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Abstract. In this paper, we obtain a q-exponential generating function for inversions
on parking functions in two ways (1) via symmetric function theory and (2) through
a direct bijection to labeled rooted forests. Moreover, we obtain an expression for the
total number of inversions across all parking functions via a probabilistic approach.
Finally, by applying these techniques to unit interval parking functions (defined by Had-
away 2021) we give analogous results.
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1 Introduction

Throughout we let P := {1, 2, . . . }, and if n ∈ P, then [n] := {1, 2, . . . , n}. We let Sn
denote the set of permutations of [n]. Konheim and Weiss [12] defined “parking func-
tions” as follows: consider a one-way street with n parking spots (labeled in increasing
order) and n cars, each of which has a preferred spot. As each car parks, it drives
to its preferred spot and parks there if it is unoccupied. If that spot is not available,
the car continues driving and parks in the next available spot, if any exists. We en-
code the information of the preferred spots as an positive integer-valued preference list
α = (α1, α2, . . . , αn) ∈ [n]n, where for each i ∈ [n], the positive integer αi indicates the
preferred spot of car i. We say the preference list α is a parking function if all cars are
able to park using the aforementioned parking rule. The outcome permutation π(α) is
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defined by setting π(α)(j) = i if car i parks in spot j. We let PFn be the set of all parking
functions of length n. In 1974, Pollak proved that the number of parking functions of
length n is (n + 1)n−1 (see [17]).

Introduced by Hadaway [10], a unit interval parking function of length n is a park-
ing function α ∈ PFn such that π(α)−1(i)− αi ≤ 1 for all i ∈ [n]. Let UPFn denote the set
of unit interval parking functions of length n. Hadaway [10] proves that |UPFn | = Fubn,
which is the n-th Fubini number and counts the number of ordered set partitions of [n]
(OEIS A000670). Unit interval parking functions have been studied in connection to
enumerating Boolean intervals of the weak Bruhat order of the symmetric group and in
connection to the faces of the permutohedron [5, 7].

We are interested in the study of inversions of parking functions and unit interval
parking functions. Recall that for a word w ∈ Pn, an inversion is a pair (i, j) of integers
in [n] such that i < j and wi > wj. We denote the set of inversions of a word w by Inv(w)
and let inv(w) = | Inv(w)|. For each n ∈ P, define the polynomials

PFn(q) = ∑
α∈PFn

qinv(α) and UPFn(q) = ∑
α∈UPFn

qinv(α),

and set PF0(q) = UPF0(q) = 1. Define

Expq(z) = ∑
n≥0

q(
n
2)

zn

[n]q!
and expq(z) = ∑

n≥0

zn

[n]q!
,

where [n]q = 1 + q + · · · + qn−1 and [n]q! = [n]q[n − 1]q · · · [1]q. Using combinatorial
techniques, we derive the following generating functions.

Theorem 1.1. The q-exponential generating functions for PFn(q) and UPFn(q) are

∑
n≥0

PFn(q)
zn+1

[n]q!
= (z Expq(−z))⟨−1⟩ and ∑

n≥0
UPFn(q)

zn

[n]q!
=

1
2 − expq(z)

,

where F(z)⟨−1⟩ denotes the compositional inverse of F(z).

Theorem 1.1 gives q-analogues of classical results of Konheim and Weiss [12] and
Cayley [3], respectively:

∑
n≥0

|PFn |
zn+1

n!
= (ze−z)⟨−1⟩ and ∑

n≥0
|UPFn |

zn

n!
=

1
2 − ez . (1.1)

The latter result follows from the work of Cayley and the bijection between unit interval
parking functions and Cayley words (see [10]). We also show that the equations in (1.1)
follow from a more general theory of symmetric functions. The main result is as follows.

http://oeis.org/A000670
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Theorem 1.2. There are Sn-modules C[PFn] and C[UPFn] such that

∑
n≥0

ch C[PFn]zn+1 = (zE(−z))⟨−1⟩ and ∑
n≥0

ch C[UPFn]zn =
1

2 − H(z)
, (1.2)

where ch denotes the Frobenius characteristic map from Sn-modules to symmetric functions of
degree n. Here, E(z) = ∑n≥0 enzn and H(z) = ∑n≥0 hnzn are generating functions for the com-
plete homogeneous symmetric functions and the elementary symmetric functions, respectively.

