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Peak algebra in noncommuting variables
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Abstract. The well-known descent-to-peak map θ for the Hopf algebra of quasisym-
metric functions, QSym, and the peak algebra Π were originally defined by Stembridge
in 1997. We define the labelled descent-to-peak map Θ and extend the notion of the
peak algebra to noncommuting variables.
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1 Introduction

The first comprehensive study on the combinatorics of peaks was conducted by Stem-
bridge [21], who developed and introduced enriched (P, γ)-partitions, which is an ana-
log to Stanley’s theory of (P, γ)-partitions, with the key distinction that the notion of
peaks replaces the notion of descents in the context of linear extensions of posets. Gen-
erating functions of (P, γ)-partitions, Γ(P, γ), give the Hopf algebra of quasisymmetric
functions QSym, and the generating functions of enriched (P, γ)-Partitions, ∆(P, γ), give
the peak algebra Π. Stembridge also defined the descent-to-peak algebra morphism θ

from QSym to Π where Γ(P, γ) maps to ∆(P, γ), and showed that the dimension of the
homogenous functions of degree n of Π, Πn, is equal to the number of odd compo-
sitions, compositions whose all parts are odd, which is equal to Fibonacci number fn.
Moreover, he showed that restricting the map θ to symmetric functions gives the Hopf
algebra of Schur’s Q functions. The Hopf algebra of Schur’s Q functions, whose bases
are indexed by odd partitions, are introduced in [18] to study the projective representa-
tions of symmetric and alternating groups. Combinatorially, the Schur’s Q functions are
equipped with a theory of shifted tableaux, including RSK correspondence, Littlewood–
Richardson rule, and jeu de taquin [17, 20, 22]. In [7], Bergeron et al. showed that the
peak algebra is a Hopf algebra and also the map θ is a Hopf algebra morphism. Also,
the main result of [18] by Schocker is that the peak algebra is a left co-ideal of QSym
under internal comultiplication, a generalized dual Kronecker product.
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It is also shown that the peak algebra corresponds to the representations of the 0-
Hecke–Clifford algebra [4]. Further studies revealed connections between peaks and a
variety of seemingly unrelated topics, such as the generalized Dehn–Sommerville equa-
tions [2, 6, 8] and the Schubert calculus of isotropic flag manifolds [7, 9]. Notably, in [14,
15], the peak algebra is generalized to the Poirier–Reutenauer Hopf algebra of standard
Young tableaux, which is introduced in [16]. Other generalizations can be found in [1, 5,
11].

The (P, γ)-partitions are the generalized chromatic functions of certain digraphs [3],
and here we introduce enriched generalized chromatic functions. The enriched (P, γ)-
partitions are enriched generalized chromatic functions of certain digraphs. Now, ex-
tending generalized chromatic functions and enriched generalized chromatic functions
to noncommuting variables, we define the labelled peak-to-decent map Θ from the Hopf
algebra of quasisymmetric functions in noncommuting variables NCQSym to the peak
algebra in noncommuting variables NCΠ. This map is indeed a Hopf algebra morphism.
Applying the map ρ, where it commutes the variables, we obtain theta map θ. We com-
pute the values of the map Θ at the fundamental and monomial basis of NCQSym. Then,
we define the peak algebra in noncommuting variables NCΠ and introduce Schur’s Q
functions in noncommuting variables. The dimension of the homogenous functions of
degree n of NCΠ, NCΠn, is equal to the odd set compositions, set compositions whose
all parts are of odd size, which is equal to an where an is the sequence A006154 in the
OEIS. Moreover, we show that the restriction of the map Θ to symmetric functions in
noncommuting variables is the Hopf algebra of Schur’s Q functions in noncommuting
variables NCSym ∩ NCΠ. They are indexed by odd set partitions. We present that the
peak algebra in noncommuting variables is a left co-ideal of NCQSym under internal co-
multiplication, extending Schocker’s result in [18] that the peak algebra is a left co-ideal
of QSym under internal comultiplication, a generalized dual Kronecker product.

