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Abstract. The ordinary and Sn-equivariant fundamental groups of the moduli space
M0,n+1(R) of real (n+ 1)-marked stable curves of genus 0 are known as cactus groups Jn

and have applications both in geometry and the representation theory of Lie algebras.
In this paper, we compute the ordinary and Sn-equivariant fundamental groups of
the Hassett space of weighted real stable curves M0,A(R) with Sn-symmetric weight
vector A = (1/a, . . . , 1/a, 1), which we call weighted cactus groups Ja

n. We show that Ja
n

is obtained from the usual cactus presentation by introducing braid relations, which
successively simplify the group from Jn to Sn ⋊ Z2 as a increases.

Our proof is by decomposing M0,A(R) as a polytopal complex, generalizing a similar
known decomposition for M0,n+1(R). In the unweighted case, these cells are known
to be cubes and are ‘dual’ to the usual decomposition into associahedra. For M0,A(R),
our decomposition instead consists of products of permutahedra. The cells of the
decomposition are indexed by weighted stable trees, but ‘dually’ to the usual indexing.
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1 Introduction

For a locally simply connected pointed space (X, x0) with an action by a finite group
G, its G-equivariant fundamental group is

πG
1 (X, x0) = {(g, γ) : g ∈ G, γ a homotopy class of paths from x0 to gx0}

with the multiplication (g, γ) · (g′, γ′) = (gg′, γ ∗ (g ◦ γ′)). It relates to the ordinary
fundamental group by the short exact sequence

1 → π1(X, x0) → πG
1 (X, x0) → G → 1, (1.1)

and so serves as a substitute for π1(X/G, x0) when the action of G is not free.
Let M0,n+1 denote the moduli space of (n + 1)-marked stable curves of genus 0, with

the Sn-action that permutes the first n labels. The real locus M0,n+1(R) is a compact
real manifold of dimension n − 2 with a rich combinatorial structure, particularly via
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its homology and fundamental group [3, 4, 9]. The Sn-equivariant fundamental group
of M0,n+1(R) is called the cactus group Jn. It has a well-known presentation [2, 8] by
generators sp,q, 1 ≤ p < q ≤ n, satisfying s2

p,q = 1 and the cactus relations

(1) sp,qsr,m = sr,msp,q if 1 ≤ p < q < r < m,

(2) sp,qsr,m = sm′,r′sp,q if p ≤ r < m ≤ q, where m′ = p + q − m and r′ = p + q − r.

The element sp,q represents a path through M0,n+1(R) causing the p-th through q-th
points along RP1 to collide and reverse their order; see Figure 3. Accordingly, the map
Jn → Sn sends sp,q to wp,q ∈ Sn that reverses the interval [p, q]. The space M0,n+1(R) is
similar to an ordered configuration space; by analogy with (pure) braid groups,

PJn := π1(M0,n+1(R)) = ker(Jn ↠ Sn)

is called the pure cactus group. Cactus groups have applications not only to the geome-
try of real algebraic curves, but also to the representation theory of Lie algebras [8, 4]
and to tableau combinatorics, wherein sp,q ∈ Jn acts by involutions related to Schützen-
berger evacuation [10, 11, 5, 6], and to wonderful compactifications of (real) hyperplane
arrangements (see e.g. [9] for virtual and affine cactus groups).

In this paper, we examine the weighted variant of M0,n+1(R), called a Hassett space
[7]. For a vector A = (a1, . . . , an+1) ∈ (0, 1]n+1, this is the moduli space M0,A of so-called
A-stable curves; loosely, marked points of an A-stable curve are allowed to collide if their
weights ai have sum at most 1. The space M0,A is then a blowdown of M0,n+1 and is
often used as a ‘simpler model’ for moduli of curves.

