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Most q-matroids are not representable
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Abstract. A q-matroid is the analogue of a matroid which arises by replacing the finite
ground set of a matroid with a finite-dimensional vector space over a finite field. These
q-matroids are motivated by coding theory as the representable q-matroids are the ones
that stem from rank-metric codes. In this note, we establish a q-analogue of Nelson’s
theorem in matroid theory by proving that asymptotically almost all q-matroids are
not representable. This answers a question about representable q-matroids by Jurrius
and Pellikaan strongly in the negative.
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1 Introduction

The concept of q-matroids was recently introduced by Jurrius and Pellikaan in [14].
Their approach views q-matroids as the q-analogues of matroids by replacing finite sets
with finite dimensional vector spaces over finite fields. We start by recalling their key
definition of q-matroids.

In the following let L(E) denote the lattice of subspaces of E.

Definition 1.1. A q-matroid M is a pair (E, ρ) of a finite dimensional vector space E
over a finite field Fq, for some prime power q and a function ρ : L(E) → Z≥0, called the
q-rank function satisfying the following axioms for all subspaces X, Y ≤ E:

1. 0 ≤ ρ(X) ≤ dim(X),

2. If X ≤ Y, then ρ(X) ≤ ρ(Y) and

3. ρ(X ∩ Y) + ρ(X + Y) ≤ ρ(X) + ρ(Y).
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These axioms are a direct translation of the usual axioms of a matroid in terms of its
rank function to the setting of a vector space and its subspaces. It should be noted that
the q-analogue of a matroid was also independently introduced much earlier in Crapo’s
Ph.D. thesis [6].

One of the main motivations to study q-matroids stems from coding theory, as the
representable q-matroids arise from rank-metric codes. Recently, several new phenom-
ena about rank-metric codes were discovered by studying q-(poly)matroids and their
properties, see for instance [11, 9, 10, 2]. On the other hand, studying q-matroids as ana-
logues of matroids is also an active field of research. Significant effort has been invested
to define q-analogue versions of matroidal concepts, such as q-cryptomorphic axioms
systems, see [1, 3, 4], or a q-analogue of the direct sum of matroids, see [5]. It is however
fair to say that in these cases the q-analogue is much more involved than the immediate
translation of the matroid rank function above.

Jurrius and Pellikaan asked whether all q-matroids are representable [14]. This ques-
tion turned out to be too optimistic, as the first examples of non-representable appeared
recently: Gluesing-Luerssen and Jany introduced a method of translating well-known
non-representable matroid such as the Vámos matroid to the q-analogue setting [9]
whereas Ceria and Jurrius found the smallest non-representable q-matroid which is of
rank 2 on F4

2 [5].
The main result of this paper answers the above question negatively in a strong sense

by proving the following asymptotic result on representable q-matroids.

Theorem 1.2. Let n be an integer, Rq(n) be the number of representable q-matroids and Nq(n)

be the number of all q-matroids on Fn
q , respectively. Then the ratio Rq(n)

Nq(n)
asymptotically vanishes,

i.e.

lim
n→∞

Rq(n)
Nq(n)

= 0.

This result implies that the portion of representable q-matroids tends to 0 as n goes to
infinity. This is a q-analogue version of a celebrated theorem of Nelson which says that
asymptotically almost all matroids are not representable [15]. To prove this theorem,
we provide a lower bound on the number Nq(n) via coding theoretic estimations on
constant dimension codes and an upper bound on the number Rq(n) via an algebraic
concept named zero patterns.

Our paper is structured as follows. In Section 2 we briefly recap the basic notions
of q-matroids and rank metric codes, needed for the discussion in the later sections.
In Section 3 we explain the concept of constant dimension codes and describe a lower
bound on their maximal cardinality. Afterwards, we establish their connection to q-
matroids which yields the lower bound on the number Nq(n). In Section 4 we define the
notion of zero patterns of a polynomial sequence and explain how these are connected
to representable q-matroids. Subsequently, we derive an upper bound on the number
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of representable q-matroids of rank k in Fn
q . We conclude this section with a discussion

about the asymptotic behavior of representable q-matroids and the proof of our main
result, Theorem 1.2.