The Frobenius character in (1.2) for parking functions was computed algebraically by
Haiman [11], and we provide a new combinatorial proof using labeled rooted forests.
Then, using a modified version of stable principal specialization, we use Theorem 1.2 to
provide a second proof of Theorem 1.1.

The passage from symmetric functions to inversions can be more generally done at
the level of any Sn-invariant set of words (see Proposition 3.4). Similarly, we show that
for any Sn-invariant subset W ⊆ Pn of positive integers, we have the curious equality

∑
w∈W

inv(w) =
n
2 ∑

w∈W
des(w), (1.3)

where des(w) is the number of descents of w i.e., the number of positions i ∈ [n − 1]
such that wi > wi+1. We use probabilistic methods to prove (1.3). This allows us to
obtain analogous results of Schumacher [16].

Theorem 1.3. Let (Fubn)n≥1 denote the Fubini numbers. Then, for all n ≥ 1, we have that

∑
α∈PFn

inv(α) =
n(n + 1)n−2

2

(
n
2

)
and ∑

α∈UPFn

inv(α) =
n(n − 1)

4
(Fubn − Fubn−1).

This article is organized as follows. In Section 2, we describe a new inversion statistic,
an Sn-action on labeled rooted forests, and a bijection between parking functions and
labeled rooted forests that preserves inversions and the Sn-action. In Section 3, we
use this bijection to provide combinatorial proofs of Theorem 1.1 and Theorem 1.2 for
parking functions. We also give the probabilistic argument establishing (1.3) from which
we prove Theorem 1.3 for parking functions. In Section 4, we apply the techniques from
Section 3 to show Theorem 1.1, Theorem 1.2, and Theorem 1.3 for unit interval parking
functions. We finish with a brief discussion of future work in Section 5.

2 Labeled rooted forests

We assume the reader is familiar with basic notions from graph theory: namely trees,
forests, rooted trees, and rooted forests. The main objective of this section is to describe a
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(a) Labeled rooted forest F
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(b) Preorder traversal of T(F)

Figure 1: w(F) = (0, 5, 3, 2, 9, 10, 14, 4, 6, 7, 11, 8, 12, 13, 1)
ρ(F) = (14, 3, 2, 7, 1, 7, 1, 1, 3, 2, 10, 12, 12, 2)

statistic on labeled rooted forests and a bijection to parking functions taking this statistic
to inversions of parking functions. To begin, recall that parking functions are in bijection
with combinatorial objects called labeled rooted forests [12], where a rooted forest is
made up of rooted trees in which every vertex is given a unique integer. We denote the
set of labeled rooted forests on vertex set [n] by Fn. If T is a labeled rooted tree and v is
a nonroot vertex of T, define the parent p(v) to be first element on the path from v to the
root. We say that v is a child of u if p(v) = u. For a labeled rooted tree T, let r(T) denote
its root. The subtrees of a labeled rooted tree T are labeled rooted subtrees T1, T2, . . . , Tk
such that r(Ti) is adjacent in T to r(T) for each i ∈ [k], where we order the trees so that
r(T1) < r(T2) < · · · < r(Tk). Next we introduce technical definitions used in our proofs.

Definition 2.1. Let T be a labeled rooted tree with root r. The preorder traversal permu-
tation w(T) of T is defined recursively by setting

w(T) =

{
r(T) if T is a single vertex r(T)
r(T) · w(T1)w(T2) · · ·w(Tk) if T has subtrees T1, T2, . . . , Tk,

where u · v denote concatenation of words u and v.
For F ∈ Fn, define the preorder traversal permutation of F to be the permutation

w(F) on {0, 1, . . . , n} defined as follows: Suppose F has trees T1, T2, . . . , Tk with roots
r1 < r2 < · · · < rk. Add a new vertex 0 to F and connect the roots of T1, T2, . . . , Tk to 0 to
make a rooted tree T(F) rooted at 0. Then define wF = w(T(F)).

