for any σ. Therefore,
this theorem says that

WX = ∑
σ∈Sn

pType(σ).

We claim that this expansion is the same as the one in Equation (3.2). Using Equa-
tion (2.4), we see that

[mπ] ∑
σ∈Sn

pType(σ) = #{σ ∈ Sn | Type(σ) ≤ π} = π!,

which proves the base of our induction.
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Now, if X has edges that are not loops, we use the relabeling proposition to obtain
a labeling of X such that e = (vn−1, vn) is an edge of X. From the deletion-contraction
property, we have that

WX = WX\e − WX/e ↑ .

Since digraphs X \ e and X/e have less edges that are not loops than X, by inductive
hypothesis, we only need to prove that

∑
σ∈SV(X,X)

(−1)φ(σ)pType(σ) =

∑
σ∈SV(X\e,X\e)

(−1)φ(σ)pType(σ) − ∑
σ∈SV(X/e,X/e)

(−1)φ(σ)pType(σ) ↑ . (3.3)

Let σ ∈ SV(X, X). If there is a cycle of σ of the form (. . . , u, vn−1, vn, w, . . .), then σ in-
duces a unique σ̂ ∈ SV(X/e, X/e) obtained from σ by replacing that cycle with the cycle
(. . . , u, e, w, . . .). Since vn−1vn ∈ E, these cycles are in X and X/e, hence φ(σ) = φ(σ̂) + 1.
Clearly, pType(σ) = pType(σ̂) ↑, and therefore (−1)φ(σ)pType(σ) = −(−1)φ(σ̂)pType(σ̂) ↑.

Next, if there is not a cycle of σ of the form (. . . , u, vn−1, vn, w, . . .), then σ ∈ SV(X \
e, X \ e). Hence, we only need to prove that the terms of the right side of 3.3 that do not
appear in these two cases cancel each other out.

If σ ∈ SV(X/e, X/e) does not correspond to any listing from SV(X, X), then there
is a cycle of σ of the form (. . . , u, e, w, . . .) that is in X/e. Hence, (u, e) and (e, w) are
edges of X/e. Therefore, (u, e) and (e, w) are not edges of X/e. Consequently, (u, vn−1)
and (vn, w) are not edges of X \ e, hence, they are edges of its complement. In other
words, from the original cycle, we can obtain the cycle (. . . , u, vn−1, vn, w, . . .) in X \ e,
which transforms σ ∈ SV(X/e, X/e) into σ′ ∈ SV(X \ e, X \ e). Since these cycles are
in X/e and X \ e, φ(σ) = φ(σ′) and pType(σ) ↑= pType(σ′), these terms cancel each other
out in Equation (3.3). Similarly, it is easy to see that all the listings from SV(X \ e, X \ e)
that do not correspond to any listing from SV(X, X) are of the form σ′ for some σ ∈
SV(X/e, X/e), which completes the proof.

Corollary 3.11. WX has integer coefficients in its expansion in power sum, and therefore, in
monomial bases. If X does not have cycles of even length, then the coefficients of WX in power
sum basis are positive integers.

The proof of the following corrolary is the same as the proof of Corollary 2.3, so is
left out.

Corollary 3.12. If X = (V, E) is a tournament, then

WX = ∑
σ∈SV(X)

all cycles of σ have odd length

2ψ(σ)pType(σ),
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where ψ(σ) denotes the number of nontrivial cycles of σ.

Combining the expansion from Theorem 3.10 with Equations (2.4) and (2.5) gives us
the following.

Corollary 3.13. If X is a digraph, then

[mπ]WX = ∑
σ∈SV(X,X)
Type(σ)≤π

(−1)φ(σ), [eπ]WX = ∑
σ∈SV(X,X)
π≤Type(σ)

(−1)φ(σ)µ(π, Type(σ))
µ(0̂, Type(σ))

.

There is a way to obtain a decomposition of WX analogous to the one from Theo-
rem 2.8. We only need to be more careful while counting the listings.

Lemma 3.14. If X = (V, E) is a digraph and F ⊆ E such that (V, F) is not a disjoint union of
paths and f : V → P, then

#ΣV( f , X) = ∑
S⊆F,S ̸=∅

(−1)|S|−1#ΣV( f , X \ S). (3.4)

Proof. Since the term on the left side of Equation (3.4) corresponds to X \ S for S = ∅,
the statement of this lemma is equivalent to

∑
S⊆F
2||S|

#ΣV( f , X \ S) = ∑
S⊆F
2∤|S|

#ΣV( f , X \ S). (3.5)

Let σ = (σ1, σ2, . . . , σn) be a listing of V. Since (X, F) is not a disjoint union of paths,
there is an edge e in F such that (σi, σi+1) ̸= e for every i ∈ [n − 1]. For S ⊆ F, let S′

denote S \ e if e ∈ S and S ∪ {e} if e /∈ S. This is a self-inverse bijection between the
subsets of F with an even number of elements and the subsets of F with an odd number
of elements. If σ appears in the terms of the left side of Equation (3.5) that correspond
to S1, S2, . . . , Sk, then σ appears in the terms of the right side of Equation (3.5) that
correspond to S′

1, S′
2, . . . , S′

k and vice-versa, which completes the proof.

Theorem 3.15. If X = (V, E) is a labeled digraph that is not a disjoint union of paths, then

WX = ∑
S⊆E,S ̸=∅

(−1)|S|−1WX\S. (3.6)

Hence, the Redei–Berge function of any digraph that is not a disjoint union of paths
can be expressed as a linear combination of the Redei–Berge functions of appropriate
subdigraphs. The same expansion can be applied again to any digraph appearing on the
right side of Equation (3.6) that is not a disjoint union of paths. If we continue with this
procedure, we will express the Redei–Berge function of the original digraph as a linear
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combination of the Redei–Berge functions of its spanning subdigraphs that are disjoint
unions of paths. Note that we did not use the deletion-contraction property to prove
this theorem since some complications dealing with the edges that vanish in X/e might
appear. If there is a cycle in X, Lemma 3.14 gives a generalization of Theorem 2.9.

Theorem 3.16. If e1, e2, . . . , ek is a list of edges that form a directed cycle in a digraph X =
(V, E), then

WX = ∑
S⊆{e1,e2,...,ek}

S ̸=∅

(−1)|S|−1WX\S.

Example 3.17. If e1, e2, e3 is a list of edges that form a triangle in a digraph X = (V, E), then

WX = WX\{e1} + WX\{e2} + WX\{e3} − WX\{e1,e2} − WX\{e2,e3} − WX\{e3,e1} + WX\{e1,e2,e3}.
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