The following is an extended abstract of our paper [7], recently published on the
arXiv.

2 Preliminaries

2.1 Notation

Throughout the paper we always think of E as Fn
q for some prime power q and some

integer n ≥ 1. Moreover, we denote by (E
k)q the set of all k-dimensional subspaces of E.

Finally we abbreviate the row space of a matrix M ∈ Fk×n
q as rowspan(M) ∈ L(Fn

q ).

2.2 q-Binomial coefficients

The k-dimensional subspaces in Fn
q for 0 ≤ k ≤ n, are counted via the q-binomial

coefficient (n
k)q. The following bounds on the q-binomial coefficient will be crucial for

the estimations later on in this paper, see [13, Lemma 2.1, Lemma 2.2].

Lemma 2.1. For 0 ≤ k ≤ n and q ≥ 2, the following holds

q(n−k)k ≤
(

n
k

)
q
≤ 111

32
q(n−k)k.

2.3 q-Matroids

In this subsection, we shortly recall the basic notions about q-matroids, which we fre-
quently use throughout the article. For more details see for instance [14, 4].

In the introduction, we recalled the definition of a q-matroid. Given such a q-matroid
M = (E, ρ) we are interested in its associated concepts. We call ρ(M) := ρ(E) the rank
of M. A subspace X ∈ L(E) is called independent if ρ(X) = dim X, otherwise it is
called dependent. If an independent space B satisfies ρ(B) = ρ(E), it is called a basis of
M. Finally, we call a subspace C a circuit if it is dependent and all its proper subspaces
are independent.

As with usual matroids, there are cryptomorphic characterizations of q-matroids by
its collection of independent spaces, dependent spaces, bases and circuits, see [14, 4, 3].
Somewhat surprisingly unless in the case of the characterization by rank function, these
alternative descriptions are generally more involved than the direct translations of the
usual matroidal axioms.
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In Section 3 we need a special construction of so-called paving q-matroids, which are
q-matroids M such that every circuit C in M satisfies dim(C) ≥ ρ(M). One way to
obtain paving q-matroids is via the following construction, described in [9].

Proposition 2.2 ([9, Proposition 4.5]). Let n be an integer and fix 1 ≤ k ≤ n − 1. Further let
S be a collection of k-dimensional subspaces of Fn

q such that for every two distinct V, W ∈ S ,
dim(V ∩ W) ≤ k − 2. Define the map

ρ : L(E) → Z≥0, V 7→
{

k − 1 if V ∈ S ,
min{dim V, k} otherwise.

Then (E, ρ) is a paving q-matroid of rank k, whose circuits of rank k − 1 are the subspaces in S .

Another crucial concept stemming from matroid theory is the duality of q-matroids.
This is again inspired by the usual matroid duality.

Proposition 2.3 ([14, Theorem 42]). Let M = (E, ρ) be a q-matroid and B its collection of
bases. Let ⊥ denote the orthogonal complement w.r.t. a non-degenerated bilinear form on E.
Define the function ρ∗ by setting

ρ∗ : L(E) → Z≥0, ρ∗(V) = dim(V) + ρ(V⊥)− ρ(E).

Then M∗ = (E, ρ∗) is a q-matroid, called the dual q-matroid of M. Moreover, the collection
of bases B∗ of M∗ are the orthogonal complements of the elements in B.

By definition, the dual rank is given by ρ∗(M∗) = n − ρ(M) and we naturally have
(M∗)∗ = M. We want to emphasize here that there exists a bijection between q-matroids
in Fn

q of rank k and those of rank (n− k) given by the map which sends a q-matroid to its
dual, see [14, Section 8]. Therefore we may restrict ourselves to considering q-matroids
of rank k with 0 ≤ k ≤ ⌊n

2 ⌋ where n = dim E.
We conclude this subsection with an examples.

Example 2.4. Set E = Fn
q for some prime power q and integer n ≥ 1. For a number

0 ≤ k ≤ n, we define the uniform q-matroid Uk,n(E) := (E, ρ) of rank k and dimension
n, where ρ is given by

ρ(V) = min{k, dim V}, for all V ∈ L(E).

