
Séminaire Lotharingien de Combinatoire 93B (2025) Proceedings of the 37th Conference on Formal Power
Article #142, 12 pp. Series and Algebraic Combinatorics (Sapporo)

Plactic-like monoids arising from meets and joins
of taiga congruences

Thomas Aird*1 and Duarte Ribeiro†2

1Department of Mathematics, The University of Manchester, Alan Turing Building, Oxford
Rd, Manchester, M13 9PL, UK
2Center for Mathematics and Applications (NOVA Math), FCT NOVA, 2829-516 Caparica,
Portugal

Abstract. We study algebraic and combinatorial properties of plactic-like monoids
arising from the meets and joins of taiga congruences. We construct combinatorial
objects associated with the meet-taiga monoid, establish a Robinson–Schensted-like
correspondence and give extraction and iterative insertion algorithms for said objects.
Finally, we obtain ‘hook-length’-like formulas for the various taiga monoids.

Keywords: Taiga monoid, binary trees with multiplicities, Robinson–Schensted corre-
spondence, extraction algorithm, iterative insertion algorithm, hook-length formula

1 Introduction

Plactic-like monoids are an informal class of monoids that share the interesting property
of their elements being uniquely identified with combinatorial objects, thus giving these
monoids a fundamental role in algebraic combinatorics. The namesake of this family
is the plactic monoid, also known as the monoid of Young tableaux [8]. It has been
widely applied in several areas of mathematics such as representation theory, symmetric
functions and crystal bases. Other plactic-like monoids have since arisen in the context
of combinatorial Hopf algebras whose bases are indexed by combinatorial objects.

The Baxter monoid was introduced by Giraudo [4] as the analogue of the plactic
monoid for Hopf algebras indexed by Baxter permutations. Its defining congruence
was shown to be the meet of the sylvester congruence and its dual, in the lattice of
congruences on the free monoid. Thus, its combinatorial objects are pairs of twin binary

*thomas.aird@manchester.ac.uk. Thomas Aird’s work was supported by the London Mathematical
Society, the Heilbronn Institute for Mathematical Research, and NOVA University Lisbon.

†duarte.ribeiro.math@gmail.com. Duarte Ribeiro’s work was supported by National Funds through
the FCT – Fundação para a Ciência e a Tecnologia, I.P., under the scope of the projects PTDC/MAT-
PUR/31174/2017, UIDB/04621/2020 and UIDP/04621/2020 (Center for Computational and Stochas-
tic Mathematics), and UIDB/00297/2020 (https : / / doi . org / 10 . 54499 / UIDB / 00297 / 2020) and
UIDP/00297/2020 (https://doi.org/10.54499/UIDP/00297/2020) (Center for Mathematics and Appli-
cations).

mailto:thomas.aird@manchester.ac.uk
mailto:duarte.ribeiro.math@gmail.com
https://doi.org/10.54499/UIDB/00297/2020
https://doi.org/10.54499/UIDP/00297/2020

2 Thomas Aird and Duarte Ribeiro

search trees, that is, pairs of combinatorial objects of the sylvester monoid and its dual,
that satisfy certain restrictions. On the other hand, it is also known that the join of the
sylvester congruence and its dual is the hypoplactic congruence [9].

The (right-) taiga monoid was defined by Priez [10] as the quotient of the free monoid
by the join of the sylvester and (right-) stalactic congruences. Its associated combinatorial
objects are binary search trees with multiplicities. Due to their similarity to the sylvester
monoids, it is natural to ask what are the combinatorial properties of the ‘Baxter’ and
‘hypoplactic’ analogues of the taiga monoids.

In this extended abstract, we study such analogues, which we call the meet- and join-
taiga monoids. These were introduced by the authors in [1], where one can find detailed
proofs, as well as analogous results on the meet- and join-stalactic monoids.

The necessary background is given in Section 2. We introduce the meet- and join-
taiga congruences in Section 3, for which we give several equivalent characterisations.

Section 4 focuses on the combinatorial objects associated with the meet-taiga monoid.
We define P-symbols by taking pairs of binary search trees with multiplicities satis-
fying certain restrictions. We similarly define Q-symbols, and use them to establish
Robinson–Schensted-like correspondences. We then give algorithms to extract words
from P-symbols, as well as iterative versions of the insertion algorithms, allowing us to
easily compute the concatenation of words under the meet-taiga congruence.