2 Generalized chromatic functions, descent-to-peak map,
and peak algebra

In this section, we present a summary of the earlier results in the language of generalized
chromatic functions [3].

2.1 Edge-coloured digraphs and some operators

Stanley [19] defined P-partitions by generalizing MacMahon’s work on plane partitions
[13]1. P-partitions can be identified as certain vertex-colourings of some family of edge-

1For a complete history of P-partitions see I. M. Gessel’s paper [10].
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Figure 1: An edge-coloured digraph

coloured digraphs. We describe this family of edge-coloured digraphs and some useful
operators between them.

4

2 1

3
The Hasse diagram of a poset P = (X,≤) can be seen as a
digraph whose vertices are the elements of the ground set X
of the poset, and there is a directed edge from a to b if a ≤ b
and if there is c ∈ X such that a ≤ c ≤ b, then either c = a or
c = b. Throughout this paper, all digraphs are Hasse diagrams
of some posets.

An edge-coloured digraph is a digraph whose edges are of the form → or ⇒.
We now define some useful edge-coloured digraphs. Let Qn (resp. Pn) be the edge-

coloured directed path with n vertices whose all edges are of the form ⇒ (resp. →).

Q3 P3

The disjoint union of edge-coloured digraphs G1 and G2 with V(G1) ∩ V(G2) = ∅,
denoted G1 ⊔ G2, is an edge-coloured digraph such that

1. The vertex set of G1 ⊔ G2 is the disjoint union of the vertex sets of G1 and G2.

2. The edge set of G1 ⊔ G2 is the disjoint union of the edge sets of G1 and G2.

3. a ⇒ b in G1 ⊔ G2 if either a ⇒ b in G1 or in G2.

4. a → b in G1 ⊔ G2 if either a → b in G1 or in G2.

Q3 ⊔ P3

The solid sum of edge-coloured directed paths G1 and G2, denoted by G1 → G2, is an
edge-coloured digraph obtained by connecting the last vertex of G1 to the first vertex of
G2 by a solid edge →.

Q3 → Q3
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2.2 Proper colourings and generalized chromatic functions

As we mentioned earlier, P-partitions can be identified as certain types of vertex--
colourings of edge-coloured digraphs. We describe these types of vertex-colourings of
edge-coloured digraphs, and then we construct their generating functions, which are
called generalized chromatic functions.

2

2

1

2

A proper colouring of an edge-coloured digraph G is a function

κ : V(G) → N = {1, 2, 3, . . . }

such that

1. If a ⇒ b, then κ(a) ≤ κ(b).

2. If a → b, then κ(a) < κ(b).

Recall that Q[[x1, x2, . . . ]] is the algebra of formal power series in infinitely many
commuting variables x = {x1, x2, . . . } over Q.

The generalized chromatic function of an edge-coloured digraph G is

XG = ∑
κ

∏
v∈V(G)

xκ(v)

where the sum is over all proper colourings κ of G. For example, if G is the edge-coloured
digraph in Figure 1, then

2

2

1

2

3

2

1

2

2

2

1

3

3

2

1

3

XG = x1x3
2 + x1x2

2x3 + x1x2
2x3 + x1x2x2

3 + · · · .

Generalized chromatic functions can be seen as generating functions of P-partitions,
and so they are quasisymmetric functions.

2.3 Enriched colourings and enriched chromatic functions

Stembridge [21] defined enriched P-partitions and used them to associate tableaux with
Schur’s Q-functions [18]2. Enriched P-partitions can be identified as certain types of
vertex-colourings of edge-coloured digraphs. We describe these types of vertex-

2For an English reference, see I. G. Macdonald’s book [12, Chapter III, Section 8], where he described
Schur’s Q-functions in more detail.
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colourings of edge-coloured digraphs, and then we construct their generating functions,
which are called enriched chromatic functions.