2.4 Rank-metric codes and representable q-matroids

This subsection serves as a brief introduction to algebraic coding theory, more specif-
ically we recall the basics about rank-metric codes and their connection to q-matroids,
see [1, 2] for further details.

We start with rank-metric codes. For this purpose we endow the vector space Fn
qm

with the so called rank distance metric, defined as drk(v, w) := rk(v − w) for every
v, w ∈ Fn

qm , where for v = (v1, . . . , vn) ∈ Fn
qm we set rk(v) := dimFq⟨v1, . . . , vn⟩Fq .
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Definition 2.5. We call an Fqm-linear subspace C ≤ Fn
qm a rank-metric code in Fn

qm . Its
minimal rank distance is

drk(C) := min{rk(v) | v ∈ C, v ̸= 0}.

Moreover if C has dimension k, we call a matrix G ∈ Fk×n
qm whose rows generate

C, a generator matrix of C. Finally we denote by C⊥ the dual code of C, which is
the orthogonal complement of C with respect to the standard dot product given by
v · w = ∑n

i=1 viwi for all v, w ∈ Fn
qm .

In the literature, sometimes the above definition of a rank-metric code refers to a
vector rank-metric code, to distinguish it from the so-called linear matrix rank-metric
code. In our paper, the term rank-metric code will always refer to a vector rank-metric
code, unless otherwise specified.

In analogy with usual matroids, we now define representable q-matroids as those
which arise from rank-metric codes.

Proposition 2.6 ([14, Theorem 24]). Let Fqm be a field extension of Fq and let G be a k × n-
matrix with entries in Fqm where 1 ≤ k ≤ n. Assume that G has rank k. Define a map
ρ : L(Fn

q ) → Z≥0 via
ρ(V) = rkFqm (GYT),

where Y is a matrix such that the subspace V is the row space of Y. Then MG := (Fn
q , ρ) is a

q-matroid of rank k, called the q-matroid represented by G.

Note that we can view G as the generator matrix of a rank-metric code C ≤ Fn
qm ,

therefore MG is in the literature also sometimes named the q-matroid associated to C
and denoted by MC , see for instance [1].

Definition 2.7. A q-matroid M is representable if there exist m ≥ 1 and a rank-metric
code C ≤ Fn

qm , such that the associated q-matroid MC equals M.

These q-matroid representations behave well under duality:

Proposition 2.8. [14, Theorem 48] Let MC be a representable q-matroid, with associated rank-
metric code C ≤ Fn

qm . Then M∗
C = MC⊥ .

We end this subsection by describing a special kind of vector rank-metric code, which
we revisit in Section 3. The following result plays a key role in the definition of this
special class of codes and was first proved by Delsarte [8].

Proposition 2.9 (Singleton-like Bound). Let C ≤ Fn
qm be a k-dimensional vector rank-metric

code with minimal rank distance d := drk(C). Then we have

k ≤ n − d + 1.
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Vector rank-metric codes attaining the above bound are called maximal (vector) rank-
metric codes (MRD codes). Their connection to q-matroids is stated in the next example.

Example 2.10. Let 0 < k < n and C be a k-dimensional vector MRD code in Fn
qm . Such a

code can only exist in the case m ≥ n and the q-matroid associated to C is the uniform
q-matroid Uk,n(F

n
q ) described in Example 2.4, see [10, Example 2.4.]. In other words, the

uniform q-matroid Uk,n(F
n
q ) is representable over Fn

qm if and only if m ≥ n.

3 A lower bound for the number of q-matroids

In this section, we give a lower bound on the number of q-matroids in a fixed dimension.
For this purpose, we use the so-called subspace codes and relate them with the paving
q-matroid construction presented in Section 2.3.

We start with a brief overview of subspaces codes, see [17, 12] for more details. We
consider the set L(Fn

q ) endowed with the subspace distance dS, defined as

dS(V, W) := dim(V) + dim(W)− 2 dim(V ∩ W) for all V, W ∈ L(Fn
q ).

