
Séminaire Lotharingien de Combinatoire 93B (2025) Proceedings of the 37th Conference on Formal Power
Article #14, 12 pp. Series and Algebraic Combinatorics (Sapporo)

Counting homomorphisms in antiferromagnetic
graphs via Lorentzian polynomials

Joonkyung Lee*1, Jaeseong Oh†2, and Jaehyeon Seo*1

1Department of Mathematics, Yonsei University, Seoul 03722, Korea.
2June E Huh Center for Mathematical Challenges, Korea Institute for Advanced Study, Seoul
02455, Korea.

Abstract. An edge-weighted graph G, possibly with loops, is said to be antiferro-
magnetic if it has nonnegative weights and at most one positive eigenvalue, counting
multiplicities. The number of graph homomorphisms from a graph H to an antiferro-
magnetic graph G generalises various important parameters in graph theory, including
the number of independent sets and proper vertex colourings.

We obtain a number of new homomorphism inequalities for antiferromagnetic target
graphs G. In particular, we prove that various graphs H satisfy the inequality

|Hom(H, G)|2 ≤ |Hom(H × K2, G)|

for any antiferromagnetic G, where H × K2 denotes the tensor product of H and K2.
As a corollary, this confirms conjectures of Zhao and of Sah, Sawhney, Stoner and
Zhao for complete graphs Kd and adds many more instances. Our method uses the
emerging theory of Lorentzian polynomials due to Brändén and Huh, which may be
of independent interest.

Keywords: graph homomorphism inequalities, Lorentzian polynomials, antiferromag-
netic graphs

1 Introduction

For graphs G and H, a homomorphism from H to G is a vertex map that preserves ad-
jacency. There are numerous concepts in graph theory that can be rephrased in terms
of homomorphisms, which include two fundamental examples: independent sets and
proper vertex colourings with q colours, or simply q-colourings. Indeed, there is a nat-
ural bijection between independent sets of a graph H and homomorphisms from H to
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G = . Similarly, each q-coloring of H corresponds to a homomorphism from H to
G = Kq, the complete graph on q vertices.

This correspondence translates extremal problems on the number of independent
sets or q-colourings to homomorphism inequalities. For instance, the Kahn–Zhao the-
orem [9, 14] states that the complete bipartite graph Kd,d has the maximum number of
independent sets amongst d-regular graphs. More precisely, if H is d-regular, then

hom(H, )1/v(H) ≤ hom(Kd,d, )1/(2d),

where hom(H, G) = |Hom(H, G)| denotes the number of homomorphisms from H to G
and v(H) is the number of vertices in H. There have been a lot of exciting developments
along these lines of research for the last decade or two, which touches upon information
theory [7] and statistical physics [5]. For a survey on the topic, see [16]. Amongst
many results, one of the strongest homomorphism inequalities is the ‘reverse Sidorenko’
inequality of Sah, Sawhney, Stoner, and Zhao [11].

Theorem 1.1 (Theorem 1.9 in [11]). Let H be a d-regular triangle-free graph and let G be a
graph possibly with loops. Then

hom(H, G)1/v(H) ≤ hom(Kd,d, G)1/(2d). (1.1)

We remark that the original statement of [11, Theorem 1.9] allows distinct degrees in
H, which generalises Theorem 1.1 to arbitrary triangle-free graphs. On the other hand,
the triangle-freeness condition is essential in the sense that, for every H that contains
a triangle, there exists G that breaks the inequality (1.1). In contrast, the Kahn–Zhao
theorem requires no condition on H while an extremely specific target graph G =
is chosen. For another example, when G = Kq, [11, Theorem 1.7] generalises a series of
previous results [6, 15] to give that, for any d-regular graph H,

hom(H, Kq)
1/v(H) ≤ hom(Kd,d, Kq)

1/(2d).

