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The HOMFLY Polynomial of a Forest Quiver
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Abstract. We define the HOMFLY polynomial of a forest quiver Q using a recur-
sive definition on the underlying graph of the quiver. We then show that this poly-
nomial is equal to the HOMFLY polynomial of any plabic link which comes from a
connected plabic graph whose quiver is Q. We also prove a closed-form expression for
the Alexander polynomial of a forest quiver, which is a specialization of the HOMFLY
polynomial.
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1 Introduction

There have been many developments in recent years relating cluster algebras and knot
theory. In this work, we will define an invariant of forest quivers and relate it to certain
link invariants. This gives one way to connect the study of forest quivers considered
up to mutation equivalence and the study of associated links considered up to isotopy.
Postnikov’s plabic graphs, introduced in [18] to study a stratification of the totally non-
negative Grassmannian into positroid cells, will serve as an intermediate object in estab-
lishing this connection.

These plabic graphs and their generalizations have proved useful in establishing sev-
eral connections between cluster algebras and knot theory. One can associate a plabic
link to any plabic graph, as introduced in [6, 21]. In [8] Galashin and Lam studied con-
nections between invariants of these plabic links and invariants of quivers associated to
the plabic graphs. In [12], the authors defined 3D plabic graphs, generalizations of Post-
nikov’s two-dimensional plabic graphs, and used them to construct a cluster structure
on type A braid varieties. The existence of cluster structures on links or related objects
such as braid varieties has been the subject of much recent work; see [4, 3, 11, 21] for
several additional examples.

When a plabic graph is reduced, the associated plabic link is a positroid link and is
isotopic to several other links one can obtain from objects in bijection with positroids; see
[3, 8] for more details. In this setting, polynomial invariants associated to these links can

*amschw@umich.edu. The author was supported by grants DMS-1840234 and DMS-1953852 from the
National Science Foundation.

mailto:amschw@umich.edu


2 Amanda Schwartz

provide information about the objects associated to the plabic graph G. For example, if
G is a reduced plabic graph, then there is a rational function R(Q; q) of the quiver Q of G
which, after a normalization, yields the point count of the open positroid variety Π◦(G)
over a finite field Fq; see [8, 14]. There are also many connections relating positroid
varieties and the Khovanov–Rozansky homology of their associated positroid links to
Catalan combinatorics [9, 10, 17, 13].

The link invariants which we will study in this abstract are the Alexander polyno-
mial, which is the oldest knot polynomial, and a stronger invariant called the HOMFLY
polynomial which specializes to the Alexander polynomial. The Alexander polynomial
was discovered in 1928 by J.W. Alexander [1] while the HOMFLY polynomial was in-
troduced in [7] and also studied independently in [19] in the 1980s. Several interesting
connections between these link invariants and cluster algebras have been studied. In
[2] Bazier–Matte and Schiffler described a way to associate a cluster algebra to any link
diagram and related the Alexander polynomial of the link to the F-polynomial of mod-
ules associated to the cluster algebra. Lee and Schiffler related the Jones polynomial, a
different specialization of the HOMFLY polynomial, of a 2-bridge link to a specialization
of a cluster variable in [15].

From the cluster algebra perspective, there has also been interest in finding and
studying polynomial mutation invariants of quivers. For example, in [5] Fomin and
Neville studied invariants of cyclically ordered quivers, including an Alexander poly-
nomial which they defined as the determinant of a matrix associated to the quiver. In
this abstract, we will focus on forest quivers, i.e. quivers whose underlying graphs are
forests. This is a subset of the class of acyclic quivers which includes all type An, Dn, E6,
E7, and E8 quivers as well as some affine type quivers. We show that given any forest
quiver, there is a reduced plabic graph with that forest quiver. Therefore, the set of links
which we are studying includes certain positroid links.

We will begin by defining the HOMFLY polynomial of a forest quiver using a recur-
sive definition on the underlying graph of the quiver. This can then be specialized to the
Alexander polynomial of a forest quiver, just as the Alexander polynomial of a link is
a specialization of the link’s HOMFLY polynomial. Since the Alexander and HOMFLY
polynomials depend only on the underlying graph of a quiver, we may instead refer to
the Alexander or HOMFLY polynomial of a (undirected) forest. Some examples of trees
and their Alexander and HOMFLY polynomials are shown in Figure 1.