In Section 5, we provide explicit ‘hook-length’-like formulas for the sizes of the left-,
right- and join-taiga congruence classes. The meet-taiga case is equivalent to counting
the number of linear extensions in specific posets, for which we state its time complexity.
Finally, we give bounds for the number of binary search trees with multiplicities which
form a pair of twin binary search trees with multiplicities with a given one.

2 Background

For background on monoids, congruences and presentations, see [7, Chapter 1]. Let
N = {1, 2, . . .} denote the set of natural numbers, without zero. For a, b ∈N, we denote
by [a] the set {1 < · · · < a}, and by [a, b] the set {k ∈N | a ≤ k ≤ b}, when a < b.

2.1 Words

For any non-empty set X , we denote by X ∗ the free monoid generated by X , that is, the
set of all words over X under concatenation. We denote the empty word by ε, and refer
to X as an alphabet, and to its elements as letters. For a word w ∈ X ∗, its restriction to a
subset S of X , denoted by w[S], is the word obtained from w by removing any letter not
in S . We denote the length of w by |w| and, for each x ∈ X , we denote the number of
occurrences of x in w by |w|x. If |w|x = 1, we say x is a simple letter of w, and we denote

The meet-taiga and join-taiga monoids 3

the restriction of w to its simple letters by w.
The subset of X of letters that occur in w is called the support of w, denoted by

supp(w), and the function from X to N0 given by x 7→ |w|x is called the content of w,
denoted by cont(w). Clearly, two words that share the same content also share the same
support.

2.2 Binary trees with multiplicities and binary search trees with mul-
tiplicities

For background on right strict, left strict and pairs of twin binary search trees, see [4].
Empty combinatorial objects are denoted by ⊥. We refer to the underlying unlabelled
objects of labelled objects as their shapes.

A binary tree with multiplicities (BTM) is a rooted planar binary tree where each node
is labelled by a positive integer, called a multiplicity. A binary search tree with multiplicities
(BSTM) is a BTM where each node is further labelled by a letter of N, such that the
letter of the left (resp. right) child of any node is strictly less than (resp. strictly greater
than) the letter of said node. We consider the label of a node of a BSTM to be the pair
consisting of the letter and multiplicity that labels the node. For ease of notation, we
write multiplicities as superscripts. Examples of BSTMs are the following:

43

12

22

31

51 and
22

12 43

31 51

Algorithm TgLI allows one to insert a letter into a BSTM, either by a new leaf labelled
by it or by increasing the multiplicity of a node labelled by it, and still obtain a BSTM.
Using this algorithm, one can compute a unique BSTM from a word w: starting from the
empty tree, read w from right to left (resp. left to right) and insert its letters one-by-one
into the tree. The resulting tree is denoted by P←rTg(w) (resp. P→lTg(w)).

Example 2.1. Computing P←rTg(451423412):

21
1−→ 21

11

4−→ 21

11 41

3−→
21

11 41

31

2−→
22

11 41

31

4−→

4−→
22

11 42

31

1−→
22

12 42

31

5−→
22

12 42

31 51

4−→
22

12 43

31 51

4 Thomas Aird and Duarte Ribeiro

Algorithm 1: Taiga Leaf Insertion (TgLI).
Input: A BSTM T, a letter a ∈N.
Output: A BSTM T ↑ a.

1 if T is empty then add a node labelled a with multiplicity 1.
2 else
3 let b be the letter that labels the root node of T;
4 if a < b then recursively insert a into the left subtree of the root node;
5 else if a > b then recursively insert a into the right subtree of the root node;
6 else increment by 1 the multiplicity of the root node;

7 return the resulting tree T ↑ a.

An increasing (resp. decreasing) binary tree is an N-labelled rooted planar binary tree,
such that the label of each node is less than (resp. greater than) the label of its children,
and no two nodes have the same label.

For a word w with no repeated letters, algorithm RiBTA allows one to compute an
increasing binary tree incr(w) obtained from w. We define a Recursive Decreasing Bi-
nary Tree Algorithm (RdBTA) algorithm by replacing “incr” with “decr” and “least” with
“greatest” in RiBTA.

