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A new class of magic positive Ehrhart polynomials
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Abstract. The magic positivity of Ehrhart polynomials is a useful tool for proving
the real-rootedness of the h∗-polynomials. In this article, we provide a new class of
reflexive polytopes whose Ehrhart polynomials are magic positive. First, we show that
the Ehrhart polynomials of Stasheff polytopes are magic positive. Second, we also
prove a partial result towards the magic positivity of the Ehrhart polynomials of the
dual polytopes of the symmetric edge polytopes of cycles.

Résumé. La positivité magique des polynômes d’Ehrhart est un outil utile pour dé-
montrer la réalité des racines des h∗-polynômes. Dans cet article, nous introduisons
une nouvelle classe de polytopes réflexifs dont les polynômes d’Ehrhart sont mag-
iquement positifs. Premièrement, nous montrons que les polynômes d’Ehrhart des
polytopes de Stasheff sont magiquement positifs. Deuxièmement, nous démontrons
la positivité magique des polynômes d’Ehrhart des polytopes duaux des polytopes
symétriques des arêtes associés aux cycles.

Keywords: Ehrhart polynomial, Stasheff polytope, Symmetric edge polytope, Magic
positive

1 Ehrhart polynomial

A lattice polytope is the convex hull of finitely many elements in a lattice contained in Rd,
typically Zd. A lattice polytope P is called reflexive if the dual of P

P∗ := {y ∈ Rd | ⟨x, y⟩ ≤ 1 for any x ∈ P}

is also a lattice polytope, where ⟨·, ·⟩ denotes the usual inner product of Rd.
By a theorem of Ehrhart [3], |nP∩Zd| is given by a polynomial EP(n) of degree dim P

in n for all integers n > 0. The polynomial EP(n) is called the Ehrhart polynomial of P.
The h∗-polynomial h∗P(t) = h∗0 + h∗1t + · · · + hdtd of a d-dimensional lattice polytope P
encodes the Ehrhart polynomial in a particular basis consisting of binomial coefficients:

EP(n) = h∗0

(
n + d

d

)
+ h∗1

(
n + d − 1

d

)
+ · · ·+ h∗d

(
n
d

)
.
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A fundamental theorem by Stanley [14] states that the coefficients of the h∗-polynomial
are always nonnegative integers. It was proved by Hibi [8] that a d-dimensional lattice
polytope P is reflexive if and only if its h∗-polynomial is palindromic and has degree d,
that is, h∗P(t) = tdh∗P

(
1
t

)
holds.

Consider the polynomial f (n) of degree d expressed in a different basis:

f (n) =
d

∑
i=0

aini(1 + n)d−i.

If a0, . . . , ad ≥ 0, then f (n) is said to be magic positive. The term “magic positive” was
introduced by Ferroni and Higashitani [4]. A common area of study in Ehrhart theory
is whether h∗-polynomials are real-rooted. See Section 2 for the real-rootedness of poly-
nomials. The motivation for studying the magic positivity comes from the following
theorem.

Theorem 1.1 ([4, Theorem 4.19]). Let P be a lattice polytope of dimension d. If the Ehrhart
polynomial of P is magic positive, then we have simultaneously that EP(n) has positive coeffi-
cients and h∗P(n) is real-rooted.

Therefore, the following question naturally arises.

Question 1.2. When are the Ehrhart polynomials of lattice polytopes magic positive?

It is known that the Ehrhart polynomials of zonotopes [1] and Pitman–Stanley poly-
topes [6] are magic positive, but no other example seems to be known.

A reflexive polytope P is said to be a CL-polytope if all of the complex roots of the
Ehrhart polynomial EP(n) lie on the line Re(z) = −1

2 , where Re(z) denotes the real part
of z. The CL-ness of cross polytopes, dual of the Stasheff polytopes, root polytopes of
type A, and root polytopes of type C has been studied in [10]. Since the dual of these
three polytopes, except for the dual of the Stasheff polytopes, are zonotopes [2], their
Ehrhart polynomials are magic positive. However, since Stasheff polytopes are neither
zonotopes nor Pitman–Stanley polytopes (see Remark 3.2), it is not immediately clear
whether their Ehrhart polynomials are magic positive. The answer to this question is
presented in the following first main theorem.