In Theorem 3.8, we show that for any plabic link which arises from a connected plabic
graph whose quiver QG is a forest, the HOMFLY polynomial of the link is the same as
the HOMFLY polynomial of QG. Therefore, while plabic graphs serve as an intermediate
object between quivers and plabic links, this result allows one to go directly from a forest
quiver to an associated link invariant. While the HOMFLY polynomial of a forest quiver
is defined recursively, we also prove a closed-form formula for the Alexander polynomial
of a forest quiver in Theorem 4.3.
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Figure 1: Examples of trees with their Alexander and HOMFLY polynomials.

2 Preliminaries

2.1 Plabic Graphs and Plabic Links

A plabic graph G is a planar, bicolored graph which is embedded in the disk and whose
vertices are colored black and white. We assume that G has N vertices on the boundary
of the disk which are labeled 1, 2, . . . , N in a clockwise order, are colored black, and each
have degree 1. A face in G is said to be a boundary (resp. interior) face if it is (resp. is
not) adjacent to the boundary of the disk. A strand in G is a path which follows the
edges in G, obeying the rules of the road. That is, the path turns maximally right at each
black vertex and maximally left at each white vertex. The strand permutation πG of G
is a permutation on N obtained by setting πG(i) = j if the strand starting at boundary
vertex i ends at boundary vertex j. A plabic graph without internal leaves is said to
be reduced if it has the minimal number of faces among all such plabic graphs with the
strand permutation πG. See Figure 2 for an example of two plabic graphs, one reduced
and one not reduced, which have the same strand permutation.

One can associate a plabic link Lplab
G to a plabic graph G as follows. For more details,
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Figure 2: Two plabic graphs, one reduced (left) and one not reduced (right), which
both have strand permutation π = (1 4 2 5 3).

=
p =p

Figure 3: Modifications at a point p on a strand where the tangent vector has argument
0.

including an alternative description in terms of divides, see [6, 8]. Draw all the strands
of G. When two strands S1 and S2 cross at a point p, consider the arguments θ1 and θ2
of their tangent vectors at p, respectively, when considered in the complex plane. We
assume that 0 < θ1 ̸= θ2 < 2π. If θ1 is greater than (resp. less than) θ2 then S1 goes
under (resp. over) S2. Note that we sometimes mark such points with rectangles. Taking
the union of all these strands after these adjustments and connecting strands which start
and end at the same boundary vertex gives a link diagram for Lplab

G . For an example,
see Figure 4 for the plabic link of the leftmost graph in Figure 2. At any point where
the tangent vector to a strand has argument 0, the strand must be adjusted as follows. If
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Figure 4: A plabic graph G and its plabic link Lplab
G .
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(a)

(b)

(c)

(d)

Figure 5: Local moves on plabic graphs: (a) square move, (b) contraction/un-
contraction, (c) middle vertex insertion/removal, and (d) tail addition/removal.

there is a point p on a strand S where the argument changes from being just below 2π to
being just above 0 as one travels through p along S, then we break S at p, sending it to the
boundary just before reaching p and then back to continue along its original path after
p. Along the way to the boundary, it passes under all other strands it crosses, and on the
way back to the strand S, it passes over all other strands. If the argument instead changes
at p from being just above 0 to being just below 2π, the procedure is the same except
the strand crosses above all other strands when heading to the boundary and under all
others when returning from the boundary. This is demonstrated in Figure 3. We will
allow for certain local moves on plabic graphs, pictured in Figure 5. All four local moves
(a) - (d) result in isotopic plabic links and therefore will not affect any of the polynomial
invariants we study in this abstract. The tail reduction of a plabic graph G refers to the
graph which results from applying tail removal to G until it is no longer possible to do
so. An interior face F of G is said to be a boundary leaf face if in the tail reduction of G its
boundary consists of two vertices of different colors which are connected by two edges,
one of which separates F from a boundary face and one of which separates F from an
interior face. For an example, see Example 2.2.

