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Monotonicity for generalized binomial coefficients
and Jack positivity
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Abstract. Binomial formulas for Schur polynomials and Jack polynomials were stud-
ied by Lascoux in 1978, and Kaneko, Okounkov–Olshanski and Lassalle in the 1990s.
We prove that the associated binomial coefficients are monotone and derive some sym-
metric function inequalities, in particular, a Schur positivity and Jack positivity result.
These inequalities are similar to those studied by Newton, Muirhead, Gantmacher,
Cuttler–Greene–Skandera, Sra and Khare–Tao.
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1 Introduction

Schur polynomials are ubiquitous in math, in particular, in algebra, representation the-
ory and combinatorics. They form an orthonormal basis of the ring of symmetric poly-
nomials, correspond to the irreducible (polynomial) representations of the symmetric
group and the general linear group, and are the generating functions of semi-standard
Young tableaux [24, 30, 17].

A symmetric polynomial is called Schur positive, if its expansion coefficients in terms
of Schur polynomials are all non-negative. Schur positivity has long been a curious and
difficult question. The first Schur positivity result is that products of Schur polynomials
are Schur positive via the celebrated Littlewood–Richardson rule:

sµsν = ∑
λ

cλ
µνsλ, cλ

µν ⩾ 0.

There are many proofs and combinatorial interpretations of this rule, e.g., [2, 12, 30, 17].
Jack polynomials are a one-parameter deformation of Schur polynomials, defined over

the base field F = Q(τ). The Jack polynomial Pλ(x; τ) reduces to the Schur polynomial
sλ(x) when τ = 1 (and to many other bases for other τ). Jack polynomials originated
from multivariate statistics [6, 19], but later turned out to have rich combinatorial struc-
tures [29, 11, 17, 1] and play an important role in the study of Selberg integrals [8, 7], the
Calogero–Sutherland model [14] and random partitions [22].
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1.1 Symmetric function inequalities

In this extended abstract, we prove the following Schur positivity and Jack positivity
result. For the full details and proofs, see [4].

Theorem 1.1. Let λ and µ be partitions of length at most n, x = (x1, . . . , xn) and 1 = (1n).
Then the following are equivalent:

(1) λ ⊇ µ, i.e., λi ⩾ µi, 1 ⩽ i ⩽ n.

(2)
sλ(x + 1)

sλ(1)
−

sµ(x + 1)
sµ(1)

is Schur positive.

(3)
Pλ(x + 1; τ)

Pλ(1; τ)
−

Pµ(x + 1; τ)

Pµ(1; τ)
is Jack positive.

Here, the Jack positivity is over the cone F⩾0 = { f /g ∈ Q[τ] | f , g ∈ Z⩾0[τ], g ̸= 0 } ⊂ F.

Example 1.2. Write S(λ)(x) = sλ(x)/sλ(1) and S̃(λ)(x) = S(λ)(x + 1) for Schur poly-
nomials and similarly P∗(λ) and P̃∗(λ) for Jack polynomials, then we have

S̃( ) − S̃( ) = S( ) + 4
3 S( ) + 8

3 S( )

+ 3S( ) + 2S( ) + 2S( ) ;

P̃∗( ) − P̃∗( ) = P∗( ) + 2τ+2
τ+2 P∗( ) + 2τ+6

τ+2 P∗( )

+ 4τ+2
τ+1 P∗( ) + τ+3

τ+1 P∗( ) + 2P∗( ) .

All coefficients are in Q⩾0 or F⩾0.

Note that when τ = 1, the coefficients for Jack polynomials specialize to those for
Schur polynomials. By specializing τ to other values, one can get monomial positivity,
elementary positivity and Zonal positivity results, see Theorem 4.1.

Our Schur positivity (and monomial positivity and elementary positivity) result is
closely related to the inequalities studied by Cuttler–Greene–Skandera, Sra and Khare–
Tao in [5, 28, 9], which we now recall.

Proposition 1.3. Let λ, µ, x, and 1 be as in Theorem 1.1.

(1) (CGS–Sra) Suppose |λ| = |µ|. Then λ dominates µ if and only if

sλ(x)
sλ(1)

−
sµ(x)
sµ(1)

⩾ 0, x ∈ [0, ∞)n.