For i, a vertex of a labeled rooted forest F, let p(i) denote the parent of i. Françon
[8] defines a bijection ρ : Fn → PFn by ρ(F) = (w−1

F (p(1)), · · · , w−1
F (p(n))). Figure 1

provides an example of ρ, where, for instance, the entries in positions 3, 10, and 14 of
ρ(F) are 2 because the parent, 5, of 3, 10 and 14 in T(F) is in position 2 of w(F).

Definition 2.2. Suppose F ∈ Fn. The pair (i, j) of integers i, j ∈ [n] is called a parental
preorder inversion of F provided i < j and w−1

F (p(i)) > w−1
F (p(j)). We denote the

number of parental preorder inversions of F by pinv(F).
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Observe that (i, j) is an inversion of ρ(F) if and only if i < j and w−1
F (p(i)) >

w−1
F (p(j)). Hence, pinv(F) = inv(ρ(F)) and thus we have shown:

Proposition 2.3. For all n ≥ 1, PFn(q) = ∑
F∈Fn

qpinv(F).

The constant term of PFn(q) is the Catalan number Cn = 1
n+1(

2n
n ) (OEIS A000108)

because on one hand it is counting the weakly increasing planar forests and on the other
hand, it is counting unlabeled planar forests (see [20]).

3 Inversions in parking functions

In this section, we investigate inversions for parking functions by combining the bijection
ρ : Fn → PFn with the classical parking function symmetric function of Haiman [11].
We assume a basic understanding of symmetric functions and Sn-representation theory
e.g. [19, Chapter 7] and [14].

3.1 On the Sn-module of parking functions and labeled rooted forests

The symmetric group Sn acts on PFn via permutation of its entries, making the module
C[PFn]. The set Fn can also be made into an Sn-module C[Fn] as follows. For F ∈ Fn
and an index i ∈ [n− 1], define si(F) to be the labeled rooted forest obtained by swapping
the labels of i and i + 1. Then define the Sn-action by setting

(i, i + 1) · F =

{
si(F) p(i) ̸= p(i + 1)
F p(i) = p(i + 1)

(3.1)

for each i ∈ [n− 1] and F ∈ Fn. Then, ρ extends to a map of modules ρ : C[Fn] → C[PF]n.

Proposition 3.1. The map ρ : C[Fn] → C[PFn] is an isomorphism of Sn-modules.

Example 3.2. Recall that the area of α = (α1, α2, . . . , αn) ∈ PFn is the quantity area(α) =
(n+1

2 )− ∑n
i=1 αi. If ρ(F) = α for some F ∈ Fn, then if we define the quantity area(F) =

(n+1
2 )− ∑n

i=1 w(p(i)), we have that area(F) = area(α). Moreover, the area statistic on Fn
is Sn-invariant, i.e. area(π · F) = area(F). Since area(π · α) = area(α), C[Fn] and C[PFn]
are isomorphic as graded Sn-modules by Proposition 3.1.

Note that this not the usual statistic on Fn that is related to the area on PFn. An
inversion of F ∈ Fn is a pair (i, j) with 1 ≤ i < j ≤ n such that j is an ancestor of
i. Let inv(F) denote the number of inversions of F. Kreweras [22] showed that inv
on Fn is equidistributed with area on PFn. Hence, our results show that inv on Fn is
equidistributed with area on Fn. We leave it to the reader to construct a direct bijection.

http://oeis.org/A000108
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Let PFn(x) be the Frobenius characteristic of C[PFn], or equivalently (by Proposi-
tion 3.1) of C[Fn]. This is called the parking function symmetric function and was first
introduced by Haiman [11]. Define the parental content of F ∈ Fn to be the vector
c(F) = (c1, c2, . . . , cn), where ci is the number of children of wF(i). It is straightforward
to verify that c(F) = c(ρ(F)). Let F ↑

n be the set of labeled rooted forests with no parental
preorder inversions. Then, we have

PFn(x) = ∑
α∈PF↑n

hc(α) = ∑
F∈F ↑

n

hc(F), (3.2)

where hc = hc1 hc2 · · · hℓ(c) is the complete homogeneous symmetric function. Haiman
provides a generating function formula for PFn(x).