One can associate a directed, planar graph QG to each plabic graph G as follows.
There will be one vertex vF placed inside each interior face F of G. An edge is placed
between vertices vF and vF′ for each edge e in G with opposite colored endpoints such
that F and F′ are adjacent to e. The edge in QG is oriented so that as one travels along
it, the white vertex in e is to the left. If this graph QG contains no loops or directed
2-cycles, then G is said to be simple. We will refer to QG as the quiver associated to
G. Throughout the rest of this abstract, we will work only with simple plabic graphs G
since we will assume that QG is a forest quiver. Note that local moves (b) - (d) will not
change the quiver of a plabic graph. If G is a connected, simple plabic graph, then G
can be assumed to be trivalent, i.e. we can assume that all internal vertices have degree
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Figure 6: A reduced plabic graph with the pictured forest quiver.

3 after applying these local moves.
Our focus in this abstract will be on plabic links arising from simple plabic graphs

G whose quivers QG are orientations of forests. Given any forest quiver Q, it is possible
to find a plabic graph whose quiver is Q. In fact, one can choose such a graph to be
reduced so that the resulting link is a positroid link. It was known to Lam and Speyer
that one can find a reduced plabic graph whose quiver is Q for any tree quiver Q, as
mentioned in [8], but their proof has not been published. We have an algorithm for
constructing a reduced plabic graph G with QG = Q for any forest quiver Q. The
algorithm proceeds by first constructing reduced plabic graphs Gi for each connected
component Qi of QG = Q1 ⊔ Q2 ⊔ · · · ⊔ Qk, then placing each of these graphs Gi inside
one larger disk, and finally adding an edge to connect the graph Gi to the graph Gi+1
for each i = 1, 2, . . . , k − 1.

Proposition 2.1. Let Q be a forest quiver. Then there exists a connected, reduced plabic graph G
with QG = Q.

Example 2.2. See Figure 6 for an example of a reduced plabic graph G whose quiver is
the pictured orientation of E6 ⊔ A2. We also make the following observation. Consider,
for example, the face corresponding to the topmost leaf in the quiver as pictured in
Figure 6. We note that tail removal can be applied four times at this face, resulting in a
face whose boundary consists of two vertices joined by two edges. In particular, the face
corresponding to this leaf is a boundary leaf face.

2.2 The HOMFLY and Alexander Polynomials

The Alexander polynomial, named after its discoverer J.W. Alexander [1], was the first
knot polynomial invariant to be discovered. John Conway showed that the Alexander
polynomial satisfies a skein relation

∆(L+)− ∆(L−) =
(

t1/2 − t−1/2
)

∆(L0) (2.1)
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where L+, L−, and L0 are links whose diagrams are the same except locally at one
location where they are related as follows:

L+ L− L0

Setting ∆(unknot) = 1 fixes a specific choice of the Alexander polynomial for each
oriented link, although typically the polynomial is defined up to multiplication by ±tk

for some k.
The Alexander polynomial is also a specialization of a stronger invariant called the

HOMFLY polynomial, introduced in [7] and also studied independently in [19]. The
HOMFLY polynomial is a Laurent polynomial in a and z defined by the skein relation

aP(L+)− a−1P(L−) = zP(L0) (2.2)

and setting P(unknot) = 1. Setting a = 1 and z = t1/2 − t−1/2 in the HOMFLY polyno-
mial recovers the Alexander polynomial. The following proposition is a well-known fact
about the HOMFLY polynomial of a connected sum of two links which we will use to
prove our first main result. See [16] for a proof of this fact.

Proposition 2.3. Let L and L′ be two oriented links, and let L#L′ be a connected sum of these
two links. Then P(L#L′) = P(L) · P(L′).

3 The HOMFLY Polynomial of a Forest Quiver

3.1 Defining the HOMFLY polynomial of a forest quiver

Definition 3.1. Let Q be a quiver whose underlying graph is a forest. The HOMFLY
polynomial of Q, denoted f (Q), is defined recursively by setting

• f (Q) = 1 if Q is empty,

• f (Q) = z+z−1

a − z−1

a3 if Q is a single vertex,

• f (Q) = z
a f (Q − {v}) + 1

a2 f (Q − {v, ṽ}) if v is a leaf which is adjacent to ṽ, and

• f (Q) = f (Q1) · f (Q2) if Q = Q1 ⊔ Q2.