(2) (KT) λ weakly dominates µ if and only if

sλ(x + 1)
sλ(1)

−
sµ(x + 1)

sµ(1)
⩾ 0, x ∈ [0, ∞)n.
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Here λ weakly dominates µ means that λ1 + · · ·+ λi ⩾ µ1 + · · ·+ µi for 1 ⩽ i ⩽ n; and λ

dominates µ means, in addition, that |λ| = |µ|.

In [5], the authors studied inequalities of means for various symmetric polynomials.
The first inequality above, in the case of the monomial symmetric function, is the classical
Muirhead’s inequality; in the case of elementary symmetric function and power-sum,
generalizes some inequalities due to Newton and Gantmacher, respectively. They made
a conjecture for Schur polynomials, which was later proved by Sra in [28] using the
HCIZ integral and the AM–GM inequality.

In [9], the authors studied entrywise-functions that preserve the positive semidefi-
niteness of matrices and provided a complete characterization of the sign patterns of the
higher-order Maclaurin coefficients of such functions. Using a Schur positivity result of
Lam–Postnikov–Pylyavskyy, they turned from a qualitative existence result to quantita-
tive bounds on the coefficients. As an application, they gave a new characterization of
weak majorization in terms of Schur polynomials (the second part of Proposition 1.3).

Each of statements in Theorem 1.1 and Proposition 1.3 is a characterization of certain
partial order on partitions. The two inequalities in Proposition 1.3 are evaluation posi-
tivity, while in Theorem 1.1, we have expansion positivity. Since Schur polynomials are
evaluation positive, it follows that the difference in Theorem 1.1 is also positive when
evaluating at the positive orthant [0, ∞)n. In fact, Theorem 1.1, together with the first
inequality in Proposition 1.3, implies the second one, see Section 4.

1.2 Binomial formulas

The numerator sλ(x + 1) in Theorem 1.1 was first considered by Lascoux in [15] in order
to compute the Chern classes of the exterior and symmetric squares of a vector bundle,
see also [17, page 47 Example 10]. This is a natural generalization of the well-known
Newton’s binomial formula to symmetric polynomials.

Later, in the 1990s, binomial formulas for Schur polynomials, Jack polynomials, Mac-
donald polynomials (and their non-symmetric counterparts) and Koornwinder polyno-
mials were studied by Lassalle, Kaneko, Sahi, Okounkov–Olshanski and others, in [16,
8, 23, 20, 21, 26]. See also [13] for a good survey.

It was shown in [20] for Jack polynomials that

Pλ(x + 1; τ)

Pλ(1; τ)
= ∑

ν

(
λ

ν

)
τ

Pν(x; τ)

Pν(1; τ)
,

where the generalized binomial coefficients (λ
ν)τ

are given by evaluations of the interpolation
Jack polynomials, first studied in [25, 10]. Later in [27], it was shown that (λ

ν)τ
is always

positive (that is, in F⩾0). In this paper, we prove that (λ
ν)τ

is increasing in λ, which
implies Theorem 1.1. See Section 3 for a sketch of the proof.
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Theorem 1.4. If λ ⊇ µ, then (λ
ν)τ

− (µ
ν)τ

∈ F⩾0 for all ν.

2 Background

Throughout the paper, let n ⩾ 1 be the number of variables and x = (x1, . . . , xn). Recall
the following notions in [24, 30, 17].

2.1 Partitions

A partition of length at most n is a tuple λ = (λ1, . . . , λn) ∈ Zn such that λ1 ⩾ λ2 ⩾
· · · ⩾ λn ⩾ 0. The size of λ is |λ| = λ1 + λ2 + · · ·+ λn, and the length ℓ(λ) is the number
of nonzero components. Let mi(λ) be the number of components equal to i in λ. Let Pn
be the set of all partitions of length at most n.

For two partitions λ and µ, consider the following partial orders:
We say λ contains µ and write λ ⊇ µ if λi ⩾ µi for 1 ⩽ i ⩽ n.
We say λ weakly dominates or weakly majorizes µ and write λ ≽w µ if ∑k

i=1 λi ⩾ ∑k
i=1 µi

for 1 ⩽ k ⩽ n.
We say λ dominates or majorizes µ and write λ ⩾ µ if |λ| = |µ| and λ ≽w µ.

