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Abstract. Let u be a word over the positive integers. Motivated in part by a question
from representation theory, we study the centralizer set of u which is

C(u) = {w | uw is Knuth-equivalent to wu}.

In particular, we give various necessary conditions for w to be in C(u). We also char-
acterize C(u) when u has few letters, when it has a single repeated entry, or when it
is a certain type of decreasing sequence. We consider cn,m(u), the number of w ∈ C(u)
of length n with max w ≤ m. We prove that for |u| = 1 the value of this function
depends only on the relative sizes of u and m and not on their actual values. And for
various u we use Stanley’s theory of poset partitions to show that, for fixed n, cn,m(u)
is a polynomial in m with certain degree and leading coefficient. We end with various
conjectures and directions for further research.
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1 Introduction

Let P = {1, 2, 3, . . .} and N = P ⊎ {0} denote the positive and nonnegative integers,
respectively. For n ∈ N we let

[n] = {1, 2, . . . , n}.

In addition, for any set S we will use either #S or |S| to denote the cardinality of S. We
apply the same notation to words w over S and call |w| the length of w. Finally, we let S∗

be the Kleene closure of S, that is, all words with elements from S.
We will assume the reader is familiar with the Robinson–Schensted–Knuth (RSK)

correspondence as well as Schützenberger’s jeu-de-taquin (jdt). Background on these
operations can be found in the texts of Sagan [5, 6] or Stanley [11]. In particular, if
w ∈ P∗ then we will let P(w) denote the insertion tableau of w under RSK. Recall that
v, w ∈ P∗ differ by a Knuth transposition if there are words x, y and elements a, b, c such
that either

v = xacby and w = xcaby with a ≤ b < c,

or
v = xbacy and w = xbcay with a < b ≤ c.
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Furthermore, we say that v, w are Knuth-equivalent, written v ≡ w, if one can obtain w
from v by applying a sequence of Knuth transpositions. When Knuth introduced this
equivalence relation [3], he proved that

v ≡ w if and only if P(v) = P(w).

The plactic monoid is P∗ modulo Knuth equivalence. It was first considered from this
perspective by Lascoux and Schützenberger [4].

Given a word u ∈ P∗, our primary object of study will be the centralizer of u in the
plactic monoid which is

C(u) = {w | uw ≡ wu},

or equivalently
C(u) = {w | P(uw) = P(wu)}.

In particular, we wish to characterize C(u) for certain u and also consider the enumera-
tive properties of the integers

cn,m(u) = #{w ∈ C(u) | #w = n and max w ≤ m}. (1.1)

Beside the fact that C(u) is a natural set to study, our research is motivated by work
in preparation by the second author and Nate Harman concerning commuting crystal
structures on “lexicographic bitableaux,” semistandard tableaux filled with entries in
[m]× [n] ordered lexicographically. In this setting, it is natural for one crystal operation
to transform a reading word of the tableau by cutting out a subword and pasting it in a
different location. In order for this crystal operation to commute with a classical crystal
operation, the transformed word must be Knuth-equivalent to the original reading word.

The rest of this paper is organized as follows. In the next section we will collect
some necessary conditions for w to be in C(u) which will prove useful in the sequel. In
Section 3 we will characterize the w ∈ C(u) for certain u with #u ≤ 3. In particular,
we will describe C(u) for any u of length 1. Next, in Section 4 we will describe C(u)
for certain special u of arbitrary length such as those which consist of a single repeated
integer or are of the form m(m − 1) . . . 1 for some m ∈ P. Section 5 is devoted to the
study of the cn,m(u) as defined in (1.1). In particular, if |u| = 1 we show that their values
depend only on the relative sizes of m and u. Furthermore, we use Stanley’s theory of
poset partitions to prove that for certain u and fixed n, they are polynomials in m. We
end with a section containing open problems and conjectures.

2 Necessary Conditions

In this section, we collect results giving general constraints on the tableaux P = P(w) for
w ∈ C(u). In particular, we will give a criterion which will permit us to bound the size
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Figure 1: A semistandard Young tableau (SSYT), P

of the elements in the first few rows of P by the maximum value in u. Our principal tool
here and going forward will be to compare the computation of P(wu) using RSK with
the computation of P(uw) using jdt. In the former, the elements of u are inserted into
P(w) using the usual RSK bumping procedure. In the latter, a skew tableau is formed
with P(u) in the southwest and P(w) in the northeast. The tableau is then brought to
left-justified shape using jdt slides.

Given any sequence R and any element a we let

ma(R) = the multiplicity of a in R.