Algorithm 2: Recursive Increasing Binary Tree Algorithm (RiBTA).
Input: A word w ∈N∗ with no repeated letters.
Output: An increasing binary tree incr(w).

1 let incr(w) :=⊥;
2 if |w| ≥ 1 then write w = uav, where a is the least letter of w, label the root

node of incr(w) by a and recursively compute its left subtree incr(u) and right
subtree incr(v);

3 return the resulting tree incr(w).

We say that a binary tree whose labels are non-intersecting subsets of N is an increas-
ing (resp. decreasing) binary tree over sets (BTS) if the binary tree obtained by replacing
each set with its minimum (resp. maximum) element is an increasing (resp. decreas-
ing) binary tree. Examples of increasing and decreasing binary trees over sets are the
following:

1, 4, 7

3, 8

5, 9

6

2 and
5, 9

3, 8 1, 4, 7

6 2

The meet-taiga and join-taiga monoids 5

Using Algorithm RiBTA (resp. RdBTA), one can compute a unique increasing (resp.
decreasing) BTS from a word w: Let supp(w) = {x1 < · · · < xk}. For each i ∈ [k],
consider the set Wi of all j ∈ [|w|] such that xi is the j-th letter of w, when reading w from
left to right. Let v = v1 · · · vk be the word where vi = min(Wi) (resp. vi = max(Wi)).
Now, apply RiBTA (resp. RdBTA), to v to obtain an increasing (resp. decreasing) binary
tree. Finally, for each i ∈ [k] replace the label vi in the tree with the set Wi. The resulting
tree is denoted Q→lTg(w) (resp. Q←rTg(w)).

Example 2.2. Computing Q←rTg(451423412): Let w = 451423412. Then, W1 = {3, 8},
W2 = {5, 9}, W3 = {6}, W4 = {1, 4, 7} and W5 = {2} and, as such, v = 89672.

9
8,7−→

9

8 7

6,2−→
9

8 7

6 2

→
5, 9

3, 8 1, 4, 7

6 2

Ley w be a word with support {x1 < · · · < xk}. Then, P→lTg(w) (resp. P←rTg(w)) and
Q→lTg(w) (resp. Q←rTg(w)) have the same underlying binary tree shape. Furthermore, for
each i ∈ [k], the letters xi have their positions in w given by the label of the i-th node
of Q→lTg(w) (resp. Q←rTg(w)). From this, we have an analogue of the Robinson–Schensted
correspondence for pairs of BSTMs and BTSs, first stated in [10]. We give the result for
the right-insertion algorithm case:

Theorem 2.3. The map w 7→ (P←rTg(w), Q←rTg(w)) is a bijection between the elements of N∗

and the set formed by the pairs (T, S) where

(i) T is a BSTM;

(ii) S is a decreasing BTS such that the union of the sets labelling S is the interval [m], where
m is the sum of the multiplicities of T;

(iii) T and S have the same underlying binary tree shape;

(iv) the multiplicity of the i-th node of T is the cardinality of the set labelling the i-th node of S.

2.3 The right- and left-taiga monoids

For background on the hypoplactic, sylvester and stalactic monoids, see [9], [5] and [6],
respectively.

The right-taiga congruence ≡rTg on N∗ is defined in the following way: for u, v ∈N∗,

u ≡rTg v⇔ P←rTg(u) = P←rTg(v).

6 Thomas Aird and Duarte Ribeiro

The factor monoid N∗/≡rTg is the (infinite-rank) right-taiga monoid, denoted by rTg. It
follows from the definition of rTg that any element [w]rTg can be uniquely identified with
the BSTM P←rTg(w). All words in each ≡rTg-class share the same content (and therefore
the same support), hence, we extend these definitions to ≡rTg-classes and BSTMs in a
natural way. The left-taiga congruence ≡lTg and monoid lTg are defined analogously.

Recall that the sylvester and #-sylvester congruences are generated, respectively, by
the relations

Rsylv = {(caub, acub) | a ≤ b < c, u ∈N∗} and
Rsylvh = {(buac, buca) | a < b ≤ c, u ∈N∗},

and the right- and left-stalactic congruences are generated, respectively, by the relations

RrSt = {(baub, abub) | a, b ∈N, u ∈N∗} and
RlSt = {(buab, buba) | a, b ∈N, u ∈N∗}.