2.2 Diagrams and tableaux

For a partition λ, we usually identify it with its Young diagram (or Ferrers diagram) ,
which is a set of lattice points (usually drawn as boxes), λ = { (i, j) ∈ Z2 | 1 ⩽ j ⩽
λi, 1 ⩽ i ⩽ l(λ) }. A tableau T of shape λ and rank N is a function T : λ → {1, 2, . . . , N}.
A semi-standard reverse tableau (RT, for short) is one such that T(i, j) > T(i + 1, j) and
T(i, j) ⩾ T(i, j + 1) for (i, j), (i + 1, j), (i, j + 1) ∈ λ.

For example, for the partition (3, 2), its diagram and all RTs of rank 2 are as follows:

, 2 2 1

1 1
, 2 2 2

1 1
.

The conjugate of a partition λ is the partition λ′ associated to the transpose of the
diagram of λ. In the example above, (3, 2)′ = (2, 2, 1).

2.3 Symmetric polynomials

Denote by Λ = Λn := Z[x1, . . . , xn]Sn the ring of symmetric polynomials over Z in n
variables and ΛF = Λ ⊗Z F.

The monomial symmetric polynomial mλ is defined as mλ = ∑α∼λ xα, where the sum
runs over permutations of λ and xα = xα1

1 xα2
2 · · · xαn

n .
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For each r ⩾ 1, the elementary symmetric polynomial er and the power-sum pr are

er = m(r) = ∑
1⩽i1<···<ir⩽n

xi1 · · · xir , pr = m(1r) = ∑
1⩽i⩽n

xr
i . (2.1)

Define multiplicatively, eλ = eλ1 · · · eλl and pλ = pλ1 · · · pλl , where l = ℓ(λ).
The Schur polynomial sλ can be defined by the bialternant formula

sλ =
det(x

λj+n−j
i )1⩽i,j⩽n

det(xn−j
i )1⩽i,j⩽n

. (2.2)

The Hall inner product on ΛQ is defined by

⟨pλ, pµ⟩ = δλµzλ, (2.3)

where zλ = ∏i⩾1 imi(λ)mi(λ)! and δλµ is the Kronecker delta function.
It is a well-known fact that Schur polynomials form an orthonormal basis of Λn that is

unitriangular under the monomial basis with respect to the dominance order:

⟨sλ, sµ⟩ = δλµ, sλ = mλ + ∑
µ<λ

Kλµmµ. (2.4)

Jack polynomials are deformations of Schur polynomials. The base field is F = Q(τ),
the field of rational polynomials in the parameter τ. (Note: our τ corresponds to 1/α for
the parameter α in [17, Section VI.10].) Define an inner product on ΛF by

⟨pλ, pµ⟩τ = δλµzλτ−l(λ). (2.5)

Then, similar to Schur polynomials, Jack polynomials are uniquely determined by the
following orthogonality and unitriangularity conditions:

⟨Pλ(x; τ), Pµ(x; τ)⟩τ = 0, λ ̸= µ; Pλ = mλ + ∑
µ<λ

uλµmµ. (2.6)

The normalization here is sometimes called monic.
Jack polynomials specialize to many families. For example, when τ = 0, Pλ = mλ;

when τ = 1, Pλ = sλ; when τ = ∞, Pλ = eλ′ . Also, when τ = 1/2 or 2, Pλ specializes to
the Zonal polynomial Zλ, see [17, Chapter VII].

2.4 Binomial formulas and interpolation polynomials

The classical Newton’s binomial formula states that in the univariate case

(x + 1)k = ∑
m⩾0

(
k
m

)
xm, (2.7)
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where the binomial coefficient ( k
m) =

k(k−1)···(k−m+1)
m! is a polynomial in k.

In [20], the following binomial formula for Jack polynomials was proved:

Pλ(x + 1; τ)

Pλ(1; τ)
= ∑

µ

(
λ

ν

)
τ

Pν(x; τ)

Pν(1; τ)
, (2.8)

where 1 = (1n) = (1, 1, . . . , 1). The coefficients (λ
ν)τ

are called the generalized binomial
coefficients. They, too, are given by evaluations of certain polynomials, called interpolation
Jack polynomials (or shifted Jack polynomials), first studied in [25, 10].

To define the interpolation Jack polynomials, we need the following result about
interpolation in [10]. Let λi = λi + (n − i)τ.