Also, for a semistandard Young tableau (SSYT) P with rows R1, R2, . . ., we consider the
weak composition

αa(P) = (ma(R1), ma(R2), . . .).

For example, if P is the tableau in Figure 1, then

α4(P) = (2, 1, 0, 1, 0, 0, . . .).

We will compare weak compositions α = (α1, α2, . . .) and β = (β1, β2, . . .) using domi-
nance order where α ⪯ β if for all i ≥ 1,

α1 + α2 + · · ·+ αi ≤ β1 + β2 + · · ·+ βi.

The fact that entries of a tableau P are bumped to lower rows under RSK and slid up
to higher rows under jdt slides leads to the following lemma.

Lemma 2.1. Let a ̸= b be distinct positive integers and let w ∈ P∗. Then

αb(P(wa)) ⪯ αb(P(w)) ⪯ αb(P(aw)).

From this we obtain our first necessary condition for when w ∈ C(u).

Corollary 2.2. If w ∈ C(u) and b ̸∈ u then

αb(P(wu)) = αb(P(w)) = αb(P(uw)).

In particular, no b ̸∈ u can be bumped by the insertion of u into P(w) to form P(wu). And such
an element b cannot slide between two rows in the computation of P(uw) by jdt.



4

We can now bound the size of certain elements in P(w) for w ∈ C(u) in terms of the
maximum value in u.

Lemma 2.3. Given u and w ∈ C(u) we let P = P(w) have rows Ri for i ≥ 1. Also let
m = max u. If u contains a subsequence m, m − 1, . . . , m − k + 1, then for 1 ≤ i ≤ k,

max Ri ≤ m.

Proof sketch. First we show that if a semistandard tableau T contains an a in a higher row
than an a + 1, then this will continue to be the case after any insertion into T. Using
the assumed subsequence of u we then show that in forming P(wu) from P we must
have the elements m, m − 1, . . . , m − k + 1 from u in separate rows with m in the lowest
row. This means m must have traveled through at least the first k rows to its present
position. But if one of these rows contains an element from P larger then m, then m
would bump the smallest such element to the next row. This contradicts Corollary 2.2
which completes the demonstration.

3 Commuting with short u

Given a row R of a tableau and a condition I on integers we let

R(I) = multiset of elements of R satisfying I.

For example, if u is an integer then R(≤ u) would be all elements of R which are at most
u. More specifically, if R is the second row of the the SSYT, P, in Figure 1 then

R(≤ 3) = {{2, 3, 3}}.

We say that cell (i, j) in row i and column j is adjacent to the cells (i, j + 1) and (i +
1, j) (that is, those which could be next in a jeu-de-taquin path) and similarly with the
elements of a tableau in those cells.

Theorem 3.1. Suppose u consists of a single integer which we also denote by u. Also, use
R1, R2, . . . , Rl to denote the rows of P = P(w). Then the set C(u) is all w such that P = P(w)
satisfies

(a) max R1 ≤ u, and

(b) for i ≥ 1 we have #Ri(< u) = #Ri+1(≤ u).

Proof sketch. We first prove that if P satisfies the given restrictions then w ∈ C(u). That
is, we need to prove P(wu) = P(uw). But by (a), P(wu) is obtained from P by appending
u to the first row and so has rows R1u, R2, . . . , Rl.
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To compute P(uw), we perform jeu-de-taquin on the skew tableau with u in the
(l + 1, 1) cell and P in the first l rows starting in column 2. By reverse induction and
the fact that the elements of each row below Ru must be larger than u, we show that
this u in the (l + 1, 1) cell slides up to join row Ru with each row that it passes shifting
left one cell. Using another reverse induction argument and condition (b), we show that
the remaining jeu-de-taquin moves end with a u joining R1 and leaving all lower rows
unchanged. This coincides with the description of P(wu) in the first paragraph, so we
are done with this direction.

For the converse, we assume w ∈ C(u) so that P(uw) = P(wu). Applying Lemma 2.3
with m = u and k = 1 immediately gives condition (a). Using ideas similar to those in
the first half of the proof, we obtain condition (b).

We now give a result that tests for w being in C(u) when |u| = 1 by looking at the
columns of P(w) rather than the rows.

Theorem 3.2. If |u| = 1 then

C(u) = {w | every column of P = P(w) contains a u}.

It will be useful to have a characterization of the w ∈ C(1) which depends directly on
w without having to compute P(w). This will also permit us to make a connection with
Yamanouchi words. To state these results, we will need some notation and definitions.
Let

lwi(w) = longest length of a weakly increasing subsequence of w,

and for a ∈ P

lwi(w, a) = longest length of a weakly increasing subsequence of w of the form va.