Proposition 2.4 ([10, Proposition 4]). The right- and left-taiga congruences are generated,
respectively, by the relations

RrTg = Rsylv ∪RrSt and RlTg = Rsylvh ∪RlSt .

The proof of [2, Lemma 17] can be easily adapted to show that rTg is left-cancellative
and lTg is right-cancellative.

3 Meets and joins of taiga congruences

We now consider, in the lattice of congruences on N∗, the meet and join of the taiga con-
gruences given in the previous subsection. We respectively call them the meet-taiga and
the join-taiga congruences, and denote them by ≡mTg and ≡jTg . Thus, we define the meet-
taiga monoid mTg and join-taiga monoid jTg as quotients of N∗ by the corresponding
congruences.

We start by giving generating relations for these congruences. Clearly, the join-taiga
congruence is generated by the relations RjTg := RrTg ∪ RlTg . On the other hand, we
have that:

Proposition 3.1. The meet-taiga congruence is generated by the relations

RmTg := {(buadvc, budavc) | a ≤ d, b, c ∈ [a, d], u, v ∈N∗}.

We can characterise the join-taiga class of a word by looking at the hypoplactic classes
of specific subsequences of it:

Proposition 3.2. Let u, v ∈ N∗. Let A1, . . . , Ak be all the intervals of supp(u) such that Ai
only contains simple letters and Ai ∪ {a} is not an interval, for any simple letter a /∈ Ai. Then,
u≡jTg v if and only if cont(u) = cont(v) and u[Ai]≡hypo v[Ai] for all 1 ≤ i ≤ k.

The meet-taiga and join-taiga monoids 7

4 Robinson–Schensted-like correspondence

In this section, we first introduce an analogue of the Robinson–Schensted correspon-
dence for the meet-taiga monoid. We then show how to extract representatives of classes
from their P-symbols, and give an iterative version of the insertion algorithm, allowing
us to compute a combinatorial object while reading a word in one direction only.

4.1 Definition and correctness of the correspondence

We define the meet-taiga P-symbol of a word w as the pair (P→lTg(w), P←rTg(w)) of BSTMs,
denoted by PmTg(w), and the meet-taiga Q-symbol of w as the pair (Q→lTg(w), Q←rTg(w)) of
(respectively) increasing and decreasing binary trees, denoted by QmTg(w).

Example 4.1. The meet-taiga P and Q-symbols of 451423412 are, respectively, the follow-
ing: 

43

12

22

31

51 ,
22

12 43

31 51

 and


1, 4, 7

3, 8

5, 9

6

2 ,
5, 9

3, 8 1, 4, 7

6 2


Proposition 4.2. Let u, v ∈N∗. Then u ≡mTg v if and only if PmTg(u) = PmTg(v).

Let TL, TR be BTMs, with the same number of nodes. We say (TL, TR) is a pair of twin
binary trees with multiplicities (pair of twin BTMs), if for all i,

(i) the i-th node of TL and the i-th node of TR have the same multiplicities;

(ii) if the i-th node of TL has multiplicity 1 and has a left (resp. right) child then the
i-th node of TR does not have a left (resp. right) child.

Notice that condition (ii) is equivalent to saying that if ri has multiplicity 1 then if ri has
a left (resp. right) child then li does not have a left (resp. right) child.

Let TL, TR be BSTMs. We say (TL, TR) is a pair of twin binary search trees with multiplic-
ities (pair of twin BSTMs) if cont(TR) = cont(TL) and the shape of (TL, TR) is a pair of
twin BTMs. The P-symbol given in Example 4.1 is a pair of twin BSTMs. In fact, we have
the following:

Proposition 4.3. The PmTg-symbol (P→lTg(w), P←rTg(w)) of w is a pair of twin BSTMs, for any
w ∈N∗.