We describe the ordinary and Sn-equivariant fundamental groups of M0,A(R) when
the weight vector is Sn-symmetric: A = A(a) := (1

a , . . . , 1
a , 1) for a ∈ [n− 1], i.e. allowing

collisions of up to a points. We call them, respectively, the pure weighted cactus group PJa
n

and the weighted cactus group Ja
n. We note that taking a ∈ {1, 2} does not change the

moduli space or resulting groups. Our main result is the following presentation of Ja
n.

Theorem 1.1. For a ≥ 3, the group Ja
n has generators sp,q for all 1 ≤ p < q ≤ n such that

q − p ≥ a or q − p = 1, satisfying s2
p,q = 1 and the relations

(1) sp,qsr,m = sr,msp,q if 1 ≤ p < q < r < m,

(2) sp,qsr,m = sm′,r′sp,q if p ≤ r < m ≤ q, where m′ = p + q − m and r′ = p + q − r,

(3) (Braid relations) si,i+1si+1,i+2si,i+1 = si+1,i+2si,i+1si+1,i+2 for all i.

The relations (1), (2) are the usual cactus relations on the restricted set of generators.
The braid relations (3) imply that the elements si,i+1 for i ∈ [n − 1] generate a copy of
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the symmetric group Sn ⊆ Ja
n as soon as a ≥ 3. For n ≥ 3 and a = n − 1, M0,A(a)(R) is

the real projective space RPn−2 and Equation (1.1) becomes

1 → Z2 → Sn ⋊ Z2 → Sn → 1. (1.2)

The blowdown map M0,n+1 → M0,A(a) is surjective on fundamental groups, so taking a
from 1 to n − 1 gives a sequence of quotients

Jn = J1
n = J2

n ↠ J3
n ↠ · · · ↠ Jn−1

n = Sn ⋊ Z2. (1.3)

Under these maps, the generators sp,q for 1 < q − p < a are sent to the permutations
wp,q ∈ ⟨si,i+1 : 1 ≤ i < n⟩ = Sn ⊆ Ja

n that reverse the interval [p, q] (Proposition 4.1).
The proof of Theorem 1.1 is via our second main result: a polytopal decomposition of

M0,A(a)(R) into products of permutahedra, which is dual to the standard decomposition
by the topological type of the curve. We obtain Theorem 1.1 by examining the 2-skeleton
of the decomposition. Both the standard and dual decompositions are indexed by the
set ST(a; n) of a-stable trees (Definition 2.1), which are certain trees τ with leaves labeled
by nonempty subsets Aℓ ⊆ [n] forming a set decomposition ⨿ℓ Aℓ = [n]. Let Πk ⊆ Rk

denote the (k − 1)-dimensional permutahedron. The dual decomposition is built as
follows.

Definition 1.2. For each (C; x•) ∈ M0,A(a)(R), running the distance algorithm (Defini-
tions 3.1 to 3.3) yields an a-stable tree τdual(C; x•) ∈ ST(a; n). For each τ ∈ ST(a; n), we
define the locally closed dual cell Wτ as the set of curves for which τdual(C; x•) = τ.

Theorem 1.3. There is a polytopal decomposition M0,A(a)(R) = ⨿τ∈ST(a;n) Wτ. If τ has d
internal edges and leaves labeled A1, . . . , Ak, where ⨿k

i=1 Ai = [n], the closure Wτ has the form

Wτ
∼= [−1, 1]d ×

k

∏
i=1

Π|Ai|.

For a = 1, the cells are all (n − 2)-cubes, and the description is due to [2] and, in
more recent language, [9]. In general, our permutahedral cells Wτ arise as projections of
unions of cubes under the map M0,n+1(R) → M0,A(a)(R); see Figures 1 and 6. We note
that in M0,n+1(R), these unions of cubes are typically noncontractible.

Our results thus shed light both on the real geometry of the weighted moduli space,
and on the algebraic structure of standard cactus groups Jn as iterated extensions of
symmetric groups. It is rather surprising that there does not appear to be a space given
by Jn mod the braid relations only, without also restricting the generators (see Rmk. 4.4).