Thus, it is natural to wonder whether an extra condition on G that generalises both
G = and G = Kq allows us to obtain an inequality of the form (1.1) for arbitrary
d-regular graphs. Sah, Sawhney, Stoner, and Zhao conjectured that G, as a symmetric
matrix, having at most one positive eigenvalue may be the correct condition to add on.

Conjecture 1.2 (Conjecture 1.16 in [11]). Let H be a d-regular graph and let G be a graph
possibly with loops that has at most one positive eigenvalue. Then

hom(H, G)1/v(H) ≤ hom(Kd,d, G)1/(2d).

In [11], the conjecture is confirmed for the particular case of semiproper colourings, i.e.,
complete graphs G possibly with loops, which can be seen as a common generalisation
of and Kq, albeit weaker than the conjecture itself.
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Identifying a graph G by its adjacency matrix naturally generalises to an arbitrary
symmetric matrix with nonnegative entries, or equivalently a weighted graph, whose
edges are weighted by the corresponding entry in the symmetric matrix. Then the ho-
momorphism count hom(H, G) is also weighted in the sense that

hom(H, G) = ∑
ϕ∈Hom(H,G)

∏
uv∈E(H)

G(ϕ(u), ϕ(v)),

where G(x, y) denotes the corresponding entry of the edge xy ∈ E(G). In fact, Conjec-
ture 1.2 was already stated in terms of weighted graphs G in [11].

There is a good reason to consider weighted graphs with at most one positive eigen-
value as a common generalisation of and Kq. In statistical physics, such a weighted
graph is called antiferromagnetic, a term that originates from the fundamental Ising and
Potts models. In what follows, an antiferromagnetic graph always means a weighted
one.

Our main result is a homomorphism inequality that compares the number of com-
plete graphs Kd and its ‘bipartisation’ Kd,d \ M, the complete bipartite graph Kd,d minus
a perfect matching M, in an arbitrary antiferromagnetic graph.

Theorem 1.3. Let G be an antiferromagnetic graph. Then

hom(Kd, G)1/d ≤ hom(Kd,d \ M, G)1/(2d). (1.2)

As Kd,d \ M is bipartite, we have hom(Kd,d \ M, G)1/(2d) ≤ hom(Kd−1,d−1, G)1/(2d−2)

by Theorem 1.1. Combining this with (1.2) then confirms Conjecture 1.2 for complete
graphs. Recall that, due to Theorem 1.1, it is enough to prove Conjecture 1.2 for H that
contains a triangle. Theorem 1.3 is the first result that confirms Conjecture 1.2 for graphs
H that contain a triangle and arbitrary antiferromagnetic graphs G.

The graph Kd,d \ M can also be seen as a ‘double cover’ Kd × K2 of Kd, where H × G
denotes the tensor product of H and G. In [15, Conjecture 2.7], Zhao conjectured that
for every d-regular graph H and every q ≥ 2, the inequality

hom(H, Kq)
2 ≤ hom(H × K2, Kq) (1.3)

holds. In fact, Theorem 1.3 is a consequence of a stronger correlation inequality, which
generalises (1.3) for ‘clique-blow-ups’ of bipartite graphs. We postpone the precise defi-
nition of the graph class until Section 4.

Theorem 1.4. Let H be a clique-blow-up of a bipartite graph and let G be an antiferromagnetic
graph. Then

hom(H, G)2 ≤ hom(H × K2, G).

In particular, one can take H = Kd or H = Kr+s \ Kr.
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Antiferromagnetism also appears in mathematical contexts with different names and
their generalisations. For example, antiferromagnetism for an n-vertex graph G is equiv-
alent to ‘hyperbolicity’ of its n × n adjacency matrix A = AG, i.e., (xT Ax)(yT Ay) ≤
(xT Ay)2 for all x, y ∈ Rn. As a higher-order generalisation of this, Brändén and Huh [3]
(and independently, Anari et al. [1]) developed the theory of Lorentzian polynomials,
which applies to settle several conjectures that relate to log-concavity of combinatorial
or geometric sequences. In particular, the theory explains why log-concavity appears in
the mixed volumes and mixed discriminants in Euclidean spaces and, as a consequence,
recovers the classical Alexandrov–Fenchel inequality [12, Section 7.3].