Given an edge-coloured digraph G, an enriched colouring of G is a function

κ : V(G) → {· · · ≺ −1 ≺ 1 ≺ −2 ≺ 2 ≺ · · · }
such that

1. If a ⇒ b, then either κ(a) ≺ κ(b) or κ(a) = κ(b) > 0.

2. If a → b, then either κ(a) ≺ κ(b) or κ(a) = κ(b) < 0.

The enriched chromatic function of an edge-coloured digraph G is

EG = ∑
κ

∏
v∈V(G)

x|κ(v)|

where the sum is over all enriched colourings κ of G. For example, if G is the edge-
coloured digraph in Figure 1, then

1

−1

−1

1

1

1

−1

1

2

−2

1

1

2

−2

1

−2

EG = x4
1 + x4

1 + x2
1x2

2 + x1x3
2 + · · · .

2.4 Peak algebra and descent-to-peak map

Stembridge defined the peak algebra Π in [21] as a space spanned by the generating
functions of enriched P-partitions. Since generating functions of enriched P-partitions
are the enriched chromatic functions of edge-coloured digraphs and vice versa, we have
that the peak algebra is spanned by the set

{EG : G is an edge-coloured digraph}.

Stembridge also defined the descent-to-peak map ΘQSym; we can write it as follows,

ΘQSym : QSym → Π
XG 7→ EG.

(2.1)

He showed the descent-to-peak map is a surjective algebra morphism [21, Theorem 3.1].
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1

2 3

4

Figure 2: A labelled edge-coloured digraph

3 Generalized chromatic functions and Peak algebra in
noncommuting variables, and labelled descent-to-peak
map

3.1 Generalized chromatic functions in noncommuting variables

A labelled edge-coloured digraph is an edge-coloured digraph where its vertex set is a sub-
set of N. We usually denote the vertices of a labelled edge-coloured digraph by bold
positive integers. We usually use G to denote a labelled edge-coloured digraph whose
underlying edge-coloured digraph is G.

We now define some useful labelled edge-coloured digraphs. For any set

S = {i1 < i2 < · · · < ik}

of positive integers, let QS (resp. PS) be the labelled edge-coloured directed path with
vertex set S such that its coloured edges are ij ⇒ ij+1 (resp. ij → ij+1) for 1 ≤ j ≤ k.

3 5 8
Q{3,5,8}

3 5 8
P{3,5,8}

The disjoint union of labelled edge-coloured digraphs G1 and G2 with V(G1)∩ V(G2) =
∅, is denoted by G1 ⊔ G2.

3 5 8 2 6 9
Q{3,5,8} ⊔ P{2,6,9}

The solid sum of labelled edge-coloured directed paths G1 and G2, denoted G1 → G2,
is an edge-coloured digraph obtained by connecting the last vertex of G1 to the first
vertex of G2 by a solid edge →.

3 5 8
Q{3,5,8} → Q{2,6,9}

2 6 9
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Recall that Q⟨⟨x1, x2, . . . ⟩⟩ is the algebra of formal power series in infinitely many
noncommuting variables x = x1, x2, . . . over Q.

The generalized chromatic function in noncommuting variables of a labelled edge-coloured
digraph G with vertex set [n] is

YG = ∑
κ

xκ(1)xκ(2) . . . xκ(n)

where the sum is over all proper colourings κ of G. For example, if G is the labelled
edge-coloured digraph in Figure 2, then
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1
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YG = x1x2x2x2 + x1x2x2x3 + x1x2x3x2 + x1x2x3x3 + · · · .

3.2 Enriched chromatic functions in noncommuting variables

The enriched chromatic function in noncommuting variables of a labelled edge-coloured
digraph G with vertex set [n] is

FG = ∑
κ

x|κ(1)|x|κ(2)| . . . x|κ(n)|

where the sum is over all enriched colouring κ of G. For example, if G is the labelled
edge-coloured digraph in Figure 2, then

4
1

2
−1

1
−1

3
1

4
1

2
1

1
−1

3
1

4
2

2
−2

1
1

3
1

4
2

2
−2

1
1

3
−2

FG = x1x1x1x1 + x1x1x1x1 + x1x2x1x2 + x1x2x2x2 + · · · .