Theorem 1.3. The Ehrhart polynomials of Stasheff polytopes are magic positive.

We also study the magic positivity of the Ehrhart polynomials of the dual of symmet-
ric edge polytopes. The result of this study is presented in the following second main
theorem.

Theorem 1.4. We transform EP∗
Cd+1

(n) into the form EP∗
Cd+1

(n) = ∑d
j=0 ajnj(1 + n)d−j. Then,

the coefficients ai and ad−i for i = 0, 1, 2 are positive. Here, PCd+1 represents symmetric edge
polytopes of cycles of length d + 1.
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2 Real-rootedness and magic positivity

First, we introduce the concept of real-rootedness of polynomials.
A polynomial f = ∑d

i=0 aiti of degree d with real coefficients is said to be real-rooted,
if all its roots are real. If all the coefficients of a real-rooted polynomial are nonnega-
tive, or equivalently, if all its roots are nonpositive, then a2

i ≥ ai−1ai+1 for all i [15]. A
sequence ai of coefficients satisfying these inequalities is called log-concave. An imme-
diate consequence is that the nonnegative, log-concave sequence is unimodal, meaning
a0 ≤ a1 ≤ · · · ≤ ak ≥ · · · ≥ ad for some k.

We use the following proposition to prove Theorem 1.4.

Proposition 2.1 ([1, Proposition 4.11]). Let P be a d-dimensional lattice polytope and let

EP(n) =
d

∑
i=0

aini(1 + n)d−i

be its Ehrhart polynomial. Then P is reflexive if and only if aj = ad−j for all j.

We explain why the dual of cross polytopes, and root polytopes of type A and type
C have Ehrhart polynomials that are magic positive. Let ei denote the ith coordinate unit
vector of Rd.

Example 2.2 (Dual of the Cross Polytope). Let Crd be the convex hull of {±ei | 1 ≤
i ≤ d}. Then Crd is a reflexive polytope of dimension d, called the cross polytope. Since
the dual polytopes of Crd and [−1, 1]d are equal, the Ehrhart polynomial of the dual
polytopes of Crd can be computed as follows:

ECr∗d
(n) = (2n + 1)d =

d

∑
i=0

(
d
i

)
(n + 1)d−ini.

Therefore ECr∗d
(n) is magic positive.

Example 2.3 (Dual of the Root Polytope of Type A). Let Ad be the convex hull of {±ei |
1 ≤ i ≤ d} ∪ {±(ei + · · · + ej) | 1 ≤ i < j ≤ d}. Then Ad is a reflexive polytope of
dimension d, called the root polytope of type A. The Ehrhart polynomial of dual polytope
of Ad is calculated in [10, Lemma 5.3] as follows:

EA∗
d
(n) =

d

∑
k=0

(
d + 1

k

)
nk =

d

∑
i=0

(n + 1)d−ini.

Therefore EA∗
d
(n) is magic positive.
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Example 2.4 (Dual of the Root Polytope of Type C). Let Cd be the convex hull of {±ei |
1 ≤ i ≤ d} ∪ {±(ei + · · ·+ ej−1) | 1 ≤ i < j ≤ d} ∪ {±(2ei + · · ·+ 2ed−1 + ed) | 1 ≤ i ≤
d − 1}. Then Cd is a reflexive polytope of dimension d, called the root polytope of type C.
The Ehrhart polynomial of the dual polytope of Cd is calculated in [11, Theorem 1.1] as
follows:

EC∗
d
(n) = (n + 1)d + nd.

From this indication, it is clear that EC∗
d
(n) is magic positive.

3 The magic positivity of the Ehrhart polynomials of the
Stasheff polytopes

Let Std be the convex hull of {±ei : 1 ≤ i ≤ d} ∪ {ei + · · ·+ ej : 1 ≤ i < j ≤ d}. Then Std
is a reflexive polytope of dimension d. This polytope is the dual polytope of the so-called
Stasheff polytope (associahedron). For more detailed information, see, e.g., [7].