Let (SL, SR) be a pair of (respectively) increasing and decreasing binary trees over
sets, with the same number of nodes. We say (SL, SR) are a pair of twin binary trees over
sets (pair of twin BTSs) if, for all i,

8 Thomas Aird and Duarte Ribeiro

(i) the i-th node of SL has the same label as the i-th node of SR;

(ii) if the i-th node of SL is labelled by a set of cardinality 1 and has a left (resp. right)
child, then the i-th node of SR does not have a left (resp. right) child.

The Q-symbol given in Example 4.1 is a pair of twin BTSs. In fact, we have the
following:

Proposition 4.4. The meet-taiga Q-symbol (Q→lTg(w), Q←rTg(w)) of w is a pair of twin BTSs,
for any w ∈N∗.

Now, we are able to state our analogue of the Robinson–Schensted correspondence
for the meet-taiga case:

Theorem 4.5. The map w 7→ (PmTg(w), QmTg(w)) is a bijection between the elements of N∗

and the set formed by the pairs ((TL, TR), (SL, SR)) where

(i) (TL, TR) is a pair of twin BSTMs;

(ii) (SL, SR) is a pair of twin BTSs such that the union of the sets labelling SL, and therefore
SR, is the interval [m], where m is the sum of the multiplicities of TL (or TR);

(iii) (TL, TR) and (SL, SR) have the same underlying pair of binary trees shape;

(iv) the multiplicity of the i-th node of TL (resp. TR) is the cardinality of the set labelling the
i-th node of SL (resp. SR).

4.2 Extraction algorithm

In the previous subsection, we have shown how to obtain a word from its meet-taiga P
and Q-symbols. We now show how to obtain (possibly several) words from P-symbols
alone, without requiring a Q-symbol.

Algorithm EmTg takes a pair of twin BSTMs (TL, TR) and outputs a word in the
≡mTg-class corresponding to (TL, TR). Notice that it is a non-deterministic algorithm,
since there may be several choices for a in steps 5 and 14.

Proposition 4.6. For any pair of twin BSTMs (TL, TR) as input, Algorithm EmTg computes a
word belonging to the ≡mTg-equivalence class encoded by (TL, TR).

The meet-taiga and join-taiga monoids 9

Algorithm 3: Extract Meet-Taiga (EmTg).
Input: A pair of twin BSTMs (TL, TR).
Output: A word in the ≡mTg-class corresponding to (TL, TR).

1 let w := ε and (UL, UR) := (TL, TR);
2 while (UL, UR) ̸= (⊥,⊥) do
3 if all leaves in UR share letters in their labels with nodes in UL then
4 choose a letter a that labels the root node of a tree in UL, such that a has

multiplicity greater than 1 or a labels a leaf in UR, and let ma be the
multiplicity of a;

5 if ma > 1 then let w := wama−1;
6 else let w := wa and remove the node labelled a from UR;
7 remove the node labelled a from UL;

8 else let a be the letter that labels a leaf in UR such that a does not label any
node in UL, let w := wa and remove the node labelled a from UR;

9 return the word w.

Example 4.7. Applying EmTg to the meet-taiga P-symbol of 451423412 yields the word
445112342:

43

12

22

31

51 ,
22

12 43

31 51

 →


43

12

22

31

51 ,
22

12 43

31 51

 →


43

12

22

31

51 ,
22

12 43

31 51

 →

→


43

12

22

31

51 ,
22

12 43

31 51

 →


43

12

22

31

51 ,
22

12 43

31 51

 →


43

12

22

31

51 ,
22

12 43

31 51

 →

→


43

12

22

31

51 ,
22

12 43

31 51

 →


43

12

22

31

51 ,
22

12 43

31 51

 →


43

12

22

31

51 ,
22

12 43

31 51


The sequence of words obtained in each step of the algorithm is 44, 445, 4451, 44511,
445112, 4451123, 44511234 and lastly 445112342. In this example, we chose to remove the
node labelled 5 before the node labelled 1.

As a consequence of Propositions 4.2, 4.3 and 4.6, we have the following:

Corollary 4.8. For any n, m ≥ 0, there is a bijection between the set of mTg-equivalence classes
of words of length m over [n]∗ and pairs of twin BSTMs, labelled by letters from [n] and whose
sums of multiplicities is m.