Theorem 3.3 ([11]). We have PF(x, z) := ∑n≥0 PFn(x)zn+1 = (zE(−z))⟨−1⟩.

We provide a combinatorial proof of Theorem 3.3 via the map ρ.

Proof. Since H(z)E(−z) = 1, the claim is equivalent to showing that

PF(x, z) = H(z PF(x, z)) = ∑
n≥0

zn
n

∑
k=0

hk ∑
c∈Comp(n,k)

k

∏
i=1

PFci−1(x), (3.3)

where Comp(n, k) is the set of compositions of n with k parts. In other words,

PFn(x) =
n

∑
k=0

hk ∑
c∈Comp(n,k)

k

∏
i=1

PFci−1(x). (3.4)

This is easiest to see in labeled rooted forests: we can create an increasing labeled rooted
forest F ∈ Fn by first deciding that there are k trees (hence contributing hk), deciding
how large the k trees are (i.e. choosing a composition c of n with k parts), and then
creating those k trees (with each contributing PFci−1(x)).

3.2 Generating function formula for inversions on parking functions

The next ingredient in understanding inversions for parking functions is a general state-
ment about words. For this, first recall that the stable principal specialization ps( f ) of a
symmetric function f = f (x1, x2, . . . ) is obtained by setting xi to qi−1 for all i ∈ P. Next,
for all nonnegative integers n, define (q; q)n := ∏n

i=1(1 − qi). We need the following
general statement about words.

Proposition 3.4. Let W ⊆ Pn be a set of Sn-invariant words of positive integers. Let F(x) be
the Frobenius character of the Sn-module C[W]. Then,

(q; q)n ps(F(x)) = ∑
w∈W

qinv(w).
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From this, we apply stable principal specialization to PF(x, z) and set z = (1 − q)z to
obtain a generating function for the inversion enumerator for parking functions.

Corollary 3.5. We have ∑n≥0 PFn(q) zn+1

[n]q! = (z Expq(−z))⟨−1⟩.

Proof. We provide a more elementary explanation of the result. First, let WComp(n, k)
be the set of weak compositions of n with k parts. The corollary is equivalent to

PFn(q) =
n

∑
k=0

∑
c∈WComp(n−k,k)

[
n
k

]
q

[
n − k

c1, c2, . . . , ck

]
q

k

∏
i=1

PFci(q). (3.5)

Now we can prove the equivalent statement of (3.5) for labeled rooted forests. Suppose
a labeled rooted forest F has roots R = {r1 < r2 < · · · < rk} and each tree is on vertex
set ri ∪ Bi. Then, we can see that parental preorder inversions (i, j) of F come from one
of three places: (1) i ∈ Bk and j ∈ R; (2) i ∈ Bk, j ∈ Bℓ and k > ℓ; or (3) i, j are both in the
same Bk. These correspond to the 3 factors in Equation (3.5), proving the claim.

3.3 Total number of inversions

In this section, we provide another fundamental result on Sn-invariant sets of words
connecting the total number of inversions on the set to the total number of descents. The
parking function motivation comes from Schumacher’s [16, Theorem 10] establishing

∑
α∈PFn

des(α) =
(

n
2

)
(n + 1)n−2. (3.6)

We derive a similar result for inversions through probabilistic techniques. Let Des(w)
denote the set of descents of w ∈ Pn. For w ∈ Pn and integers 1 ≤ i < j ≤ n, define

inv(i,j)(w) =

{
1 (i, j) ∈ Inv(w)

0 (i, j) ̸∈ Inv(w)
and desi(w) =

{
1 i ∈ Des(w)

0 i ̸∈ Des(w).