Then the pair (L(Fn
q ), dS) is a metric space.

Definition 3.1. A non-empty subset C ⊆ L(Fn
q ) is called a subspace code. The minimum

subspace distance is given by

dS(C) := min{dS(V, W) | V, W ∈ C, V ̸= W}.

Let C be a subspace code. If the dimensions of all elements of C are equal, it is called a
constant dimension code (CDC). We denote by Aq(n, d; k) the maximal cardinality of a

constant dimension code C ⊆ (
Fn

q
k )q

with minimal subspace distance dS(C) ≥ d.

One part of our result relies on the following lower bound on the maximal cardinality
of constant dimension codes.

Proposition 3.2. For 2k ≤ n and d ≥ 4, it holds that

q(n−k)·(k− d
2+1) ≤ Aq(n, d; k).

Next, we describe a connection between CDC’s and paving q-matroids introduced in
Section 2.3. The proof of the following lemma can be found in our paper [7].

Lemma 3.3. Let S ⊆ L(Fn
q ) be a CDC of dimension k and minimal distance at least 4. Then S

fulfills the assumption of Proposition 2.2 and therefore yields a paving q-matroid.
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Now we prove a lower bound on the number Nq(k, n) of q-matroids of rank k in a
fixed dimension n ≥ 1, and subsequently give the lower bound on the number of all
q-matroids, which will be an immediate consequence of Theorem 3.4. Recall that we can
restrict ourselves to the case 0 ≤ k ≤ ⌊n

2 ⌋ by q-matroid duality.

Theorem 3.4. Let n ≥ 4 be an integer and 2 ≤ k ≤ ⌊n
2 ⌋. Then the number Nq(k, n) of

q-matroids of rank k on Fn
q satisfies

2q(n−k)·(k−1)
< Nq(k, n).

Proof. Let S be a CDC of maximal size, having minimal subspace distance dS(S) = 4.
Since 2k ≤ n all the conditions of the estimation in Proposition 3.2 are fulfilled and thus

Q := q(n−k)·(k−4/2+1) ≤ |S|.

Moreover by Lemma 3.3 the set S forms a paving q-matroid in the sense of Proposi-
tion 2.2. Then all its subsets also satisfy the intersection-dimension condition of Propo-
sition 2.2, therefore all of them form paving q-matroids as well. Furthermore all of these
are indeed different, since they possess different circuit collections. This implies that
we have at least 2Q-many paving q-matroids of rank k on Fn

q , which yields the desired
inequality and completes the proof.

Corollary 3.5 ([7]). Let n ≥ 4 and let Nq(n) denote the number of all q-matroids on E = Fn
q .

Then
2q(n−⌊ n

2 ⌋)·(⌊ n
2 ⌋−1)

< Nq(n).

4 An upper bound for representable q-matroids

4.1 Zero patterns and their connection to representable q-matroids

In this subsection, we start by giving a brief introduction to the theory of zero patterns,
see [16] for more details. Afterwards, we explain how these patterns are related to
representable q-matroids.

Definition 4.1. We call a string of length m over the alphabet {0, ∗} a zero pattern of
length m. Let K be field and a ∈ K, then set

δ(a) :=

{
0 if a = 0,
∗ otherwise.
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When a = (a1, . . . , as) ∈ Ks we apply δ coordinate-wise, i.e., δ(a) = (δ(a1), . . . , δ(as))
which is called the zero pattern of a.

Lastly let f = ( f1, . . . , fm) be a sequence of functions fi : D → K on a common
domain set D. Now for an a ∈ D we call δ( f , a) := (δ( f1(a)), . . . , δ( fm(a))) a zero
pattern of f .

For our purposes, we only consider the case that D = Ks and the fi are polynomials
in K[x1, . . . , xs]. Moreover, let us denote the number of all zero patterns of f as a ranges
over D by ZK( f ).

We now state a result concerning an upper bound on the number ZK( f ), which we
use later to bound the number of representable q-matroids for fixed rank. The proof of
the following Theorem is a direct consequence of [16, Theorem 1.3].