For example, if w = 162724534 then lwi(w) = 5 because of, for example, the subsequence
12244 among others. Also lwi(w, 3) = 4 as witnessed by 1223. Note that to compute
lwi(w, a) one needs only to know the length of a longest weakly increasing subsequence
ending at the rightmost a in w: a weakly increasing sequence ending at an a further to
the left can have its length increased by concatenating with the last a. Finally, recall that
a word w is Yamanouchi if every suffix of w has at least as many i’s as (i + 1)’s for all
i ≥ 1.

For the next result, we keep the notation in the statement of Theorem 3.1.

Corollary 3.3. The following are equivalent.

(a) w ∈ C(1).

(b) The entries of R1 are all 1’s.
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(c) lwi(w) = lwi(w, 1)

Furthermore, the following are equivalent.

(d) w ∈ C(1) ∩ [2]n.

(e) w ∈ [2]n is Yamanouchi.

For words u of length two or three, we will concentrate on the case when u consists
of 1’s and 2’s. If #u = 2 then u = 11, 21, and 22 will be taken care of by more general
results in the next section. So we will content ourselves with a column characterization
for C(12). To state it we define a singleton a-column to be a column of length 1 whose
entry is a.

Theorem 3.4. We have that w ∈ C(12) if and only if all columns C of P(w) satisfy the following
two conditions:

(a) If there is a singleton column, C, then C is a singleton 1-column or a singleton 2-column,
and both types of columns must exist.

(b) If #C ≥ 2 then C must contain both 1 and 2.

We end this section by looking at just one u of length 3.

Theorem 3.5. We have that w ∈ C(212) if and only if all columns C of P(w) satisfy the
following two conditions.

(a) All singleton columns are singleton 2-columns.

(b) If #C ≥ 2 then C must contain both 1 and 2.

4 Commuting with longer u

We will now derive characterizations of C(u) for certain words u of arbitrary length. We
begin by considering the case where u is just the repetition of a single element. We first
have a lemma. For any word u and k ≥ 1, we let uk be the concatenation of k copies of
u.

Lemma 4.1. For any u ∈ P∗ and any k ∈ P we have

C(u) ⊆ C(uk).

We can show that, interestingly, when u consists of a single element a, the centralizer
C(ak) does not depend on k and so can be characterized by the conditions in either
Theorem 3.1 or Theorem 3.2.
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Theorem 4.2. If a, k ∈ P then
C(ak) = C(a).

There is another class of words which have a particularly nice characterization of
their centralizers.

Theorem 4.3. We have w ∈ C(m(m − 1) . . . 1) if and only if P = P(w) satisfies

max Ri ≤ m for all 1 ≤ i ≤ m

where Ri is the ith row of P.

5 Enumeration

We can now use the characterizations derived previously to study the integers cn,m(u)
defined by (1.1) which count the number of w ∈ C(u) of length n with maximum at most
m. We will use Stanley’s theory of P-partitions where P is a poset [8], to show that for
certain u and fixed n, these numbers are polynomials in m. For more information about
this method see [6, Section 7.4] or [10, Section 3.15].

The next result shows, surprisingly, that when |u| = 1 the value of cn,m(u) depends
only on the relative sizes of u and m and not on their specific values.

Theorem 5.1. If |u| = 1 then

cn,m(u) =
{

cn,m(1) if u ≤ m,
δn,0 if u > m.

where δn,m is the Kronecker delta function.

Combining the previous result with Theorem 4.2, we immediately get the following.

Corollary 5.2. If a, k ∈ P then

cn,m(ak) =

{
cn,m(1) if a ≤ m,
δn,0 if a > m.

We will now show that for various u and fixed n, the quantity cn,m(u) is a polynomial
in m and investigate its properties. Let (P,�) be a poset on [n]. Note the use of � to
differentiate the partial order in P from the total order ≤ on integers. A P-partition is a
function f : P → N satisfying

1. i � j implies f (i) ≥ f (j), and

2. i � j and i > j implies f (i) > f (j)
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We let
Parm P = { f : P → [m] | f is a P-partition}.