Remark 1.4 (Variants). The factor of Z2 in (1.3) appears because M0,n+1 allows
orientation-reversing changes of coordinates on P1. These factors disappear when con-
sidering the natural double cover M̃0,A(a)(R) ↠ M0,A(a)(R) given by orienting the curve
at its n + 1-th marked point. We discuss this and other extensions of our results, includ-
ing polytopal decompositions of general M0,A(R), in Section 3.3.
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Figure 1: A local picture of the blowdown map M0,5(R) ↠ RP2. Left: The central
circle is an RP1 with antipodal points identified, surrounded by three regions that are
topological squares. Right: Merging regions and contracting the exceptional RP1 gives
a hexagon Π3, in which the path s1,3 becomes homotopic to s1,2s2,3s1,2.

2 Background

A composition of [n] is a sequence A• = (A1, . . . , Ar) of disjoint nonempty sets such
that ⨿i Ai = [n]. A composition B• = (B1, . . . , Bs) is a refinement of A• if each Ai is a
union of consecutive blocks Bj of B•.

The (n − 1)-dimensional permutahedron Πn ⊆ Rn is the convex hull of the points
(σ(1), . . . , σ(n)), for all σ ∈ Sn. The faces of Πn are indexed by the compositions of
[n], where for each A•, the face ΠA• is combinatorially equivalent to Π|A1| × . . . Π|Ar|.
Furthermore, ΠB• ⊆ ΠA• if and only if B• is a refinement of A•.

See [1, 7] for general background on stable trees, M0,n+1, and Hassett spaces. The
trees indexing our cell decompositions are defined as follows. We consider (planar)
rooted trees τ with each leaf ℓ ∈ τ labeled by a nonempty subset Aℓ ⊆ [n], where
⨿ℓ Aℓ = [n]. Two such trees τ ∼ τ′ are equivalent if they differ by reversing the ordering
of children at some or all vertices. We say τ is stable if every internal vertex v has at least
two children. Finally, τ is a-stable if in addition |Aℓ| ≤ a for every leaf ℓ ∈ τ and for
every internal vertex v ∈ τ, the subtree of τ rooted at v includes ≥ a + 1 elements of [n].

Definition 2.1. We denote by ST(a; n) the set of of a-stable trees up to equivalence.

Given a ≤ b, there is a compression map ST(a; n) → ST(b; n) defined as follows. Let
τ ∈ ST(a; n) be an a-stable tree. For each vertex v ∈ τ, let Av be the union of the labels
Aℓ of leaves ℓ on the subtree of τ rooted at v. Then whenever |Av| ≤ b, we contract the
corresponding subtree, replacing v by a leaf labeled Av. This gives a b-stable tree.
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Figure 2: Left: A stable 11-pointed curve (C; x•) ∈ M0,11(R). On the component
containing x5, we have x5 = 0, x9 = 1 and there are nodes at 0.25 and ∞. Right: The
reduction of (C; x•) in M0,A(R) if x6, x7, x8 are given weight 1

3 .

Let C be a connected, possibly reducible algebraic curve of arithmetic genus 0. Then
C consists of a collection of P1’s joined at simple nodes in a tree structure. An (n + 1)-
pointed curve (C; x•) is a curve C, together with smooth marked points x•=(x1, . . . , xn+1).
We call marked points and nodes special points. We say (C; x•) is stable if the marked
points are distinct and each component has ≥ 3 special points. The moduli space M0,n+1
is the set of stable n + 1-pointed curves up to equivalence.

Hassett [7] constructed a variant of this space where the marked point xi is assigned
a weight ai ∈ (0, 1], where A = (a1, . . . , an, an+1 = 1) ∈ (0, 1]n+1 is a weight vector such
that ∑ ai > 2, and nodes are considered to have weight 1. We then weaken the condition
that the marked points be distinct, as follows. We say that (C; x•) is A-stable if

• for each component C′ ⊆ C, the total weight of all special points in C′ is > 2; and

• each subset of marked points that are equal must have total weight ≤ 1.