Hence, ∑1≤i<j≤n invi,j(w) = inv(w) and ∑n−1
i=1 desi(w) = des(w) for all w ∈ Pn. We can

think of the functions invi,j, inv, desi, and des as random variables on Pn. Hence, we can
rephrase (3.6) as a statement about the expectation EPFn [des] of des as a random variable
on PFn. Accordingly, we want to compute the expectation EPFn [inv]. We prove a general
theory on words to do so.

Theorem 3.6. Let W ⊆ Pn be an Sn-invariant set of words of positive integers. Then we have

(a) EW [inv] = (n
2)PW (des1 = 1),

(b) EW [des] = (n − 1)PW (des1 = 1), and
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(c) EW [inv] = n
2 EW [des].

Note that the last part of Theorem 3.6 is equivalent to ∑w∈W inv(w) = n
2 ∑w∈W des(w).

Sketch of (a). For a fixed pair i, j with 1 ≤ i < j ≤ n, one can show using the Sn-
invariance of W and the 2-transitivity of Sn that

PW

(
inv(i,j)(α) = 1

)
= PW

(
inv(1,2)(α) = 1

)
= PW (des1(α) = 1) (3.7)

and hence the claim follows by linearity of expectation.

It is unclear what the representation theoretic significance of Theorem 3.6 is. The
enumerative significance on the other hand is as follows.

Corollary 3.7. For n ≥ 1, the total number of inversions across all parking functions is

∑
α∈PFn

inv(α) =
n(n + 1)n−2

2

(
n
2

)
.

The only property of Sn used in Theorem 3.6 is that it acts 2-transitively on [n]. Thus
we have the following generalization.

Proposition 3.8. Let G be a group that acts 2-transitively on [n] and let W ⊆ Pn be a G-
invariant set of words of positive integers. Then the conclusions of Theorem 3.6 hold.

Example 3.9. Let S+
n denote the alternating subgroup of Sn. Since S+

n is 2-transitive for
n ≥ 4, one can use Theorem 3.6 and the work of Désarménien and Foata [6] and Fulman
et al. [9, Equation (7)]) to show that

∑
π∈S+

n

inv(π) =
n!n(n − 1)

8
. (3.8)

4 Inversions in unit interval parking functions

4.1 A connection to Cayley permutations and descents

We begin by providing a connection between Cayley permutations and unit interval
parking functions. A Cayley permutation of length n is a word w ∈ Pn such that if
i appears in w, then each j ∈ [i] also appear in w. We denote the set of all Cayley
permutations of length n by Cn. Cayley permutations appear in the literature under
various names, including Fubini words, packed words, surjective words, and initial words
[13]. We note that Cayley permutations have also been viewed as ordered set partitions,
and descent generating functions for Cayley permutations have been studied in [4]. In



Inversions in Parking Functions 9

forthcoming work, we give a bijection between Cayley permutations and unit interval
parking functions through an extension of [1, Theorem 2.9]. Namely, we define a bijec-
tion ψ : UPFn → Cn such that Inv(ψ(α)) = Inv(α) for all α ∈ UPFn. This allows us
to compute the total number of descents across all unit interval parking functions, thus
obtaining an analogous result of Schumacher [16, Theorem 10].

Theorem 4.1. For n ≥ 1, we have

∑
α∈UPFn

des(α) = ∑
α∈Cn

des(α) =
n − 1

2
(Fubn − Fubn−1).

Since Cn is an Sn-invariant set, we can apply Theorem 3.6 to count the total number
of inversions.

Corollary 4.2. For n ≥ 1, we have

∑
α∈UPFn

inv(α) = ∑
α∈Cn

inv(α) =
n(n − 1)

4
(Fubn − Fubn−1).

4.2 Inversion generating function for unit interval parking functions

For π ∈ Sn, let asc(π) denote the number of ascents of π i.e. the number of positions
i ∈ [n − 1] such that π(i) < π(i + 1). Define for each n ∈ P, the polynomials

Ainv,asc
n (q, t) = ∑

π∈Sn

qinv(π)tasc(π) and UPFn(q) = ∑
α∈UPFn

qinv(α). (4.1)

We provide two methods for obtaining a q-exponential generating function for UPFn(q):
(1) showing that UPFn(q) is a specialization of Ainv,asc

n (q, t) and applying a theorem of
Stanley [18]; and (2) a direct computation. We start with the former.