10 Thomas Aird and Duarte Ribeiro

4.3 Iterative insertion algorithm

We now introduce an iterative version of our insertion algorithm which allow us to
compute a pair of twin BSTMs from a word, while reading it in only one direction.
Thus, we can compute the product of two pairs of twin BSTMs by applying EmTg to the
second pair and inserting the letters of the resulting word, from left to right, into the
first pair.

Algorithm TgRI allows one to obtain a new BSTM from another one, with the root
node labelled by the letter of our choice.

Algorithm 4: Taiga Root Insertion (TgRI).
Input: A BSTM T, a letter a ∈N.
Output: A BSTM a ↓ T.

1 let T<a (resp. T>a) be the tree of all nodes of T labelled by letters < a (resp. > a),
such that a node x is a descendant of a node y in T<a (resp. T>a) only if x is a
descendant of y in T;

2 let a ↓ T be the tree with root node labelled a with multiplicity |T|a + 1, with left
subtree T<a and right subtree T>a;

3 return the resulting tree a ↓ T.

As before in Subsection 2.2, using Algorithm TgRI, one can compute a unique BSTM
from a word w: starting from the empty tree, read w from left to right (resp. right to
left) and insert its letters one-by-one into the tree. The resulting BSTM is denoted by
P→rTg(w) (resp. P←lTg(w)). The proof of [4, Lemma 4.18] can be easily adapted to show the
following:

Lemma 4.9. Let w ∈N∗. Then P→rTg(w) = P←rTg(w) and P←lTg(w) = P→lTg(w).

As such, we can compute the P-symbol of a meet-taiga class by reading a word in
only one direction and applying Algorithms TgLI and TgRI at the same time:

Corollary 4.10. For any w ∈N∗, we have that

PmTg(w) =
(

P←lTg(w), P←rTg(w)
)
=

(
P→lTg(w), P→rTg(w)

)
.

We can now define the left-to-right iterative meet-taiga P-symbol of a word w as the pair
(P→lTg(w), P→rTg(w)), obtained by reading w from left to right and iteratively inserting its
letters into (⊥,⊥), using Algorithms TgLI and TgRI for P→lTg(w) and P→rTg(w), respec-
tively. Similarly, we define the left-to-right iterative meet-taiga Q-symbol of w as the pair
(Q→lTg(w), Q→rTg(w)), of the same shape as PmTg(w), where each node is labelled by the
positions in w of the letter in its corresponding node in PmTg(w). In other words, each

The meet-taiga and join-taiga monoids 11

node in QmTg(w) is labelled by the steps in which its corresponding node in PmTg(w)
was created or had its multiplicity incremented, when applying the left-to-right iterative
insertion algorithm.

The correctness of the iterative insertion algorithm follows from Corollary 4.10. Thus,
we obtain an insertion algorithm in line with the usual Robinson–Schensted correspon-
dence algorithms. We can also define a right-to-left version of the iterative insertion
algorithm.

5 Counting in the taiga monoids

We now obtain ‘hook-length’-like formulas for the sizes of classes of words under the
various taiga congruences. We first give the result for the left-taiga case:

Proposition 5.1 ([10, Proposition 5]). Let w ∈N∗. Let supp(w) = {x1 < · · · < xk} and let
mi be the sum of the multiplicities of the node labelled xi and its descendants in P→lTg(w), for all
1 ≤ i ≤ k. Then, there are

|w|!
∏k

i=1(|w|xi − 1)! ·mi

words over N in the same ≡lTg-class of w.

By Proposition 3.2, we can obtain the size of a ≡jTg-class, by computing the size of
specific ≡hypo-classes, which are known to be efficiently computable [3, Theorem 3].

Proposition 5.2. Let w ∈ N∗. Let supp(w) = {x1 < · · · < xk} and A1, . . . , Al be all the
intervals of supp(w) such that Aj only contains simple letters and Aj ∪ {a} is not an interval,
for any simple letter a /∈ Aj. Let h(w

[
Aj

]
) be the size of the hypoplactic class of w

[
Aj

]
. Then,

there are
|w|!

∏k
i=1|w|xi !

l

∏
j=1

h(w
[
Aj

]
)∣∣Aj

∣∣!
words over N in the same ≡jTg-class of w.