Our main idea in proving Theorems 1.3 and 1.4 is to apply this emerging theory of
Lorentzian polynomials. First, we find a new class of Lorentzian polynomials given by
homomorphism counts of Kd. We then obtain a ‘discrete’ analogue of the Alexandrov–
Fenchel inequality as a corollary, which is our key tool. To the best of our knowledge,
this is the first application of the theory of Lorentzian polynomials in extremal combina-
torics, although a recent result of Matherne, Morales, and Selover [10] shows that some
chromatic symmetric functions are Lorentzian.

This proceeding is organised as follows. In Section 2, some standard results on graph
homomorphisms and the theory of Lorentzian polynomials are introduced. In Section 3,
we obtain a new family of Lorentzian polynomials that come from homomorphism
counts of Kt. As a consequence, our main results, Theorems 1.3 and 1.4, follow in the
subsequent section. For the expository purpose, some proofs are written in a simplified
form that requires extra assumptions.

2 Preliminaries

In what follows, n, q, and t are positive integers. Write N0 := {0, 1, 2, . . . } for the set of
nonnegative integers and let [n] := {1, 2, . . . , n}. For a finite set I, let (I

r) be the collection
of its subsets of size r.

Graphs. A graph has no parallel edges but may have loops with nonempty edge set.
We use v(G) and e(G) for the number of vertices and edges of a graph G, respectively.
A weighted graph G is a graph with positive edge weights on edges and zero weights
on non-edges. We write G(u, v) for the corresponding weight on uv by identifying G
as its adjacency matrix with corresponding weights. A graph without specified edge
weights corresponds to a canonical {0, 1}-weight. The support of a weighted graph G,
denoted by supp(G), is the graph G′ where V(G′) := V(G) and uv ∈ E(G′) if and only
if G(u, v) > 0. Let NG(v) be the set of neighbours of the vertex v in G.

To recall, a weighted graph is antiferromagnetic if it has at most one positive eigen-
value, counting multiplicities. Recall also that an antiferromagnetic graph always refers
to a weighted graph. We say that a symmetric matrix with nonnegative entries is antifer-
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romagnetic if the corresponding weighted graph is antiferromagnetic. By the Cauchy in-
terlacing theorem, vertex deletions, i.e., principal minors, preserve antiferromagnetism.

Proposition 2.1. An induced subgraph of an antiferromagnetic graph is also antiferromagnetic.

Discrete mixed volume. If a graph H is q-colourable, then the q-chromatic symmetric
polynomial, due to Stanley [13], is defined by

XH(x) := ∑
ϕ∈Hom(H,Kq)

∏
v∈V(H)

xϕ(v).

We generalise this definition by replacing Kq by an arbitrary weighted graph. Let G be
an n-vertex weighted graph on the vertex set [n] and let x = (x1, . . . , xn) be an n-tuple of
variables. A G-chromatic function of H is an n-variable homogeneous polynomial

hH(x; G) = hH(x1, . . . , xn; G) := ∑
ϕ : V(H)→V(G)

∏
uv∈E(H)

G(ϕ(u), ϕ(v)) ∏
v∈V(H)

xϕ(v),

which has degree v(H). Note that the coefficient ∏uv∈E(H) G(ϕ(u), ϕ(v)) is nonzero
if and only if ϕ is a homomorphism from H to the support of G. In particular, the
Kq-chromatic function of H is the q-chromatic symmetric polynomial of H. We how-
ever remark that hH(x; G) is not symmetric in general. Indeed, hH(xσ(1), . . . , xσ(n); G) =
hH(x1, . . . , xn; G) holds for an automorphism σ of supp(G) that preserves edge weights,
but this may not be true for an arbitrary permutation σ on [n].