3.3 Peak algebra in noncommuting variables, labelled descent-to-peak
map, and new results

In this section, we demonstrate that the previous results for the peak algebra and the
peak-to-descent map in the literature can be generalized to noncommuting variables.
While the results in this section are natural, the proofs are intricate and complex.
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The peak algebra in noncommuting variables, denoted NCΠ, is the space spanned by

{FG : G is a labelled edge-coloured digraph}.

The labelled descent-to-peak map ΘNCQSym is

ΘNCQSym : NCQSym → NCΠ
YG 7→ FG.

(3.1)

(1) A set B ⊆ {2, 3, . . . , n − 1} is called a peak set3 if b ∈ B implies that {b − 1, b +
1} ∩ B = ∅. By [21, Theorem 3.1] the dimension of the space of the homogeneous
elements of degree n of Π, Πn, is |{B ⊆ {2, 3, . . . , n − 1} is a peak set}| = |{α ⊨ [n] :
α is an odd composition}| = fn, the nth Fibonacci number. A set composition ϕ of [n],
denoted ϕ ⊨ [n], is a sequence of mutually disjoint nonempty sets whose union is [n].
An odd set composition is a set composition whose all blocks have odd sizes.

Theorem 3.1. The dimension of the space of homogeneous elements of degree n of NCΠ, NCΠn,
is

dim(NCΠn) = |{(B, σ) : B ⊆ {2, 3, . . . , n − 1} is a peak set and Des(σ) ⊆ Odd(B)}|
= |{ϕ ⊨ [n] : ϕ is an odd set composition}| = an

where Des(σ) = {i ∈ [n − 1] : σ(i) > σ(i + 1)}, and an is the sequence A006154 in the OEIS.

(2) The peak algebra Π is a Hopf algebra [7, Theorem 2.2].

Theorem 3.2. NCΠ is a Hopf algebra.

(3) The descent-to-peak map, ΘQSym, is a Hopf algebra morphism [7, Section 2].

Theorem 3.3. The labelled descent-to-peak map, ΘNCQSym, is a surjective Hopf algebra mor-
phism and the following diagram commutes.

NCQSym QSym

NCΠ Π

ρ

ρ

ΘNCQSym ΘQSym

YG

FG

XG

EG

3The peak set of a permutation σ ∈ Sn is the set Peak(σ) = {i ∈ {2, 3, . . . , n − 1} : σ(i − 1) < σ(i)>
σ(i + 1)}. If i ∈ Peak(σ), then i − 1, i + 1 ̸∈ Peak(σ). Thus each peak set is the peak set of a permutation.
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(4) Given a subset A = {a1 < a2 < · · · < ak} of [n − 1] and σ ∈ Sn, we say (A, σ) is
standard if Des(σ) ⊆ A. The value of the labelled descent-to-peak map at the monomial
and fundamental bases elements of NCQSym are as follows.

(a) Fundamental basis. Let A = {a1 < a2 < · · · < ak} of [n− 1] and σ ∈ Sn such that
(A, σ) is standard. The fundamental basis element F(A,σ) of NCQSym is the generalized
chromatic function in noncommuting variables of the labelled edge-coloured digraph

G = Q{σ(1),...,σ(a1)} → Q{σ(a1+1),...,σ(a2)} → · · · → Q{σ(ak+1),...,σ(n)}.

Therefore, by the description of the labelled descent-to-peak map in (3.1)

Theorem 3.4. ΘNCQSym(F(A,σ)) = ΘNCQSym(YG) = FG.

(b) Monomial basis. Let A = {a1 < a2 < · · · < ak} of [n − 1] and σ ∈ Sn such that
(A, σ) is standard. The monomial basis element M(A,σ) of NCQSym is

M(A,σ) = ∑
C⊆A

(−1)|A|−|C|F(C,σ).

For each peak set B ⊆ {2, 3, . . . , n − 1}, the monomial peak function in noncommuting vari-
ables η(B,σ) is

η(B,σ) = (−1)|B| ∑
A⊆Odd(B)

2|A|+1M(A,σ).

Theorem 3.5. We have

ΘQSym(M(A,σ)) =

{
(−1)n−1−|B|−|A|η(B,σ) if n − max(A) is odd,

0 otherwise.