Now suppose λ = (λ1, λ2, . . . , λk) is a partition of n, written λ ⊢ n. Partially order the
cells of λ reverse component-wise so that (i, j)� (i′, j′) whenever i ≥ i′ and j ≥ j′. Finally,
number the cells of λ with [n] by numbering the first row of the Young diagram from
right-to-left with 1, 2, . . . , λ1, then the next row right-to-left with λ1 + 1, λ1 + 2, . . . , λ1 +
λ2, and so forth. Transferring this labeling to the poset constructed from λ we obtain
a poset Pλ. It should be clear from the definitions that there is a bijection between the
semistandard Young tableaux P of shape λ with maximum at most m and Parm−1 Pλ

obtained by subtracting one from every element of P.
We now describe the generating function ∑m≥0 |Parm P| xm. If P is a poset on [n]

then a linear extension of P is a permutation π in the symmetric group Sn such that i � j
in P implies i is to the left of j in π. We let

L(P) = {π | π is a linear extension of P}.

Any π = π1π2 . . . πn ∈ Sn has descent number

des π = #{i | πi > πi+1}.

We now have all the ingredients to state the P-partition result we will need.

Theorem 5.3 ([8]). For any poset P on [n] we have

∑
m≥0

|Parm P| xm =
∑π∈L(P) xdes π

(1 − x)n+1 .

The theorem just stated can be used to prove the following general result about
centralizer sets.

Theorem 5.4. Let u be a word and r be a positive integer. Suppose that if P = P(w) for
w ∈ C(u) then

(a) the first r rows of P only contain elements which are at most r,

(b) the remaining rows of P can be any SSYT with elements greater than r.

Then for fixed n ≥ r and all m ≥ n we have that cn,m(u) is a polynomial in m of degree n − r
with leading coefficient 1/(n − r)!.

Combining the previous theorem with the characterizations from Sections 3 and 4,
we get the following specific cases.

Corollary 5.5. The following are polynomials in m for n fixed and m ≥ n.
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(a) If n ≥ 1 then cn,m(1) is a polynomial in m of degree n − 1 with leading coefficient 1/(n −
1)!.

(b) If n ≥ 2 then cn,m(12) is a polynomial in m of degree n − 2 with leading coefficient
1/(n − 2)!.

(c) If n ≥ k then cn,m(k(k − 1) . . . 1) is a polynomial in m of degree n − k with leading
coefficient 1/(n − k)!.

One can also use the method of proof in Theorem 5.4 to actually compute the poly-
nomials involved. We illustrate this with our next result.

Theorem 5.6. Suppose n is fixed and m ≥ n. Then we have the following polynomial expansions.

c1,m(1) = 1,

c2,m(1) =
(

m
1

)
,

c3,m(1) =
(

m
1

)
+

(
m
2

)
,

c4,m(1) =
(

m
1

)
+ 4

(
m
2

)
+

(
m
3

)
,

c5,m(1) =
(

m
1

)
+ 8

(
m
2

)
+ 13

(
m
3

)
+

(
m
4

)
,

c6,m(1) =
(

m
1

)
+ 18

(
m
2

)
+ 48

(
m
3

)
+ 41

(
m
4

)
+

(
m
5

)
,

c7,m(1) =
(

m
1

)
+ 33

(
m
2

)
+ 178

(
m
3

)
+ 262

(
m
4

)
+ 131

(
m
5

)
+

(
m
6

)
,

c8,m(1) =
(

m
1

)
+ 68

(
m
2

)
+ 549

(
m
3

)
+ 1480

(
m
4

)
+ 1405

(
m
5

)
+ 428

(
m
6

)
+

(
m
7

)
.

6 Open problems and conjectures

Although we have begun the study of the centralizer C(u), we believe that there are
many more interesting results to be found. Here we collect a few avenues for future
research.

Lemma 2.3 is useful in the proofs of the results in Sections 3 and 4. We believe that
an even stronger result is true.

Conjecture 6.1. Given u, let m = max u and ℓ be the number of rows of P(u). Suppose that
w ∈ C(u) and that P(w) has rows Ri for i ≥ 1. Then for 1 ≤ i ≤ ℓ,

max Ri ≤ m.
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To see why this conjecture implies Lemma 2.3, note that the existence of a subse-
quence of the form m, m − 1, . . . , m − k + 1 in u implies that ℓ ≥ k by an argument like
that in the proof of the lemma. So if max Ri ≤ m for i ∈ [ℓ] then certainly the inequality
is true for i ∈ [k]. We have verified Conjecture 6.1 computationally1 for u ∈ [m]n and
w ∈ [6]l where m + n ≤ 10 and 2 ≤ l ≤ 6.

In Lemma 4.1 we noted that for any u and k ≥ 1 we always have C(u) ⊆ C(uk). But
in the particular case when |u| = 1 we have C(u) = C(uk) for all k ≥ 1 by Theorem 4.2.
We conjecture that such stability holds more generally.