The G-volume of H is a multilinear generalisation of the G-chromatic function. Let
V(H) = [t] and let xi = (xi,1, . . . , xi,n), i = 1, 2, . . . , t be n-tuples of variables. The G-
volume of H is a t-variable real function on (Rn)t defined by

VH(x1, x2, . . . , xt; G) := ∑
ϕ : V(H)→V(G)

∏
uv∈E(H)

G(ϕ(u), ϕ(v)) ∏
u∈V(H)

xu,ϕ(u).

In particular, VH(x, x, . . . , x; G) = hH(x; G). If each xi is the indicator vector for a vertex
subset Ui ⊆ V(G), then VH(x1, . . . , xt; G) counts all the homomorphisms ϕ that embed
the vertex i ∈ V(H) into Ui. Although the G-volume is not symmetric in general, we are
mostly interested in properties of the G-volume of Kt, which is a symmetric function.

Resembling the definition of mixed volume in Euclidean geometry, the identity

hH(λ1x1 + · · ·+ λrxr; G) = ∑
(i1,...,it)∈[r]t

VH(xi1 , . . . , xit)λi1 · · · λit

holds for x1, . . . , xr ∈ Rn and λ1, . . . , λr ∈ R. By regarding λ1, . . . , λr as variables, we see

∑
σ∈St

VH(xσ(1), . . . , xσ(t); G) = ∂λ1 · · · ∂λt hH(λ1x1 + · · ·+ λtxt; G),
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where St is the symmetric group on [t]. In particular, as VKt(x1, . . . , xt; G) is symmetric,

VKt(x1, . . . , xt; G) =
1
t!

∂λ1 · · · ∂λt hKt(λ1x1 + · · ·+ λtxt; G). (2.1)

Lorentzian polynomials. Let f be a polynomial on n variables x1, . . . , xn. The Hessian
H f of f is the n × n matrix where (H f )i,j = ∂i∂j f for 1 ≤ i, j ≤ n. The support supp f of
f is the set of tuples (a1, . . . , an) ∈ Nn

0 such that xa1
1 · · · xan

n has a nonzero coefficient in f .
Following Brändén and Huh [3], Lorentzian polynomials f are defined recursively

by using partial derivatives ∂i f and a combinatorial property of the support of f , the so-
called M-convexity. A set of vectors S ⊆ Nn

0 is M-convex if the following exchange property
holds: for any vectors a = (a1, . . . , an) and b = (b1, . . . , bn) in S, whenever ai > bi for
some i ∈ [n], there is j ∈ [n] such that aj < bj and a − ei + ej ∈ S. Here ei and ej are the
i-th and j-th standard unit vectors in Nn

0 , respectively. Roughly speaking, M-convexity
of S defines a base of a discrete polymatroid, a multiset analogue of a matroid. We refer
the reader to [8] for further discussions about polymatroids.

Although there is no harm in saying that all homogeneous linear polynomials with
nonnegative coefficients are Lorentzian, it only causes extra technicalities to carry on.
Thus, we restrict ourselves onto those homogeneous polynomials of degree at least two.

A homogeneous polynomial f with nonnegative coefficients of degree d ≥ 2 is said
to be Lorentzian if:

(1) for d = 2, the Hessian H f is antiferromagnetic;

(2) for d > 2, each partial derivative ∂i f is Lorentzian and supp f is M-convex.

We remark that, while not stated explicitly above, a quadratic Lorentzian polynomial
f also has M-convex support. In other words, supp( f ) is M-convex if H f is antiferro-
magnetic. We refer to [4, Theorem 5.3] and [2, Theorem 3.2] for the proof.

An n-vertex weighted graph or its adjacency matrix, denoted by G, naturally corre-
sponds to the quadratic n-variable polynomial QG(x) := 1

2 xTGx, whose Hessian is ex-
actly G. Then G is antiferromagnetic if and only if QG is Lorentzian. Let G′ = supp(G)
for an antiferromagnetic graph G. Then supp(QG′) = supp(QG) is M-convex, so QG′ is
Lorentzian by [3, Lemma 3.11], whence G′ is also antiferromagnetic.