(5) The Hopf algebra of Schur’s Q-functions introduced in [18] is denoted by Γ and by
[21, Theorem 3.8], Γ is the intersection of the Peak algebra Π and the Hopf algebra
of symmetric functions Sym, that is, Γ = Π ∩ Sym. Moreover, by [21, Theorem 3.1]
ΘQSym(Sym) = Γ.

We define the Hopf algebra of Schur’s Q-functions in noncommuting variables, denoted
NCΓ, to be the intersection of the peak algebra in noncommuting variables and the Hopf
algebra of symmetric functions in noncommuting variables, NCΓ = NCΠ ∩ NCSym.

Theorem 3.6. We have ΘNCQSym(NCSym) = NCΓ.

(6) The restriction of the descent-to-peak map ΘQSym to Sym is denoted by ΘSym. The re-
striction of the labelled descent-to-peak map ΘNCQSym to NCSym is denoted by ΘNCSym.

Theorem 3.7. The following diagram commutes.
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Sym QSym

Γ Π

NCSym NCQSym

NCΓ NCΠ

ι

ι

ΘSym ΘQSym

ι

ι

ΘNCSym ΘNCQSym

XG

EG

YG

FG

(7) A set partition π = π1/π2/ · · · /πl of [n], denoted π = π1/π2/ · · · /πl ⊢ [n], is the
set of mutually disjoint non-empty subsets π1, π2, . . . , πl of [n] whose their union is [n].

Given a labelled edge-coloured digraph G with vertex set S and σ ∈ SS, define σ ◦ G
to be the labelled edge-coloured digraph with vertex set S in which

• i ⇒ j in G if and only if σ(i) ⇒ σ(j) in σ ◦ G.

• i → j in G if and only if σ(i) → σ(j) in σ ◦ G.

The values of the labelled descent-to-peak map at different bases of NCSym are as
follows.

(a) For π = π1/π2/ · · · /πl ⊢ [n], we have

ΘNCSym(pπ) =

{
2lpπ if all blocks of π have odd sizes,
0 otherwise.

(b) For π = π1/π2/ · · · /πl ⊢ [n], by [3, Section 10], we have that the complete homoge-
neous symmetric function in noncommuting variables hπ (resp., elementary symmetric function
in noncommuting variables eπ) is

hπ = ∑
σ∈Sπ

Yσ◦Qπ
, (resp. eπ = ∑

σ∈Sπ

Yσ◦Pπ), where

Qπ = Qπ1 ⊔ Qπ2 ⊔ · · · ⊔ Qπℓ(π)
, (resp. Pπ = Pπ1 ⊔ Pπ2 ⊔ · · · ⊔ Pπℓ(π)

) and
Sπ = Sπ1 ×Sπ2 × · · · ×Sπℓ(π)

.

Thus by (3.1) and the fact that Fσ◦Pπ = Fσ◦Qπ
,

ΘNCSym(hπ) = ∑
σ∈Sπ

Fσ◦Qπ
= Θ(eπ) (resp. ΘNCSym(eπ) = ∑

σ∈Sπ

Fσ◦Pπ = Θ(hπ)).
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(c) For π = π1/π2/ · · · /πl ⊢ [n], define the permutation δπ ∈ Sn such that if δπ(i) ∈
πs and δπ(i + 1) ∈ πt, then either s = t and δπ(i) < δπ(i + 1) or min(πs) < min(πt).
For example, if π = 156/24/36, then δπ = 1562436. The Schur function in noncommuting
variable sπ is

sπ = δπ ◦ det
(
YQ[λi−i+j]

)
1≤i,j≤l

.

Thus by (3.1),
ΘNCSym(sπ) = δπ ◦ det

(
FQ[λi−i+j]

)
1≤i,j≤l

.

(8) In [18] Schocker proves that the peak algebra is a left co-ideal of QSym under internal
comultiplication, a generalized dual Kronecker product. We provide a combinatorial
proof for the following theorem.

Theorem 3.8. The peak algebra in noncommuting variables is a left co-ideal of NCQSym under
internal comultiplication.
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