Proposition 3.2. The function f is well-defined.

Remark 3.3. Since the definition does not depend on the orientation of the edges in Q,
we may occasionally write f (Q) where Q is an undirected forest.
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Example 3.4. Fix n ≥ 3. Let Sn be the star graph on n vertices which has one vertex of
degree n − 1 connected to n − 1 leaves. One can show using induction that the HOMFLY
polynomial of Sn for n ≥ 3 is

P(Sn) =
zn−2

an +
zn−1 + zn−3

an−1

(
z + z−1

a
− z−1

a3

)
+

n−2

∑
k=2

(
zk−2

ak

(
z + z−1

a
− z−1

a3

)n−k)
.

3.2 Connections to the HOMFLY polynomial of a plabic link

In [8], Galashin and Lam made the following conjecture.

Conjecture 3.5 ([8]). Let G, G′ be two connected simple plabic graphs. Assume that the quivers
QG and QG′ are mutation equivalent. Then P(Lplab

G ) = P(Lplab
G′ ).

Our first main result represents partial progress towards proving this conjecture. We
show that given a forest quiver Q and any connected plabic graph G with QG = Q,
P(Lplab

G ) = f (Q). This implies that given any two connected plabic graphs G, G′ whose

quivers are orientations of the same forest Q, P(Lplab
G ) = f (Q) = P(Lplab

G′ ). Additionally,
this result gives a way to go directly from a forest quiver to a corresponding link invari-
ant. We will sketch the proof of this result. For more details, see [20]. The proof relies
on the following results.

Lemma 3.6 ([8]). Let G be a simple plabic graph with a boundary leaf face F. Let x and y
be the vertices on the boundary of F and e be the edge separating F from a boundary face. Let
G′ = G − e and G′′ = G − {x, y}. Then the HOMFLY polynomials of their plabic links satisfy

aP(Lplab
G )− a−1P(Lplab

G′′ ) = zP(Lplab
G′ ). (3.1)

Proposition 3.7. Let G be a connected plabic graph whose quiver QG is a disjoint union of non-
empty tree quivers Q1, Q2, . . . , Qk for some k ≥ 2. Then Lplab

G is isotopic to a connected sum of
links Lplab

G1
, . . . Lplab

Gk
for some choice of connected plabic graphs Gi with QGi = Qi for i = 1, . . . , k.

Proof Sketch. The main idea of the proof is as follows. If an edge in G separates two (not
necessarily distinct) boundary faces, we say that it is a dividing edge. Deleting such an
edge divides the plabic graph G into two smaller plabic graphs G1 and G2. Since QG
is disconnected, then after potentially after applying local moves one can always find a
dividing edge e in G such that G1 and G2 have non-empty quivers whose disjoint union
is QG. Further, one can verify that Lplab

G is isotopic to a connected sum of Lplab
G1

and Lplab
G2

;
see Figure 7.
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Lplab
G1

Lplab
G2

Lplab
G1
⊔Lplab

G2

Lplab
G1

Lplab
G2

Lplab
G1

#Lplab
G2

≅ Lplab
G1

Lplab
G2

Lplab
G

Figure 7: A dividing edge in G means Lplab
G is a connected sum of two other plabic

links Lplab
G1

and Lplab
G2

. The isotopy between Lplab
G1

#Lplab
G2

and Lplab
G corresponds to rotating

the portion of the connected sum coming from Lplab
G1

by 360◦ about the horizontal axis
in the paper.

Theorem 3.8. Let G be a connected plabic graph, and suppose the quiver QG of G is a forest
quiver. Then P(Lplab

G ) = f (QG).

Proof Sketch. The proof proceeds by induction on the number of vertices in QG. Recall
that f (QG) can be computed recursively by removing leaves using the relation

f (Q) =
z
a

f (Q − {v}) + 1
a2 f (Q − {v, ṽ})

if v is a leaf which is adjacent to ṽ or by taking the product over connected components
using the relation

f (Q) = f (Q1) · f (Q2)

if Q = Q1 ⊔Q2. The inductive step relies on finding analogues of these relations between
the HOMFLY polynomials of plabic links.