Let V(G) = {v1, . . . , vn} and integers r1, . . . , rn ≥ 1 be given. A blow-up of G is a
weighted graph G′ on the vertex set {v(j)

i : i ∈ [n], j ∈ [ri]} with the edge weights

G′(v(j)
i , v(ℓ)k ) := G(vi, vk) for i, k ∈ [n], j ∈ [ri], and ℓ ∈ [rk]. Here, the vertices v(1)i , . . . , v(ri)

i

can be seen as ‘clones’ of vi. If vi is a looped vertex, its clones v(1)i , . . . , v(ri)
i form a

complete graph Kri plus ri loops. In contrast, clones of a non-looped vertex form an
independent set. The following lemma, which generalises Proposition 2.1, states that a
nonnegative linear change of variables preserves the Lorentzian property. It is a direct
consequence of [3, Theorem 2.10] and its proof therein, so we omit the proof.
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Lemma 2.2. Let G′ be a blow-up or an induced subgraph of G. Then the following holds:

(1) if hH(−; G) has M-convex support, then so does hH(−; G′);

(2) if hH(−; G) is Lorentzian, then so is hH(−; G′).

3 Lorentzian G-chromatic functions

Our first step in proving Theorem 1.3 is to show that hKt(x; G) is Lorentzian whenever
G is antiferromagnetic.

Theorem 3.1. Let G be an antiferromagnetic graph and let t ≥ 2. Then hKt(x; G) is Lorentzian.

By the recursive definition of Lorentzian polynomials, there are two facts to check:
first, ∂ihKt(x; G) is Lorentzian for every i = 1, . . . , n, where n = v(G); second, the support
of hKt(x; G) is M-convex. The first is rather straightforward to verify. For the expository
purpose, we prove Theorem 3.1 for the particular case when G is unweighted and loop-
less.

We use induction on t, where the base case follows from hK2(x; G) = QG(x). Let
V(Kt) = {w1, . . . , wt} and fix ν ∈ V(G) = [n]. Let gν be the polynomial obtained by
summing all the monomials of hKt(x; G) that contain xν. Since ν ∈ V(G) is not looped,
the pre-image ϕ−1(ν) of ν for a homomorphism ϕ ∈ Hom(Kt, G) has size at most one.
Thus, gν(x) = xν · ∂νhKt(x; G). On the other hand,

gν(x) =
t

∑
i=1

∑
ϕ∈Hom(Kt,G)

ϕ(wi)=ν

t

∏
j=1

xϕ(wj)
= xν

t

∑
i=1

∑
ϕ∈Hom(Kt,G)

ϕ(wi)=ν

∏
j∈[t]\{i}

xϕ(wj)
.

Once we embed the vertex wi into ν, the other vertices in V(Kt) \ {wi} must map to
vertices in NG(ν) so that the t − 1 vertices induce a copy of Kt−1 in G[NG(ν)]. That is,
with the tuple of variables y(ν) := (xi : i ∈ NG(ν)),

∑
ϕ∈Hom(Kt,G)

ϕ(wi)=ν

∏
j∈[t]\{i}

xϕ(wj)
= hKt−1(y

(ν); G[NG(ν)]).

Here G[NG(ν)] is antiferromagnetic too by Proposition 2.1 and thus, by the induction
hypothesis, ∂νhKt(x; G) = t · hKt−1(y

(ν); G[NG(ν)]) is Lorentzian.

To prove that supp(hKt(x; G)) is M-convex, we provide a structural characterisation
of antiferromagnetic graphs G. Let K◦

q denote the complete graph on q vertices with
exactly one vertex looped; recall that this corresponds to a semiproper colouring.
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Theorem 3.2. Let G be a (unweighted) graph without isolated vertices. Then the following are
equivalent:

(1) G is antiferromagnetic;

(2) QG is Lorentzian;

(3) supp(QG) is M-convex;

(4) there exist disjoint vertex sets V1 and V2 such that V1 ∪V2 = V(G), V1 induces a complete
multipartite graph, and V2 consists of looped vertices that connect to all the vertices in G.