Proposition 2.1. Fix d ⩾ 0 and any function f : { λ ∈ Pn | |λ| ⩽ d } → F. Then there is a
unique symmetric polynomial f ∈ ΛF, of degree at most d, such that f (λ) = f (λ) for |λ| ⩽ d.

Definition 2.2. The interpolation Jack polynomial hµ(x; τ) is the unique symmetric poly-
nomial of degree |µ| that interpolates the Kronecker delta function (for |λ| ⩽ |µ|), i.e.,

hµ(λ; τ) = δλµ, ∀λ ∈ Pn, |λ| ⩽ |µ|, (2.9)

deg hµ = |µ|. (2.10)

The generalized binomial coefficients above are given by evaluations:(
λ

µ

)
τ

:= hµ(λ; τ). (2.11)

The normalization here is called unital in the sense that (µ
µ) = 1. The monic normal-

ization, denoted by hmonic
µ , is the one such that the coefficient of mµ (or Pµ) is 1.

It is well-known that Schur polynomials and Jack polynomials can be given by
tableau-sum formulas. Okounkov found a similar formula for monic interpolation Jack
polynomials, which we now recall. (We are following the notations in [13, 4].)

Proposition 2.3. Schur polynomials, Jack polynomials and interpolation Jack polynomials can
be given by the following tableau-sum formulas:

S : sλ(x) = ∑
T

∏
s∈λ

xT(s), (2.12)

J : Pλ(x; τ) = ∑
T

ψT(τ) ∏
s∈λ

xT(s), (2.13)

AJ : hmonic
λ (x; τ) = ∑

T
ψT(τ) ∏

s∈λ

(
xT(s) −

(
a′λ(s) + (n − T(s)− l′λ(s))τ

))
, (2.14)

where S and J stand for Schur and Jack polynomials and AJ stands for (type A) interpolation Jack
polynomials. Each sum runs over RTs of shape λ and rank n. The weight ψT, the statistics a′λ(s)
and l′λ(s) can be found in [4, Section 2].
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Example 2.4. For example, for µ = (3, 2) and n = 2, we have

sµ = Pµ = mµ = x3
1x2

2 + x2
1x3

2,

and

hmonic
µ = x2x1(x2 − 1)(x1 − 1)(x1 − 2 − τ) + x2x1(x2 − 1)(x1 − 1)(x2 − 2)

= x1x2(x1 − 1)(x2 − 1)(x1 + x2 − τ − 4).

The definition involves the following 12 partitions

(0, 0), (1, 0), (1, 1), (2, 0), (2, 1), (3, 0), (2, 2), (3, 1), (4, 0), (3, 2), (4, 1), (5, 0).

One can easily verify that hmonic
µ indeed vanishes at λ = (λ1 + τ, λ2) for all but (3, 2).

One also sees that hmonic
µ vanishes at (m, 0) and (m − 1, 1) for m ⩾ 6, more than required

in the definition.

This phenomenon is true in general, called the extra vanishing property, proved in [10].

Proposition 2.5. We have (λ
µ)τ

= 0 unless λ ⊇ µ.

2.5 Positivity

In this subsection, we recall the positivity cone F⩾0 for Jack polynomials [27, 4]. The
base field F is Q(τ). Let

F⩾0 :=
{

f
g

∣∣∣∣ f , g ∈ Z⩾0[τ], g ̸= 0
}

, F>0 := F⩾0 \ {0}. (2.15)

Then F⩾0 is a convex multiplicative cone, i.e., it is closed under addition, multiplication,
and scalar multiplication by Q⩾0. When we view τ as a real number instead of an
indeterminate, we have f (τ) ⩾ 0 if τ ⩾ 0 for f ∈ F⩾0. For example, by [17, (VI.10.20)],
we have (our τ is equal to 1/α)

Pλ(1; τ) = ∏
(i,j)∈λ

n + α(j − 1)− (i − 1)
α(λi − j) + λ′

j − i + 1
= ∏

(i,j)∈λ

(n − i + 1)τ + j − 1
(λ′

j − i + 1)τ + (λi − j)
∈ F>0. (2.16)

As mentioned in Section 1, it is proved in [27] that the binomial coefficients (λ
µ)τ

is
positive. More precisely, we have the following.