The Hassett space, M0,A, is the set of all A-stable curves up to equivalence. There is a
(blowdown) reduction map M0,n+1 → M0,A given by repeatedly contracting any compo-
nent C′ on which the total weight of all special points is ≤ 2; see Figure 2.

For a ∈ [n − 1], we say a curve is a-stable if it is A(a)-stable. Finally, the real loci
M0,n+1(R) and M0,A(R) correspond to the stable or A-stable curves for which, up to
change of coordinates, the marked points and nodes are all real.

Consider the Sn-action on M0,n+1 fixing the n + 1-th marked point. For A = A(a),
the Sn-action on M0,n+1 descends to an Sn-action on M0,A(a). The generator sp,q of the
cactus group Jn = πSn

1 (M0,n+1(R)) corresponds to the homotopy class of a path ŝp,q in
M0,n+1(R) that reverses the p-th to q-th marked points; see Figure 3. In fact, sp,q =
(wp,q, ŝp,q).
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Figure 3: The path ŝp,q in M0,n+1(R) corresponding to sp,q ∈ Jn. The marked points
p, . . . , q approach one another, collide and reverse their order.

It is straightforward to see that the reduction map M0,n+1 → M0,A(a) induces a sur-
jection of groups Jn = πSn

1 (M0,n+1(R)) ↠ Ja
n = πSn

1 (M0,A(a)(R)), and similarly for the
ordinary fundamental groups, PJn ↠ PJa

n.

3 The distance algorithm and cell decompositions

3.1 The standard polytopal decomposition

Let (C; x•) ∈ M0,A(a)(R) be a real a-stable curve. The standard1 a-stable tree
τstd(C; x•) ∈ ST(a; n) records the incidence structure of the components and marked
points of C as follows; see Figure 4. It has an internal vertex v for each component
C′ ⊆ C and its root corresponds to the C′ containing xn+1. It has an edge for each node;
and for each x ∈ C marked by one or more elements of [n], it has a leaf ℓ labeled by
the corresponding set Aℓ ⊆ [n]. Each component C′ has a unique special point q(C′)
closest to xn+1 (either xn+1 itself or a node). The children of the corresponding vertex v
correspond to the other special points of C′; they inherit a well-defined ordering, up to
reversal, by choosing any coordinates on C′ ∼= RP1 for which q(C′) = ∞.

The standard cell Xτ ⊆ M0,A(a)(R) is the set of curves for which τstd(C; x•) = τ. For
a = 1, the cell closures Xτ are, combinatorially, products of associahedra [3]. In the
Hassett space, they are (products of) generalized associahedra. We note that if τ has d
internal edges and has leaves labeled A1, . . . , Ak, where ⨿k

i=1 Ai = [n], then

codim(Xτ) = d +
k

∑
i=1

(|Ai| − 1). (3.1)

1In the literature, τstd(C; x•) is called the ‘dual tree’ of (C; x•), because its edges and leaves correspond
to the special points of C. We instead reserve the term ‘dual’ for the dual cell structure.
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Figure 4: (n = 10) An element of the standard cell Xτ ⊆ M0,11(R) with τ overlaid.

3.2 The distance algorithm and dual cells

We now describe a cell decomposition of the Hassett space M0,A(a)(R) that is ‘dual’
to the standard decomposition. The cells are again indexed by the elements of ST(a; n).
For a = 1, the description is especially simple and recovers the dual cell decomposition
of M0,n+1(R) [2, 9].