That is, G is obtained by blowing up K◦
q and taking its connected induced subgraph.

Proof. It was already mentioned in Section 2 that (1), (2), and (3) are equivalent by [3,
Lemma 3.11].
(1) =⇒ (4). If G is antiferromagnetic, then so are all its induced subgraphs by Proposi-
tion 2.1. Thus, the graphs , , , and are forbidden as an induced subgraph. It
follows that non-looped vertices form a complete multipartite graph and looped vertices
are pairwise adjacent.

Suppose G has as an induced subgraph. As G has no isolated vertex, G must
have , , , or as an induced subgraph. However, none of these are an-
tiferromagnetic, which contradicts antiferromagnetism of G. Thus, each looped vertex
connects to all the non-looped vertices. Together with the above paragraph, this charac-
terises the structure of G as given in (4).
(4) =⇒ (1). By direct calculation, K◦

q is antiferromagnetic. By Lemma 2.2, so is G.

Theorem 3.2 can be seen as a generalisation of [4, Corollary 5.4], which states that a
loopless graph without isolated vertices is antiferromagnetic if and only if it is a complete
multipartite graph. The only difference is that ‘apex’ loops, which connect to all the
vertices, may appear.

Let us briefly show M-convexity of supp(hKt(x; G)) for G = Kq. In this case, the
support of hKt(x; G) consists of {0, 1}-vectors, each of which is the indicator of a set in
([q]t ). Thus, its M-convexity directly follows from the base exchange property of uniform
matroids. For general G, some case analysis proves M-convexity of supp(hKt(x; G)). In
fact, even for any H other than Kt, it is enough to analyse supp(hH(x; Kq)) only. We omit
the proof.

Proposition 3.3. Let H be a connected graph on t ≥ 2 vertices. If hH(−; Kq) has M-convex
support for some q ≥ 3t, then so does hH(−; G) for all antiferromagnetic graphs G.

This may be potentially useful in proving M-convexity of G-chromatic functions for
arbitrary antiferromagnetic graphs G.
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4 Alexandrov–Fenchel-type inequalities for G-volumes

[3, Proposition 4.5] states that one can obtain an Alexandrov–Fenchel-type inequality
from any Lorentzian polynomial.

Proposition 4.1 (Proposition 4.5 in [3]). Let f be a homogeneous polynomial of degree d in n
variables. Let Ff : (Rn)d → R be defined by

Ff (v1, . . . , vd) :=
1
d!

∂x1 · · · ∂xd f (x1v1 + · · ·+ xdvd).

If f is Lorentzian, then for any v1 ∈ Rn and v2, . . . , vd ∈ (R≥0)
n,

Ff (v1, v2, v3, . . . , vd)
2 ≥ Ff (v1, v1, v3, . . . , vd) · Ff (v2, v2, v3, . . . , vd).

For example, f can be the volume of the Minkowski sum x1K1 + · · ·+ xdKd of convex
bodies K1, . . . , Kd, a Lorentzian polynomial given in [3]. Then Proposition 4.1 recovers
the classical Alexandrov–Fenchel inequality for mixed volumes.

In our setting, choosing f = hKt(x; G) gives Ff = VG(a1, . . . , at; G), the G-volume
of Kt due to (2.1). As f = hKt(x; G) is Lorentzian by Theorem 3.1, Proposition 4.1 yields
an Alexandrov–Fenchel-type inequality for the G-volume of a complete graph. That is,
for a1, a2, . . . , at ∈ (R≥0)

n,

VKt(a1, a2, a3 . . . , at; G)2 ≥ VKt(a1, a1, a3, . . . , at; G) · VKt(a2, a2, a3, . . . , at; G). (4.1)

Applying (4.1) iteratively gives the following inequality.