Proposition 2.6 (Positivity). The binomial coefficient (λ
µ)τ

∈ F>0 if and only if λ ⊇ µ.

As a corollary of the binomial formula Equation (2.8) and the positivity, we have:

Corollary 2.7. Pλ(x + 1; τ) is Jack positive over F⩾0. In particular, sλ(x + 1) is Schur positive,
mλ(x + 1) is monomial positive, and eλ′(x + 1) is elementary positive.
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3 Proof of Theorem 1.4

After the positivity of the binomial coefficients, one asks for the monotonicity, i.e., The-
orem 1.4. In this section, we give a sketch of its proof. See [4] for full details.

We may assume that λ is obtained from µ by adding one box in row i0. The normal-
izing factor Hν(τ) := hmonic

ν (ν; τ) and the weight ψT(τ) can be easily seen to be in F>0.
Now apply the tableau-sum formula (Proposition 2.3) to write hmonic

ν (λ; τ)− hmonic
ν (µ; τ)

as a sum over RTs. For each T, the factors for λ and µ are almost identical, apart from
the ones with T(s) = i0. For such s ∈ ν, one can show that the difference is positive.

4 Symmetric function inequalities

Using the binomial formula Equation (2.8) and the monotonicity (Theorem 1.4), we can
find many interesting inequalities for symmetric functions.

Theorem 4.1. Fix τ0 ∈ [0, ∞]. The following statements are equivalent:

(1) λ ⊇ µ.

(2)
Pλ(x + 1; τ)

Pλ(1; τ)
−

Pµ(x + 1; τ)

Pµ(1; τ)
is Jack positive over F⩾0.

(3)
Pλ(x + 1; τ0)

Pλ(1; τ0)
−

Pµ(x + 1; τ0)

Pµ(1; τ0)
, is τ0-Jack positive over R⩾0 (or over Q⩾0 if τ0 ∈ Q).

As special cases,
sλ(x + 1)

sλ(1)
−

sµ(x + 1)
sµ(1)

is Schur positive,
mλ(x + 1)

mλ(1)
−

mµ(x + 1)
mµ(1)

is monomial positive,
Zλ(x + 1)

Zλ(1)
−

Zµ(x + 1)
Zµ(1)

is Zonal positive, and
eλ′(x + 1)

eλ′(1)
−

eµ′(x + 1)
eµ′(1)

is elementary positive (when expressed in { eν′ | ν ∈ Pn }).

(4)
pλ(x + 1)

pλ(1)
−

pµ(x + 1)
pµ(1)

is power-sum positive (when expressed in { pν′ | ν ∈ Pn }).

Proof. Note that Pλ(1; τ) ∈ F>0 and Pλ(1; τ0) > 0.
We first show that (1) =⇒ (2). If λ ⊇ µ, then by the binomial formula Equation (2.8),

Pλ(x + 1; τ)

Pλ(1; τ)
−

Pµ(x + 1; τ)

Pµ(1; τ)
= ∑

ν

((
λ

ν

)
τ

−
(

µ

ν

)
τ

)
Pν(x; τ)

Pν(1; τ)
.

The coefficient (λ
ν)τ

− (µ
ν)τ

is in F⩾0 by Theorem 1.4.
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(2) =⇒ (3) is clear since functions in F⩾0 have non-negative evaluation at τ0 ∈ [0, ∞].

(3) =⇒ (1): Assume that λ ̸⊃ µ, then the difference Pλ(x+1;τ)
Pλ(1;τ) − Pµ(x+1;τ)

Pµ(1;τ) would contain

the term −Pµ(x;τ0)

Pµ(1;τ0)
, contradicting (3).

(1) ⇐⇒ (4) is some easy computation, see [4, Theorem 6.4].

These inequalities are related to the ones studied by Muirhead, Cuttler–Greene–
Skandera, Sra and Khare–Tao [18, 5, 28, 9], which we now recall.

Proposition 4.2. Suppose |λ| = |µ|. The following are equivalent:

(1) λ dominates µ.

(2)
mλ(x)
mλ(1)

−
mµ(x)
mµ(1)

⩾ 0 for x ∈ [0, ∞)n.

(3)
eλ′(x)
eλ′(1)

−
eµ′(x)
eµ′(1)

⩾ 0 for x ∈ [0, ∞)n.