In order to associate stable curves to trees, we adapt the following distance algorithm
(cf. [9, Lemma 9.12]) that maps a vector of differences to a rooted tree:

Definition 3.1 (Distance algorithm). Let σ ∈ Sn be a permutation and d⃗=(d1, . . . , dn−1) ∈
Rn−1

≥0 ; we call d⃗ the vector of differences. We construct a rooted tree τ as follows. We
begin with n isolated vertices labeled σ(1), . . . , σ(n) from left to right. We then join these
points into subtrees by repeating the following steps.

1. Let d := min di be the minimum distance remaining in d⃗.

2. For each sequence of consecutive copies of d: {d} = {di, di+1, · · · , dj}, join the i-th
to j + 1-th subtrees as children of a new (unlabeled) vertex; delete di, . . . , dj from d⃗.

We write τdist(σ, d⃗) for the resulting rooted tree. See Figure 5 (Left).

Thus, vertices close to the root represent large gaps between two consecutively placed
marked points. This property in fact uniquely determines τ := τdist(σ, d⃗). In addition, τ

is binary if and only if every two consecutive coordinates of d⃗ are distinct (i.e. di ̸= di+1).
At the opposite extreme, if all the distances in d⃗ are equal, τ has one internal vertex and
its leaves spell out σ from left to right.

We define the dual cell decomposition for the weighted space M0,A(a)(R) using the
distance algorithm, as follows. The unweighted case of M0,n+1(R) (a = 1, 2) reduces to
the material in [2, 9]. We first consider the case of smooth curves.
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Figure 5: Left: The tree τdual(RP1; 0, 1, 2, 5, 6, 6.5, ∞) obtained by the distance algo-
rithm. Right: A stable curve (C; x•) with the tree τdual(C; x•) overlaid. For the dual
cell decomposition, these trees are considered up to flips (reversals) at internal vertices.
For the refined cell decomposition (Section 3.3.2), only the root vertex and the children
of the blue highlighted edges are ‘flippable’.

Definition 3.2 (Dual tree, smooth case). Let (C; x•) ∈ M0,A(a)(R), with C smooth.
Choose any coordinates on C ∼= RP1 for which the marked point xn+1 = ∞, and choose
any σ ∈ Sn such that the remaining marked points satisfy xσ(1) ≤ · · · ≤ xσ(n). Consider
the tree τ := τdist(σ, d⃗) using σ together with the vector of successive differences

d⃗ = (xσ(2) − xσ(1), . . . , xσ(n) − xσ(n−1)).

We consider τ as a stable tree (i.e. up to reversal of the ordering of children at each
vertex); finally, we let τdual(C; x•) be the compression of τ to an a-stable tree. The result
then does not depend on the choice of coordinates or on σ.

The general case is obtained by running the distance algorithm on each component
C′ ⊆ C. Recall that q(C′) denotes the unique special point in C′ closest to xn+1.

Definition 3.3 (Dual tree, general case). Let (C; x•) ∈ M0,A(a)(R). Then τdual(C; x•) is
defined as follows. For each component C′ ⊆ C, compute τdist(C′) := τdist(σ, d⃗) on
C′ ∼= RP1 as in Definition 3.2, using any coordinates on C′ for which q = ∞, with σ and
d⃗ according to the positions of the other special points of C′. Attach the trees τdist(C′)
according to how the components C′ ⊆ C are attached; see Figure 5 right. Finally, apply
the compression map ST(1; n) → ST(a; n) to get τdual(C; x•).

We note that our definition implicitly combines the distance data with the standard
tree structure τstd(C; x•). Loosely, τdual(C; x•) is obtained by replacing each internal
vertex of τstd(C; x•) by a tree computed by the distance algorithm.
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We recall that the dual cell Wτ is by definition the set of all (C; x•) with τdual(C; x•) =
τ. We now sketch the proof of Theorem 1.3, the decomposition of Wτ into a product of
intervals and permutahedra.

Proof sketch of Theorem 1.3. We first obtain a product formula, showing that each cell clo-

sure Wτ is a product of cells Wτ(k) corresponding to trees of the form τ(k) :=
[k−1] {k}

.