Corollary 4.2. Let G be an n-vertex antiferromagnetic graph and let a, b ∈ (R≥0)
n. Then

VKt(b, a, . . . , a; G) · VKt(a, b, . . . , b; G) ≥ VKt(a, a, . . . , a; G) · VKt(b, b, . . . , b; G).

We are now ready to prove our main result of this section, which implies Theorem 1.3
by setting a = b = (1, 1, . . . , 1).

Theorem 4.3. Let G be an n-vertex antiferromagnetic graph and let t ≥ 2. Write the bipartition
of Kt × K2 as V1 ⊔ V2. For a, b ∈ (R≥0)

n,

VKt(a, . . . , a︸ ︷︷ ︸
t

; G) · VKt(b, . . . , b︸ ︷︷ ︸
t

; G) ≤ VKt×K2(a, . . . , a︸ ︷︷ ︸
t

, b, . . . , b︸ ︷︷ ︸
t

; G),

where in the right-hand side, a and b correspond to the vertices in V1 and V2, respectively.

Proof. We provide a simplified proof for the case when a, b are {0, 1}-valued so that they
represent vertex subsets and G is an unweighted loopless graph. Let V(G) = [n]. For
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A ⊆ [n], denote by 1A ∈ {0, 1}n the indicator vector of A. For A, B ⊆ [n] and 1 ≤ ℓ ≤ t,
write

VKt(A; t; G) := VKt(1A, . . . , 1A︸ ︷︷ ︸
t

; G), VKt(A, B; ℓ; G) := VKt(1A, . . . , 1A︸ ︷︷ ︸
ℓ

, 1B, . . . , 1B︸ ︷︷ ︸
t−ℓ

; G),

and VKt×K2(A; B; G) := VKt×K2(1A, . . . , 1A︸ ︷︷ ︸
t

, 1B, . . . , 1B︸ ︷︷ ︸
t

; G).

Thus, our goal is to show that for A, B ⊆ [n],

VKt(A; t; G) · VKt(B; t; G) ≤ VKt×K2(A, B; t; G).

We use induction on t. As K2 × K2 = K2 ⊔ K2, the base case t = 2 reduces to

VK2(A, A; G) · VK2(B, B; G) ≤ VK2(A, B; G)2 = VK2×K2(A, A, B, B; G),

which follows from Corollary 4.2. Suppose t ≥ 3. We may assume that Kt × K2 is the
bipartite graph with the bipartition V1 ⊔ V2 = ([t]× {1}) ⊔ ([t]× {2}) and the edge set
{(i, 1)(j, 2) : i, j ∈ [t], i ̸= j}.

We compute the G-volume VKt×K2(A, B; t; G) by counting homomorphisms ϕ from
Kt × K2 to G recursively as follows: first, choose ϕ(t, 1) = r ∈ A and ϕ(t, 2) = s ∈ B;
next, find a homomorphic copy of Kt−1 ×K2 such that the vertices in A and B are adjacent
to s and r, respectively. These two-step embeddings give us the identity

VKt×K2(A; B; G) = ∑
r∈A, s∈B

VKt−1×K2(A ∩ NG(s); B ∩ NG(r); G)

By the induction hypothesis, it follows that

VKt×K2(A; B; G) ≥ ∑
r∈A, s∈B

VKt−1(A ∩ NG(s); t − 1; G) · VKt−1(B ∩ NG(r); t − 1; G)

= ∑
s∈B

VKt−1(A ∩ NG(s); t − 1; G) · ∑
r∈A

VKt−1(B ∩ NG(r); t − 1; G).

The term VKt−1(A∩ NG(s); t− 1; G) counts the number of labelled copies of Kt−1 in NG(s)
whose vertices are also in A. By summing this over s ∈ B, we get the number of labelled
copies of Kt whose first vertex is in B and the others are in A. In other words,

∑
s∈B

VKt−1(A ∩ NG(s); t − 1; G) = VKt(A, B; t − 1; G),

and, symmetrically,

∑
r∈A

VKt−1(B ∩ NG(r); t − 1; G) = VKt(A, B; 1; G).