Proposition 4.3. For n ≥ 1, Ainv,asc
n (q, 2) = UPFn(q).

This follows from the following lemma.

Lemma 4.4. For each π ∈ Sn, there are 2asc(π) unit interval parking functions α of length
n with outcome permutation π(α) = π. Moreover, inv(π) = inv(α) if π = π(α) for each
α ∈ UPFn.

Proof of Proposition 4.3. Applying Lemma 4.4 consecutively, we have

Ainv,asc
n (q, 2) = ∑

π∈Sn

qinv(π)2asc(π) = ∑
π∈Sn

qinv(π) ∑
π∈UPFn
π(α)=π

1 = ∑
α∈UPFn

qinv(α).
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Stanley [18, Corollary 3.6] proved that Ainv,asc
n (q, t) satisfies

1 + ∑
n≥1

Ainv,asc
n (q, t)

zn

[n]q!
=

1 − t
1 − t Expq(z(1 − t))

. (4.2)

By combining Proposition 4.3 and (4.2), the q-exponential generating function formula
for unit interval parking functions is

∑
n≥0

UPFn(q)
zn

[n]q!
=

1
2 − expq(z)

. (4.3)

This result can be found directly without relying on Equation (4.2). Indeed, [1, Theorem
2.9] can be generalized to show that

UPFn(q) = ∑
c∈Comp(n)

[
n

c1, c2, . . . , cℓ(c)

]
q
. (4.4)

Then, Equation (4.3) follows from elementary arguments. To generalize to a result on
symmetric functions, we require an Sn-action on UPFn. Suppose α = (α1, α2, . . . , αn) ∈
UPFn has block structure π1 | π2 | · · · | πk, which is an ordered set partition associated
to α as in [1, Definition 2.7]. Then for i ∈ [n − 1], define (i, i + 1) · α = α if αi, αi+1 are in
the same πj and (α1, . . . , αi+1, αi, . . . , αn) if αi, αi+1 are in different πj. One can check that
this defines an Sn-action on UPFn whose orbits are uniquely determined by a choice of
c ∈ Comp(n). Thus, UPFn(x) = ∑c∈Comp(n) hc.

Theorem 4.5. We have ∑n≥0 UPFn(x)zn = 1
2−H(z) .

Proof. The result follows by writing

1
2 − H(z)

= ∑
k≥0

1
2k+1

(
∑
n≥0

hnzn

)k

= ∑
n≥0

zn ∑
c∈Comp(n)

hc ∑
j≥0

(
ℓ(c) + j

j

)
1

2ℓ(c)+j+1

and noting that ∑j≥0 (
ℓ(c)+j

j ) 1
2ℓ(c)+j+1 = 1.

While setting t = 2 makes sense for polynomials, it is not clear what the represen-
tation theoretic meaning is. In particular, we do not know how to derive Theorem 4.5
from a known Sn-representation on Sn.

5 Future work

We conclude with some directions for further study. One can study inversions of park-
ing functions for other variations and special subsets of parking functions, including
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k-Naples parking functions, vacillating parking functions, and parking sequences and
assortments. For a summary of some of these sets, refer to [2]. Thus, the program of this
extended abstract may be applied to them.

Problem 5.1. For other families of parking functions, find nice expressions for their inversion
generating functions. Furthermore, determine if there is a natural Sn-action on the family and
determine its Frobenius character.

Inversions are just one of many word statistics to consider on parking functions.
Hence, one research agenda is as follows:

Problem 5.2. Investigate generating functions for other word statistics on parking functions and
their subsets and generalizations.

Finally, we have seen that some q-analogues can be explained via representation
theoretic formulas. We would like fully representation theoretic explanations of all of
the results in this extended abstract. In particular, we pose the following.

Problem 5.3. Determine the representation theoretic interpretation of Theorem 3.6 and of the
equality Ainv,asc

n (q, 2) = UPFn(q).
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