(4)
pλ(x)
pλ(1)

−
pµ(x)
pµ(1)

⩾ 0 for x ∈ [0, ∞)n.

(5)
sλ(x)
sλ(1)

−
sµ(x)
sµ(1)

⩾ 0 for x ∈ [0, ∞)n.

Proposition 4.3. The following are equivalent:

(1) λ weakly dominates µ. (2)
sλ(x)
sλ(1)

−
sµ(x)
sµ(1)

⩾ 0 for x ∈ [1, ∞)n.

Other such inequalities in Proposition 4.3 follow from the previous two types Theo-
rem 4.1 and Proposition 4.2.

Corollary 4.4. The following are equivalent:

(1) λ weakly dominates µ.

(2)
mλ(x)
mλ(1)

−
mµ(x)
mµ(1)

⩾ 0 for x ∈ [1, ∞)n.

(3)
eλ′(x)
eλ′(1)

−
eµ′(x)
eµ′(1)

⩾ 0 for x ∈ [1, ∞)n.

(4)
pλ(x)
pλ(1)

−
pµ(x)
pµ(1)

⩾ 0 for x ∈ [1, ∞)n.

(5)
sλ(x)
sλ(1)

−
sµ(x)
sµ(1)

⩾ 0 for x ∈ [1, ∞)n.

Proof. For briefness, We only show (1) =⇒ (5). There exists ν such that λ ⊇ ν and ν ≽ µ.

sλ(x + 1)
sλ(1)

−
sµ(x + 1)

sµ(1)
=

(
sλ(x + 1)

sλ(1)
− sν(x + 1)

sν(1)

)
+

(
sν(x + 1)

sν(1)
−

sµ(x + 1)
sµ(1)

)
.

Both differences are positive for x ∈ [0, ∞)n by Theorem 4.1 and Proposition 4.3. Each of
the implications (1) =⇒ (2)–(4) is similar. Each of the reverse implications (2)–(5) =⇒ (1)
is by some degree consideration.
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Moreover, our inequalities work for Jack polynomials as well. It is natural to extend
the inequalities of the second and third types to Jack polynomials:

Conjecture 4.5. Fix τ0 ∈ [0, ∞], and suppose |λ| = |µ|. Then the following statements are
equivalent:

(1) λ dominates µ.

(2)
Pλ(x; τ)

Pλ(1; τ)
−

Pµ(x; τ)

Pµ(1; τ)
∈ FR

⩾0 = { f /g | f (τ) ∈ R⩾0[τ], g ∈ Z⩾0[τ] \ 0}, for x ∈ [0, ∞)n.

(3)
Pλ(x; τ0)

Pλ(1; τ0)
−

Pµ(x; τ0)

Pµ(1; τ0)
⩾ 0, for x ∈ [0, ∞)n.

Conjecture 4.6. Fix τ0 ∈ [0, ∞]. The following statements are equivalent:

(1) λ weakly dominates µ.

(2)
Pλ(x; τ)

Pλ(1; τ)
−

Pµ(x; τ)

Pµ(1; τ)
∈ FR

⩾0, for x ∈ [1, ∞)n.

(3)
Pλ(x; τ0)

Pλ(1; τ0)
−

Pµ(x; τ0)

Pµ(1; τ0)
⩾ 0, for x ∈ [1, ∞)n.

Note that (2) =⇒ (3) =⇒ (1) in both conjectures are clear; and the implication (1) =⇒
(2) of Conjecture 4.5 implies that of Conjecture 4.6 via the argument of Corollary 4.4.

Example 4.7. To illustrate Sra’s inequality and the first conjecture, let n = 2, λ = (4, 0)
and µ = (3, 1), then we have

sλ(x)
sλ(1)

−
sµ(x)
sµ(1)

=
1
15

(x1 − x2)
2(3x2

1 + 4x1x2 + 3x2
2),

Pλ(x; τ)

Pλ(1; τ)
−

Pµ(x; τ)

Pµ(1; τ)
=

(τ + 3)(x1 − x2)
2

4(2τ + 1)(2τ + 3)

(
τ(x1 + x2)

2 + 2(x2
1 + x1x2 + x2

2)
)

.

Clearly both are positive when evaluating at [0, ∞)n.

The authors, together with Apoorva Khare, are currently working on these conjec-
tures and some further generalizations in [3].
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