The formula for the meet-taiga case is recursive, given by an algorithm that counts
linear extensions of specific posets. Due to the extensive notation required to write it,
we omit it here. With it, we can compute the size of ≡mTg-classes in O(n2k−2(k!)3)
operations, where n is the length of the words and k is the size of their support.

For our last result, given a BSTM, we obtain bounds for how many distinct BSTMs
form a pair of twin BSTMs with it.

Proposition 5.3. Let TL be a BSTM with n nodes. Suppose there are k simple nodes in TL that
are not leaves. Let R(TL) denote the number of distinct BSTMs TR such that (TL, TR) is a pair
of twin BSTMs. Then,

Cn−k ≤ R(TL) ≤ Cn

12 Thomas Aird and Duarte Ribeiro

where Cm = (2m)!
(m+1)!m! is the m-th Catalan number.

Acknowledgements

The authors would like to thank Alan Cain and António Malheiro for their suggestions
and helpful comments.

References

[1] T. Aird and D. Ribeiro. “Plactic-like monoids arising from meets and joins of stalactic and
taiga congruences”. J. Algebra 660 (2024), pp. 795–851. doi.

[2] A. Cain and A. Malheiro. “Identities in plactic, hypoplactic, sylvester, Baxter, and related
monoids”. Electron. J. Combin. 25.3 (2018), Paper No. 3.30, 19. doi.

[3] A. J. Cain and A. Malheiro. “Crystallizing the hypoplactic monoid: from quasi-Kashiwara
operators to the Robinson-Schensted-Knuth-type correspondence for quasi-ribbon tab-
leaux”. J. Algebraic Combin. 45.2 (2017), pp. 475–524. doi.

[4] S. Giraudo. “Algebraic and combinatorial structures on pairs of twin binary trees”. J.
Algebra 360 (2012), pp. 115–157. doi.

[5] F. Hivert, J.-C. Novelli, and J.-Y. Thibon. “The algebra of binary search trees”. Theoret.
Comput. Sci. 339.1 (2005), pp. 129–165. doi.

[6] F. Hivert, J.-C. Novelli, and J.-Y. Thibon. “Commutative combinatorial Hopf algebras”. J.
Algebr. Comb. 28.1 (2008), pp. 65–95. doi.

[7] J. M. Howie. Fundamentals of semigroup theory. Vol. 12. London Mathematical Society
Monographs. New Series. Oxford Science Publications. The Clarendon Press, Oxford
University Press, New York, 1995, pp. x+351.

[8] A. Lascoux and M.-P. Schützenberger. “Le monoïde plaxique”. Noncommutative Struc-
tures in Algebra and Geometric Combinatorics: Proceedings of the Colloquium Held at Arco Felice,
Naples, July 24–26, 1978. Ed. by A. De Luca. Vol. 109. Quad. “Ricerca Sci.” CNR, Rome,
1981, pp. 129–156.

[9] J.-C. Novelli. “On the hypoplactic monoid”. Discrete Math. 217.1-3 (2000). Formal power
series and algebraic combinatorics (Vienna, 1997), pp. 315–336. doi.

[10] J.-B. Priez. “Lattice of combinatorial Hopf algebras: binary trees with multiplicities”. 25th
International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013). Ed.
by A. Goupil and G. Schaeffer. Vol. AS. DMTCS Proceedings. Paris, France: Discrete
Mathematics and Theoretical Computer Science, 2013, pp. 1137–1148. doi.

https://dx.doi.org/10.1016/j.jalgebra.2024.07.031
https://dx.doi.org/10.37236/6873
https://dx.doi.org/10.1007/s10801-016-0714-6
https://dx.doi.org/10.1016/j.jalgebra.2012.03.020
https://dx.doi.org/10.1016/j.tcs.2005.01.012
https://dx.doi.org/10.1007/s10801-007-0077-0
https://dx.doi.org/10.1016/S0012-365X(99)00270-8
https://dx.doi.org/10.46298/dmtcs.2372

	Introduction
	Background
	Words
	Binary trees with multiplicities and binary search trees with multiplicities
	The right- and left-taiga monoids

	Meets and joins of taiga congruences
	Robinson–Schensted-like correspondence
	Definition and correctness of the correspondence
	Extraction algorithm
	Iterative insertion algorithm

	Counting in the taiga monoids