Conjecture 6.2. Suppose u ∈ P∗.

(a) There is a K ∈ P such that for k ≥ K we have

C(uk) ⊆ C(uk+1).

(b) There is an L ∈ P such that for k ≥ L we have

C(uk) = C(uk+1).

We have verified Conjecture 6.2(a) computationally for u ∈ [m]n and w ∈ [5]l where
m + n ≤ 10, 2 ≤ l ≤ 6, and 1 ≤ k ≤ 10. Note that except in the particular case that
u = 12345 where K = 3, for all other words u checked, we can take K = 1. In support
of Conjecture 6.2(b), the containments verified under these conditions become equalities
for k ≥ 4.

The expansions of cn,m(1) for n ≤ 8 in Theorem 5.6 have some remarkable proper-
ties which we conjecture hold in general. Call a sequence a0, a1, . . . , an of real numbers
unimodal if there is some index k such that

a0 ≤ a1 ≤ . . . ≤ ak ≥ ak+1 ≥ . . . an.

The sequence is said to be log-concave if, for all 0 < i < n,

a2
i ≥ ai−1ai+1.

Unimodal and log-concave sequences abound in combinatorics, algebra, and geometry.
See the survey articles of Stanley [9], Brenti [2], or Brändén [1] for more information. It
is well known that, for positive sequences, log-concavity implies unimodality.

Conjecture 6.3. Fix n and write

cn,m(1) =
n−1

∑
k=0

ak

(
m
k

)
for certain scalars ak (depending on n). We have the following

1The code used to verify the conjectures in this section can be found at https://github.com/wilsoa/
Centralizers-in-the-Plactic-Monoid.

https://github.com/wilsoa/Centralizers-in-the-Plactic-Monoid
https://github.com/wilsoa/Centralizers-in-the-Plactic-Monoid
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(a) a0 = 0, a1 = 1.

(b) ak ∈ P for all k ∈ [n − 1].

(c) The sequence a1, a2, . . . , an−1 is log-concave and hence (assuming (b)) unimodal.

(d) The sequence a1, a2, . . . , an−1 has maximum at k = ⌈n/2⌉.

It is well known that applying symmetries of the square to a permutation π (viewed
as a permutation matrix) does interesting things to the output tableaux under RSK.
One of these also seems to play nicely with the centralizer set. If w = w1w2 . . . wk has
max w ≤ m then define its m-reverse complement to be the word

RCm(w) = (m − wk + 1)(m − wk−1 + 1) . . . (m − w1 + 1).

Note the dependence on the choice of m, not just on w. For example

RC4(31122) = 33442.

To extend this operation to an SSYT, T, let rw(T) be the row word of T obtained by
reading the rows of T from left to right starting with the bottom row and moving up. It
is well known that

P(rw T) = T.

Now if max T ≤ m we define the m-evacuation of T to be the composition

ϵm(T) = P ◦ RCm ◦ rw(T).

When T is a standard Young tableau with maximum entry m, the map ϵm is Schützer-
berger’s evacuation operation, see [7] or [11, A1.2.10].

Lemma 6.4. If T is a SSYT with max T ≤ m, then T and ϵm(T) have the same shape.

We now wish to describe a conjectural bijection between the elements of C(u) and
those of C(RCm(u)) for any m ≥ max u. Given an array A we let A≤m be the subarray
consisting of the elements of A which are at most m and similarly for A>m. If T is
an SSYT then let τm(T) be the result of replacing T≤m with ϵm(T≤m) and leaving T>m
unchanged. Note that the previous lemma makes this replacement well defined since
the two tableaux involved have the same shape. We similarly extend the map RCm to all
words w by letting RCm(w) be the word obtained by replacing w≤m with its m-reverse
complement and leaving the elements of w>m unchanged.

We note that for any u, the centralizer C(u) is a union of Knuth equivalence classes.
Indeed, for w ∈ C(u) and w′ ≡ w, we have uw′ ≡ uw ≡ wu ≡ w′u so that w′ ∈ C(u).
It follows that to describe C(u) it suffices to describe the set P(C(u)) of all insertion
tableaux P(w) for w ∈ C(u). Our conjecture is as follows.
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Conjecture 6.5. If u is a word with max u ≤ m then

P(C(RCm(u))) = τm(P(C(u))).

Note that, since both RCm and τm are involutions, it suffices to prove only one of
the two set containments implied by the conjectured equality. We have verified this
computationally for u ∈ [m]n and w ∈ [6]l where m + n ≤ 11 and 2 ≤ l ≤ 5.
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