In particular, if QG is disconnected, then by Proposition 3.7 there are connected plabic
graphs G1 and G2 with non-empty quivers such that QG = QG1 ⊔ QG2 and P(Lplab

G ) is

isotopic to a connected sum of Lplab
G1

and Lplab
G2

. Using Proposition 2.3, it follows that

P(Lplab
G ) = P(Lplab

G1
) · P(Lplab

G2
)

= f (QG1) · f (QG2)

= f (QG).

If QG is connected, a leaf v in QG can be assumed to correspond to a boundary leaf
face in G, possibly after applying local moves. Further, QG′ = QG − {v} and QG′′ =
QG − {v, ṽ}. From the inductive hypothesis and Lemma 3.6, it follows that

P(Lplab
G ) =

z
a

P(Lplab
G′ ) +

1
a2 P(Lplab

G′′ )

=
z
a

f (QG − {v}) + 1
a2 f (QG − {v, ṽ})

= f (QG).
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4 The Alexander Polynomial of a Forest Quiver

Just as one can specialize the HOMFLY polynomial of a link to obtain the link’s Alexan-
der polynomial using the specialization a = 1 and z = t1/2 − t−1/2, we can use the same
specialization to obtain the Alexander polynomial ∆(Q) of a forest quiver Q.

Example 4.1. One can prove by induction that for the type An quiver

∆(An) = t−n/2 ·
n

∑
k=0

(−1)n−ktk.

Example 4.2. Similarly, one can prove via induction that

∆(Dn) = t−n/2
(

tn − tn−1 + (−1)n−1t + (−1)n
)
= t−n/2(t − 1)(tn−1 + (−1)n−1).

Our second main result is a proof of a closed formula for the Alexander polynomial for
any forest quiver Q.

Theorem 4.3. Let Q be a be a forest quiver with n vertices. Then the Alexander polynomial of
Q is given by

∆(Q) =
(−1)n

tn/2

⌊n/2⌋

∑
k=0

ck(Q)tk(1 − t)n−2k (4.1)

where ck(Q) is the number of independent sets of size k in the line graph of Q, i.e. the number of
subsets of k distinct edges in Q which do not share any endpoints.

Remark 4.4. In [14], Lam and Speyer studied the point count of acyclic cluster varieties
over finite fields. They proved that for an acyclic quiver Q with n vertices the point count
over Fq of the associated cluster variety A is given by

#A(Fq) = ∑
k≥0

ak(q − 1)n−2kqk (4.2)

where ak is the number of independent sets in the underlying graph of the quiver. It is
interesting to note the similarity between this formula and the formula in (4.1). In an
upcoming updated version of [20], we will prove a result about the HOMFLY polynomial
which recovers both equations (4.1) and (4.2) in the case where Q is a forest quiver.

Example 4.5. Let Q be the Dynkin diagram E6. Then there are 5 ways to pick a single
edge in Q, 5 ways to pick two distinct edges which do not share a vertex, and 1 way to
pick three distinct edges, none of which share any vertices; see Figure 8. Therefore,

∆(E6) = t−3
(

1 · t0(1 − t)6 + 5 · t1(1 − t)4 + 5 · t2(1 − t)2 + 1 · t3(1 − t)0
)

= t−3
(

t6 − t5 + t3 − t + 1
)

.
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c0(E6) = 1

c1(E6) = 5

c2(E6) = 5

c3(E6) = 1
Figure 8: The sets counted by the coefficients in (4.1) when Q is E6. The edges which
are used are bolded and drawn in red.

Example 4.6. Fix n ≥ 3. Recall from Example 3.4 that Sn is the star graph on n vertices
which has one vertex of degree n − 1 connected to n − 1 leaves. Any edge in Sn must
have the degree n − 1 vertex as one of its endpoints, so it is impossible to pick multiple
edges in Sn which do not share an endpoint. It follows that

∆(Sn) =
(−1)n

tn/2

(
(1 − t)n + (n − 1) · t(1 − t)n−2

)
=

(−1)n

tn/2

((
1 − (n − 3)t + t2

)
(1 − t)n−2

)
.
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