We then construct homeomorphisms Wτ(n)
∼= Πn−1 inductively by dimension: we con-

sider line segments from the center of ΠA• to the faces ΠB• ⊆ ∂ΠA• . We show that these
segments align neatly with parts of the distance algorithm.

Proof sketch of Theorem 1.1. The symmetric group Sn is compatible with the dual cell
structure on M0,A(a). The key feature that distinguishes the dual cell decomposition
from the standard decomposition is that Sn acts transitively on the 0-cells, the permuta-
tion points (C; x•), where C = P1 with (x1, . . . , xn, xn+1) = (σ(1), . . . , σ(n), ∞) for some
σ ∈ Sn (up to reversal). It follows that the equivariant fundamental group can be read
off the 2-skeleton near the point corresponding to the identity permutation.

The generators of πSn
1 are given by (conjugacy classes of) 1-cells; these correspond to

the paths ŝp,q, and are involutions essentially because the permutations wp,q are involu-
tions. We note that πSn

1 (M0,A(a)(R)) has fewer generators than πSn
1 (M0,n+1(R)) because

some 1-cells of M0,n+1(R) map to the interiors of cells of M0,A(a)(R); see Figures 1 and 6.
The relations are then given by the 2-cells. Since all the cells are products of per-

mutahedra, every 2-cell has the form [−1, 1]2, [−1, 1]× Π2, Π2
2, or Π3. The (four-term)

cactus relations come from the first three types, which are squares; the (six-term) braid
relations come from the hexagon Π3. We note that M0,n+1(R) has no hexagons.

Remark 3.4 (Duality). The duality between the two polytopal decompositions of
M0,A(a)(R) can be summarized as follows: for τ, τ′ ∈ ST(a; n), we have Xτ ⊆ Xτ′ if and
only if Wτ′ ⊆ Wτ, and Xτ ∩ Wτ is the unique point (C; x•) with component structure
τ and evenly-spaced special points on each component. (Note that Xτ and Wτ have
complementary dimensions.) We describe Xτ ∩ Wτ′ in general in Section 3.3.2.

3.3 Variants

3.3.1 Double covers

There is a double cover M̃0,A(a)(R) ↠ M0,A(a)(R) given by choosing an orientation

of (C; x•) at the marked point xn+1. An element of M̃0,A(a)(R) can be depicted by
decorating C with one of the two possible unit tangent vectors at xn+1.

Effectively, the double cover disallows changes of coordinates on the component C′ ⊆
C containing xn+1 that reverse its orientation. Thus, to define dual cells on M̃0,A(a)(R),
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Figure 6: We revisit Figure 1, showing how the dual trees change. Left: three square
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we alter the distance algorithm on the C′ component (only), requiring coordinates such
that xn+1 = ∞ and such that the given orientation is preserved.

We define root-oriented a-stable trees OST(a; n) analogously to ST(a; n), except that
we no longer allow flips at the root vertex. For τ̃ ∈ OST(a; n), we write Wτ̃ for the
corresponding cell. We note that Sn acts freely on the 0-cells of the double cover, which
correspond bijectively to permutations. Our results generalize to M̃0,A(a)(R), showing:

Corollary 3.5. The double cover has a cell decomposition X := M̃0,A(a)(R) = ⨿τ̃∈OST(a;n) Wτ̃,
which covers the decomposition of M0,A(a)(R). The index 2 subgroups π1(X) =: PJ̃a

n ⊆ PJa
n

and πSn
1 (X) =: J̃a

n ⊆ Ja
n are given by omitting the generator s1,n. We have a sequence of quotients

J̃n = J̃1
n = J̃2

n ↠ J̃3
n ↠ · · · ↠ J̃n−1

n = Sn.