Therefore, together with Corollary 4.2, we conclude that

VKt×K2(A; B; G) ≥ VKt(A, B; t − 1; G) · VKt(A, B; 1; G) ≥ VKt(A; t; G)VKt(B; t; G).
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Let H be a class of graphs that includes K1. An H-blow-up H of a k-vertex graph F is
obtained by replacing all k vertices v1, . . . , vk of F by H1, . . . , Hk in H, respectively, and
the edges of the form vivj ∈ E(F) by a complete bipartite graph Ks,t, where s = v(Hi) and
t = v(Hj). Note that a vertex blown up by K1 can be considered unchanged. A clique-
blow-up of a graph F is an H-blow-up with the set H of all complete graphs. For instance,
Kr+s \ Ks is a clique-blow-up of K1,s. Theorem 1.4 then follows from Theorem 4.3.

Proof of Theorem 1.4. We give a brief sketch, again assuming G is unweighted. Let H be a
clique-blow-up of a k-vertex bipartite graph F, where each vertex vi is replaced by a copy
of Kri . Let H1 and H2 be vertex-disjoint copies of H. In Hj, j = 1, 2, V(j)

i , i = 1, 2, . . . , k,
denotes the vertex set of the copy of Kri that replace vi ∈ V(F).

Let L0 = H1 ⊔ H2 and let Lℓ, ℓ = 1, 2, . . . , k be the graph obtained by replacing the
copy of Krℓ ⊔ Krℓ induced on V(1)

ℓ ∪ V(2)
ℓ in Lℓ−1 by Kr1 × K2, whose bipartition is again

V(1)
ℓ ∪ V(2)

ℓ . It is easy to check that Lk is isomorphic to H × K2 by using bipartiteness
of F. Repeated applications of Theorem 4.3 then give

hom(H, G)2 = hom(L0, G) ≤ hom(L1, G) ≤ · · · ≤ hom(Lk, G) = hom(H × K2, G).

Indeed, to compare Lℓ and Lℓ−1, fix all homomorphic images of V(1)
i ∪V(2)

i , i ̸= ℓ, where
Lℓ and Lℓ−1 induce isomorphic subgraphs, and denote by ϕ this partial embedding.
Then there exist Aϕ, Bϕ ⊆ V(G) such that finding a homomorphic copy of Krℓ in Aϕ

and in Bϕ, respectively, extends ϕ to a homomorphic copy of Lℓ−1. In contrast, finding a
homomorphic copy of Krℓ × K2 across Aϕ ∪ Bϕ extends ϕ to a homomorphic copy of Lℓ.
Thus, hom(Lℓ−1, G) ≤ hom(Lℓ, G) reduces to summing the inequality

VKrℓ
(Aϕ; rℓ; G)VKrℓ

(Bϕ; rℓ; G) ≤ VKrℓ×K2(Aϕ, Bϕ; rℓ; G)2

for all partial embeddings ϕ, which follows from Theorem 4.3.

The essence of the proof of Theorem 1.4 leverages on a weaker statement than the
Alexandrov–Fenchel-type inequality. Namely, it only requires, with k = v(K),

VK(A; k; G)VK(B; k; G) ≤ VK×K2(A, B; k; G)2 (4.2)

holds for any A, B ⊆ V(G) to blow-up a vertex of F by using a copy of K.
For G = Kq, we show that complete multipartite graphs or paths K also satisfy (4.2),

so more graphs can be added to H to blow up vertices of a bipartite graph F. We omit
the proof of this result, which relies on multiple reductions and certain log-concavity
between complete multipartite graph counts in Kq. As a consequence, we have slightly
more options to blow up a bipartite graph F than Theorem 1.4 offers if G = Kq.

Theorem 4.4. Let H be the class of graphs that consist of all complete multipartite graphs and
paths. For any H-blow-up H of a bipartite graph F and any q ≥ 2,

hom(H, Kq)
2 ≤ hom(H × K2, Kq).
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