For the proof of Theorem 1.3, we use the following theorem.

Theorem 3.1. For d ≥ 2, ESt∗d
(n) satisfies the following recurrence:

ESt∗d
(n) = (2n + 1)ESt∗d−1

(n)− 1
2

n(n + 1)ESt∗d−2
(n). (3.1)

Proof. First, we define some sets. By the definition of the Stasheff polytope,

St∗d = {(x1, . . . , xd) ∈ Rd | −1 ≤ xi ≤ 1, xj + · · ·+ xk ≤ 1(1 ≤ i ≤ d, 1 ≤ j < k ≤ d)},

St∗d−1 × [−1, 1] = {(x1, . . . , xd) ∈ Rd | −1 ≤ xi ≤ 1, xj + · · ·+ xk ≤ 1(1 ≤ i ≤ d, 1 ≤ j < k ≤ d− 1)}.

Let
A = (St∗d−1 × [−1, 1])\St∗d.

For integers m with −n ≤ m ≤ n, let

Am =

(
d−2⋃
i=1

(nSt∗d−2 ∩ {(x1, . . . , xd−2) ∈ Rd−2 | xi + · · ·+ xd−2 = m})
)
\

n⋃
i=m+1

Ai,

∆m = {(xd−1, xd) ∈ R2 | xd−1 ≤ n − max{m, 0}, xd ≤ n, xd−1 + xd > n − max{m, 0}}.

The following equation can be easily verified:

ESt∗d−1×[−1,1](n) = (2n + 1)ESt∗d−1
(n). (3.2)
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Since St∗d ⊂ St∗d−1 × [−1, 1], by (3.2)∣∣∣nA∩ Zd
∣∣∣ = (2n + 1)ESt∗d−1

(n)− ESt∗d
(n). (3.3)

Since ∆m and {(x, y) ∈ R2 | x ≥ 0, y ≥ 0, x + y < n} are unimodularly equivalent, we
have the following equation:

|∆m ∩ Z2| = 1
2

n(n + 1). (3.4)

The first step: We prove the following equality:⊔
−n≤m≤n

Am ∩ Zd−2 = nSt∗d−2 ∩ Zd−2. (3.5)

Since
⊔
−n≤m≤n Am ∩Zd−2 ⊂ nSt∗d−2 ∩Zd−2 is clear, we will prove

⊔
−n≤m≤n Am ∩Zd−2 ⊃

nSt∗d−2 ∩ Zd−2. For x = (x1, . . . , xd−2) ∈ nSt∗d−2 ∩ Zd−2, we define the value p as follows:

p = max {xi + · · ·+ xd−2 | 1 ≤ i ≤ d − 2}.

Then, since −n ≤ p ≤ n holds, and x ∈ Ap ∩ Zd−2 follows from the definition of Am.
Therefore, we get (3.5).

From (3.4) and (3.5), we have the following equation:∣∣∣∣∣ ⊔
−n≤m≤n

(Am × ∆m) ∩ Zd

∣∣∣∣∣ = 1
2

n(n + 1)ESt∗d−2
(n). (3.6)

The second step: Next, we prove the following equality:

nA∩ Zd =
⊔

−n≤m≤n
(Am × ∆m) ∩ Zd. (3.7)

Let x = (x1, . . . , xd) ∈ nA∩ Zd. Then, xd ≤ n holds, and since (x1, . . . , xd−2) ∈ nSt∗d−2 ∩
Zd−2, that is, (x1, . . . , xd−2) ∈

⊔
−n≤m≤n Am ∩ Zd−2 holds by (3.5), there exists an integer

−n ≤ k ≤ n such that (x1, . . . , xd−2) ∈ Ak.
Now, suppose xd−1 > n − max{k, 0}. From the first step, since there exists 1 ≤ i′ ≤

d − 2 such that xi′ + · · · + xd−2 = max{k, 0}, we have xi′ + · · · + xd−1 > n, implying
x /∈ n(St∗d−1 × [−1, 1]) ∩ Zd, which contradicts x ∈ nA. Therefore, we conclude that
xd−1 ≤ n − max{k, 0}.