3.3.2 Refined cell structure

As part of our analysis of the dual cells Wτ for τ ∈ ST(a; n), we in fact characterize
the common refinement of the standard and dual cell structures on M0,A(a)(R). We
call the resulting cells refined cells. We define refined a-stable trees RST(a; n) similarly
to ST(a; n), except that a refined stable tree τ has the data of a subset F ⊆ V(τ) of
vertices designated ‘flippable’, and we identify τ ∼ τ′ only if they differ by reversing
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the orderings of children at flippable vertices. Let r ∈ τ be the root. For M0,A(a)(R), we

require r ∈ F; for the double cover M̃0,A(a)(R), we require r /∈ F.
For the refined decomposition, we run the distance algorithm on (C; x•) according to

Definition 3.3, except we only mark edges coming from nodes of C as flippable; edges
produced by the distance algorithm are ‘unflippable’. (See Figure 5 Right).

Let τ ∈ RST(a; n) and let Rτ be the corresponding refined cell. Let std(τ) ∈ ST(a; n)
be given by contracting every edge whose child vertex is non-flippable, and let dual(τ) ∈
RT(a; n) be given by making all vertices of τ flippable. Then Rτ = Xstd(τ) ∩ Wdual(τ).

3.3.3 Non-symmetric Hassett weights

For an arbitrary vector of weights A = (a1, . . . , an, an+1 = 1), there is an analo-
gous procedure for compressing rooted trees to render them A-stable and an analogous
weighted distance algorithm. Our results for the symmetric case A = A(a) then carry
through to show that A-stable trees index a dual cell decomposition of M0,A(R) by
products of permutahedra and intervals; we can also describe the analogs of refined
cells. However, the resulting dual decomposition is typically not Sn-symmetric, so we
do not know a useful way to extract a description of π1(M0,A(R)) in general.

4 Weighted cactus groups

We briefly discuss the algebraic structure of the weighted cactus groups Ja
n and PJa

n.
First, we describe the kernel of the quotient map Jn ↠ Ja

n; we call its generators generalized
braid relations. Below, we write σi := si,i+1.

Proposition 4.1. For a ≥ 3 and (q − p + 1) ≤ a, we have the generalized braid relations:

α := sp,qsp,q−1σq−1 . . . σp 7→ 1 ∈ Ja
n; β := sp,qσq−1 . . . σpsp+1,q 7→ 1 ∈ Ja

n

under the quotient map Jn ↠ Ja
n.

Proof sketch. The words α, β both map to the identity permutation, so they correspond
to loops in M0,A(a)(R). There is an embedding Aq−p(R) ↪→ M0,A(a)(R) whose image
contains the loops α and β, which shows that these loops are contractible.

Corollary 4.2. For a ≥ 3, the subgroup ⟨σi : i ∈ [n − 1]⟩ ⊆ Ja
n is isomorphic to Sn.

Proof. The σi satisfy the braid relations. Hence, they generate a quotient of Sn. The map
Ja
n → Sn sends σi 7→ wi,i+1 ∈ Sn, so its restriction to this subgroup is surjective.

From Proposition 4.1 and Corollary 4.2 it is straightforward to verify that, for q − p <
a, the element sp,q ∈ Jn is sent to the element wp,q ∈ Sn ⊆ Ja

n.
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Remark 4.3 (Equivariant fundamental groups of double covers). We have a semidirect
product decomposition Ja

n = J̃a
n ⋊ ⟨s1,n⟩ ∼= J̃a

n ⋊ Z2. It follows that PJ̃a
n = PJa

n ∩ J̃a
n.

Remark 4.4 (A “missing” intermediate space). When a = 3, the braid relations
(s1,2s2,3)

3 = 1 appear simultaneously with the absorption of s1,3 into the subgroup
⟨s1,2, s2,3⟩ ⊆ Ja

n, and similarly for the other generators sp,p+2. (See Figure 1.) It is cu-
rious that there does not appear to be a moduli space corresponding to the quotient of
Jn by the braid relations on the σi only, without further relations on any other generators.
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