Theorem 4.2 ([16]). Let f = ( f1, . . . , fm) be sequence of polynomials in s variables over the
field K, all having degree less or equal d and assume m ≥ s. Then for d = 1 we have ZK( f ) ≤
∑s

j=0 (
m
j ) and for d ≥ 2 it holds that

ZK( f ) ≤
(

md
s

)
.

Next, we want to relate these zero patterns to representable q-matroids. To this end,
we define the following sequence of polynomials.

Definition 4.3. Let n ≥ 1 be an integer and 1 ≤ k ≤ n. Moreover let us consider the
vector space Fn

q and fix a total ordering on the set of all k-dimensional subspaces of Fn
q ,

i.e., U1, . . . , U(n
k)q

. We define the (k × n)-matrix

G =

x1,1 · · · x1,n
... . . . ...

xk,1 · · · xk,n

 ,

where the xi,j’s are the indeterminates of a polynomial ring P over the algebraic closure

of Fq, i.e., P = Fq[xi,j | 1 ≤ i ≤ k, 1 ≤ j ≤ n]. Each k-dimensional space Ui ∈ (
Fn

q
k )q

can

be regarded as the row space of a matrix YUi ∈ Fk×n
q , i.e., rowspanFq

(YUi) = Ui for all
i = 1, . . . , (n

k)q. Now we define (n
k)q-many homogeneous polynomials of degree k in P,

via

fUi(x) = det(G · YT
Ui
) for all i = 1, . . . ,

(
n
k

)
q
,

where we set x = (xi,j)1≤i≤k,1≤j≤n. Finally denote by Fn,k the sequence of the above
polynomials, i.e., Fn,k := ( fUi)1≤i≤(n

k)q
.
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The following lemma provides a characterization of representable q-matroids in terms
of zero patterns of the sequence of polynomials Fn,k. Let us denote the set of all zero
patterns of Fn,k by PFq

(Fn,k).

Lemma 4.4. Let M be a q-matroid of rank k on Fn
q and B, NB its collection of bases and non-

bases, respectively. Then M is representable if and only if there exists a zero pattern of Fn,k for
some u ∈ Fq

kn of the form

δ(Fn,k, u) = ( fUi(u))1≤i≤(n
k)q

=

{
0 if Ui ∈ NB,
∗ if Ui ∈ B.

Proof. On the one hand, if M is representable, then there exists a (k × n)-matrix G in
Fk×n

qm , for some m ≥ 1, representing M, and the entries of G from a vector u ∈ Fq
kn such

that all fUi corresponding to non-bases vanish and those corresponding to bases do not.
Thus we get the above described zero pattern in PFq

(Fn,k), which concludes the proof of
the first direction.

On the other hand, given such a zero pattern δ(Fn,k, u) for some u ∈ Fq
kn, the entries

of u form a full-rank (k × n)-matrix G in some Fk×n
qm . Therefore, M is represented by G

and thus representable, which concludes the proof of the second direction.

Now denote by Rq(k, n) the number of representable q-matroids on Fn
q of rank k

in a fixed dimension n ≥ 1. Then the following inequality is a direct consequence of
Lemma 4.4.

Corollary 4.5. Let 0 ≤ k ≤ n. Then

Rq(k, n) < ZFq
(Fn,k).

4.2 The upper bound and the proof of the main result

In Section 3 we established a lower bound on the number of all q-matroids. In this
subsection, we turn to the discussion of an upper bound on the number of representable
q-matroids. This provides us with the last piece for the discussion about the asymptotic
behavior of the representable q-matroids. We conclude the subsection with the proof of
our main result, Theorem 1.2.

As in Section 3 we first prove an upper bound on the number Rq(k, n) for fixed k and
n and afterward give the upper bound on the number of all representable q-matroids,
which will be an immediate consequence of Theorem 4.6.

Recall again that we restrict ourselves to the case 0 ≤ k ≤ ⌊n
2 ⌋ by q-matroid duality.

Theorem 4.6. Let n ≥ 2 and 1 ≤ k ≤ ⌊n
2 ⌋. Then the number of representable q-matroids of

rank k satisfies the following upper bounds, depending on the rank k.
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1. If k = 1 it holds that
Rq(1, n) < qlogq(n)+n2+n logq(e) + 1.