Next, suppose xd−1 + xd ≤ n − max{k, 0}. From (x1, . . . , xd−2) ∈ nSt∗d−2 ∩ Zd−2, we
know that xi + · · ·+ xd−2 ≤ max{k, 0} for all 1 ≤ i ≤ d− 2. Consequently, xi + · · ·+ xd ≤
n for all 1 ≤ i ≤ d, implying x ∈ nSt∗d ∩ Zd, which contradicts x ∈ nSt∗d ∩ Zd. Thus, we
deduce xd−1 + xd > n − max{k, 0}. Therefore, we have x ∈ ⊔−n≤m≤n(Am × ∆m) ∩ Zd.
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Now, let x = (x1, . . . , xd) ∈
⊔
−n≤m≤n(Am × ∆m) ∩ Zd. Then there exists −n ≤ k ≤ n

such that (x1, . . . , xd) ∈ Ak × ∆k. Since xi + · · ·+ xd−2 ≤ max{k, 0} holds for all 1 ≤ i ≤
d − 2 by (x1, . . . , xd−2) ∈ Ak, we have xi + · · ·+ xd−1 ≤ n. Additionally, since there exists
1 ≤ i′ ≤ d − 2 such that xi′ + · · ·+ xd−2 = max{k, 0} and xd−1 + xd > n − max{k, 0} by
(xd−1, xd) ∈ ∆k, we conclude xi′ + · · ·+ xd > n. Therefore, x ∈ nA∩ Zd.
The third step: From (3.3) and (3.7), we have the following equation:∣∣∣∣∣ ⊔

−n≤m≤n
(Am × ∆m) ∩ Zd

∣∣∣∣∣ = (2n + 1)ESt∗d−1
(n)− ESt∗d

(n).

From this equation and (3.6), we get (3.1).

By using Theorem 3.1, we can prove Theorem 1.3 without explicitly determining
ESt∗d

(n).

Proof of Theorem 1.3. Transform (3.1) into the following form:

ESt∗d
(n)− 1

2
nESt∗d−1

(n) =
1
2

nESt∗d−1
(n) + (n + 1)

(
ESt∗d−1

(n)− 1
2

nESt∗d−2
(n)
)

.

By the recurrence relation, we observe that if both ESt∗d−1
(n)− 1

2 nESt∗d−2
(n) and 1

2 nESt∗d−1
(n)

are magic positive, so are ESt∗d
(n)− 1

2 nESt∗d−1
(n) and ESt∗d

(n). In other words, it suffices to

show that ESt∗1
(n) and ESt∗1

(n)− 1
2 nESt∗0 (n) are magic positive. In fact, we have ESt∗0 (n) =

1, ESt∗1
(n) = 2n + 1 = (n + 1) + n and ESt∗1

(n)− 1
2 nESt∗0 (n) = (n + 1) + 1

2 n, as required.
Therefore, ESt∗d

(n) is magic positive.

The following table shows examples of the Ehrhart polynomials of the Stasheff poly-
tope in dimensions 2, 3, 4, and 5, where it can be confirmed that they are magic positive.

ESt∗2 (n) = 7
2 n2 + 7

2 n + 1

= (n + 1)2 + 3
2(n + 1)n + n2

ESt∗3 (n) = 6n3 + 9n2 + 5n + 1

= (n + 1)3 + 2(n + 1)2n + 2(n + 1)n2 + n3

ESt∗4
(n) = 41

4 n4 + 41
2 n3 + 67

4 n2 + 13
2 n + 1

= (n + 1)4 + 5
2(n + 1)3n + 13

4 (n + 1)2n2 + 5
2(n + 1)n3 + n4

ESt∗5 (n) = 35
2 n5 + 175

4 n4 + 47n3 + 107
4 n2 + 8n + 1

= (n + 1)5 + 3(n + 1)4n + 19
4 (n + 1)3n2 + 19

4 (n + 1)2n3 + 3(n + 1)n4 + n5



A new class of magic positive Ehrhart polynomials 7

Remark 3.2. From [16, Theorem 2.2], the coefficients of the Ehrhart polynomial of a zono-
tope are all integers. On the other hand, since the coefficients of the Ehrhart polynomial
of a Stasheff polytope are generally rational numbers, the Stasheff polytope is never a
zonotope. Additionally, the number of facets of the Pitman–Stanley polytope is 2d [17],
while the number of facets of the Stasheff polytope is 2d + 1

2 d(d − 1). Therefore, the
Stasheff polytope is never a Pitman–Stanley polytope.

4 The magic positivity of the Ehrhart polynomials of the
dual of the symmetric edge polytopes

In this section, we provide the background that led us to consider Theorem 1.4.
Let G be a finite simple graph on the vertex set [d] := {1, . . . , d} and the edge set

E(G). The symmetric edge polytope PG ⊂ Rd is the convex hull of the set

{±(ev − ew) ∈ Rd | vw ∈ E(G)}.

Here, the vectors ev are elements that form a lattice basis of Zd. It is known in [13] that
PG is unimodularly equivalent to a reflexive polytope. For more contexts on symmetric
edge polytopes, see e.g. [9, 12].

We begin by examining the cases of tree Td and complete graph Kd with d vertices.

Proposition 4.1. The Ehrhart polynomials of the dual of the symmetric edge polytopes of trees
and complete graphs are magic positive.

Proof. From [12, Proposition 4.6], PTd+1 and Crd are unimodularly equivalent. Therefore,
by Example 2.2, the Ehrhart polynomials of P∗

Td+1
are magic positive.

Moreover, PKd+1 and Ad are unimodularly equivalent. Therefore, by Example 2.3, the
Ehrhart polynomials of P∗

Kd+1
are magic positive.

For any connected graph G with d vertices, the following inclusions hold:

P∗
Kd

⊂ P∗
G ⊂ P∗

Td
.

From these relations and Proposition 4.1, the following question naturally arises.

Question 4.2. Are the Ehrhart polynomials of the dual polytopes of symmetric edge polytopes of
any connected graphs magic positive?

We expected this question to hold, but through computational experiments, we found
several counterexamples.



8 M. Konoike

Example 4.3. For instance, EP∗
K3,7

(n) is not magic positive where Ka,b denotes the com-

plete bipartite graph. Specifically, EP∗
K3,7

(n) is computed as follows:

EP∗
K3,7

(n) =
128

3
n9 + 192n8 + 448n7 + 672n6 +

3528
5

n5 + 532n4 +
820

3
n3 + 86n2 +

72
5

n + 1

= (n + 1)9 +
27
5
(n + 1)8n +

34
5
(n + 1)7n2 − 142

15
(n + 1)6n3 +

88
5
(n + 1)5n4

+
88
5
(n + 1)4n5 − 142

15
(n + 1)3n6 +

34
5
(n + 1)2n7 +

27
5
(n + 1)n8 + n9.

The following table marks ◦ when EP∗
Ka,b

(n) is magic positive and × when it is not.

2 3 4 5 6 7 8 9 10 11
2 ◦ ◦ ◦ ◦ ◦ ◦ ◦ × × ×
3 ◦ ◦ ◦ ◦ ◦ × × × ×
4 ◦ ◦ ◦ ◦ × × × ×
5 ◦ ◦ ◦ × × × ×
6 ◦ ◦ × × × ×
7 ◦ × × × ×
8 ◦ × × ×
9 × × ×

10 × ×
11 ×

Except for the case of K2,8, when the number of vertices in a graph exceeds 10, the
Ehrhart polynomial of a dual of the symmetric edge polytopes tends not to be magic
positive. However, the h∗-polynomial of a dual of the symmetric edge polytope whose
Ehrhart polynomial in the above table is not magic is real-rooted.

Example 4.4. For example, EP∗
K10\{e}

(n) is not magic positive where e is an edge of K10.