2. If 2 ≤ k ≤ ⌊n
2 ⌋ it holds that

Rq(k, n) <
(111

32

)kn
qk2n2−k3n+k logq(e)n = qn2k2−nk3+nk logq(e)+nk logq(

111
32 ).

3. Moreover there exists a bound independent of k, which holds for every k ∈ {2, . . . , ⌊n
2 ⌋}.

This bound is given by

Rq(k, n) <
(111

32

) n2
2

q
n2
4 +logq(e)

n2
2 = q

n2
4 +logq(e)

n2
2 +logq(

111
32 ) n2

2 .

To prove Theorem 4.6 we first need the following lemma.

Lemma 4.7 ([7]). Let n ≥ 2 and 1 ≤ k ≤ ⌊n
2 ⌋. Then the following inequality holds

nk ≤
(

n
k

)
q
.

Now we are ready to prove Theorem 4.6, using the theory of zero patterns of poly-
nomials.

Proof of Theorem 4.6. Our goal is to apply the inequalities of Theorem 4.2 to the sequence
of polynomials Fn,k from Definition 4.3 as we know from Corollary 4.5 that Rq(k, n) <
ZFq

(Fn,k) holds. Lemma 4.7 ensures that the conditions specified in Theorem 4.2 hold
for the parameters m = (n

k)q, s = kn, and d = k.
For the first statement, keeping in mind that k = 1, we use the first inequality in

Theorem 4.2, which then gives us

Rq(1, n) < ZFq
(Fn,1) ≤ 1 +

n

∑
i=1

(
(n

1)q

i

)
.

This sum can be upper bounded by

n

∑
i=1

(
(n

1)q

i

)
<

n

∑
i=1

(
qne

i

)i

< n(qne)n = nqn2
en = qlogq(n)+n2+n logq(e),

where the first inequality follows from the general estimate (n
1)q ≤ qn, as well as

the general bound (n
k) < (ne

k )
k for the binomial coefficient. In total, this proves the first

statement.
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Now to prove the second statement of Theorem 4.6 we consider 2 ≤ k ≤ ⌊n
2 ⌋ and

therefore we use the second inequality from Theorem 4.2, which then yields

Rq(k, n) < ZFq
( f ) ≤

(
(n

k)qk

kn

)
.

This binomial coefficient can be upper bounded by

(
(n

k)qk

kn

)
<

(
111
32 q(n−k)ke

n

)kn

<
(111

32

)kn
qn2k2−nk3

ekn = qn2k2−nk3+nk logq(e)+nk logq(111/32),

where the first inequality follows from the bound for the q-binomial coefficient from
Lemma 2.1 and the general bound on the binomial coefficient from the previous case.
This however proves the second statement. For the third statement, one can use the
fact that n2k2 − nk3 + nk logq(e) + nk log2(111/32) is strictly increasing as a polynomial
in k over the interval 2 ≤ k ≤ n

2 . Thus it attains its maximum in k = n
2 and so does

qn2k2−nk3+nk logq(e)+nk log2(111/32), which completes the proof of the third statement of The-
orem 4.6.

The desired upper bound on the number of representable q-matroids in Fn
q , is now a

direct consequence of Theorem 4.6.

Corollary 4.8. Let n ≥ 2 be an integer and let Rq(n) be the number of all representable q-
matroids on E = Fn

q . Then we have

Rq(n) < 2
(

q
n2
4 +logq(e)

n2
2 +logq(

111
32 ) n2

2 +logq(
n
2 ) + qlogq(n)+n2+n logq(e) + 2

)
.

With all preparations done, we are now finally able to prove Theorem 1.2.

Proof of Theorem 1.2. Consider the ratio Rq(n)
Nq(n)

. Corollary 3.5 implies that the denominator
of this fraction grows at least doubly exponentially while the numerator grows at most
exponentially by Corollary 4.8 when n grows. Thus in the limit this yields

lim
n→∞

Rq(n)
Nq(n)

= 0.
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