EP∗
K10\{e}

(n) is calculated as follows:

EP∗
K10\{e}

(n) =
92
9

n9 + 46n8 +
364
3

n7 + 210n6 +
3766
15

n5 + 210n4 +
1084

9
n3 + 45n2 +

149
15

n + 1

= (n + 1)9 +
14
15

(n + 1)8n +
23
15

(n + 1)7n2 − 19
45

(n + 1)6n3 +
31
15

(n + 1)5n4

+
31
15

(n + 1)4n5 − 19
45

(n + 1)3n6 +
23
15

(n + 1)2n7 +
14
15

(n + 1)n8 + n9.

Examples 4.3 and 4.4 demonstrate that there exists an Ehrhart polynomial of the dual
of the symmetric edge polytope of a graph close to a complete graph that is not magic
positive. So, what happens to the magic positivity of the Ehrhart polynomial of the dual
of the symmetric edge polytope for graphs that are close to trees?
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Question 4.5. Are the Ehrhart polynomials of dual polytopes of symmetric edge polytopes of
cycles magic positive?

We computed the Ehrhart polynomial of the dual of the symmetric edge polytopes
of cycles and partially resolved its magic positivity.

Proposition 4.6. Let Cd denote a cycle of length d ≥ 2. Then we have

EP∗
Cd+1

(n) =
⌊ d

2 ⌋

∑
i=0

(−1)i
(
(d + 1 − 2i)n + (d − i)

d

)(
d + 1

i

)
. (4.1)

Proof. By the definition of symmetric edge polytope, PCd+1 is the convex hull of {±(ei −
ei+1) | 1 ≤ i ≤ d − 1} ∪ {±(ed − e1)}. Since PCd+1 and the convex hull of {±ei | 1 ≤
i ≤ d − 1} ∪ {±(e1 + · · · + ed)} are unimodularly equivalent, we obtain the following
equality:

P∗
Cd+1

= {(x1, . . . , xd) ∈ Rd | −1 ≤ xi ≤ 1,−1 ≤ x1 + · · ·+ xd ≤ 1(1 ≤ i ≤ d − 1)}.

Using [5, Proposition 2.2 and Theorem 2.5], we obtain

EP∗
Cd+1

(n) =
d

∑
i=0

(−1)i
d

∑
v=0

(
(d + 1 − v)n + (d − i)

d

)
ρc,i(v)

where c = (2, . . . , 2) ∈ Zd+1
≥0 and

ρc,i(v) := #

{
I ∈

(
[d + 1]

i

)
: ∑

j∈I
cj = v

}
=

{
(d+1

i ) if v = 2i,
0 otherwise.

Therefore, we have (4.1).

By using Proposition 4.6, we can prove Theorem 1.4.
The following table shows examples of the Ehrhart polynomials of the dual of the

symmetric edge polytopes of cycles in dimensions 2, 3, 4, and 5, where it can be con-
firmed that they are magic positive.

EP∗
C3
(n) = 3n2 + 3n + 1

= (n + 1)2 + (n + 1)n + n2

EP∗
C4
(n) = 16

3 n3 + 8n2 + 14
3 n + 1

= (n + 1)3 + 5
3(n + 1)2n + 5

3(n + 1)n2 + n3

EP∗
C5
(n) = 115

12 n4 + 115
6 n3 + 185

12 n2 + 35
6 n + 1

= (n + 1)4 + 11
6 (n + 1)3n + 47

12(n + 1)2n2 + 11
6 (n + 1)n3 + n4

EP∗
C6
(n) = 88

5 n5 + 44n4 + 46n3 + 25n2 + 37
5 n + 1

= (n + 1)5 + 12
5 (n + 1)4n + 27

5 (n + 1)3n2 + 27
5 (n + 1)2n3 + 12

5 (n + 1)n4 + n5
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By computational experiments, EC∗
d
(n) is magic positive for all d ≤ 500.

Remark 4.7. By a similar argument to Remark 3.2, we see that P∗
Cd

is never a zonotope.
Additionally, since the number of facets of P∗

Cd
is 2d + 2, we see that it is also never a

Pitman–Stanley polytope.
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