Séminaire Lotharingien de Combinatoire **93B** (2025) Article #149, 12 pp.

q-deformation of graphic arrangements

Tongyu Nian^{*1}, Shuhei Tsujie^{†2}, Ryo Uchiumi^{‡1}, and Masahiko Yoshinaga^{§1}

¹Department of Mathematics, Osaka University, Toyonaka, Osaka 560-0043, Japan. ²Department of Mathematics, Hokkaido University of Education, Asahikawa, Hokkaido 070-8621, Japan.

Abstract. We first observe a mysterious similarity between the braid arrangement and the arrangement of all hyperplanes in a vector space over the finite field \mathbb{F}_q . These two arrangements are defined by the determinants of the Vandermonde and the Moore matrix, respectively. These two matrices are transformed to each other by replacing a natural number *n* with q^n (*q*-deformation).

In this paper, we introduce the notion of ""q-deformation of graphic arrangements" as certain subarrangements of the arrangement of all hyperplanes over \mathbb{F}_q . This new class of arrangements extends the relationship between the Vandermonde and Moore matrices to graphic arrangements. We show that many invariants of the "q-deformation" behave as "q-deformation" of invariants of the graphic arrangements. Such invariants include the characteristic (chromatic) polynomial, the Stirling number of the second kind, freeness, exponents, basis of logarithmic vector fields, etc.

Keywords: Graphic arrangements, chromatic polynomial, *q*-analogue, freeness, finite fields

1 Introduction

1.1 Mysterious similarities

A central arrangement \mathcal{A} is a finite collection of linear hyperplanes in a finite dimensional vector space. Define the **intersection lattice** $L(\mathcal{A})$ and the **characteristic polynomial** $\chi(\mathcal{A}, t)$ by

$$L(\mathcal{A}) \coloneqq \left\{ \bigcap_{H \in \mathcal{B}} H \mid \mathcal{B} \subseteq \mathcal{A} \right\}, \qquad \chi(\mathcal{A}, t) \coloneqq \sum_{X \in L(\mathcal{A})} \mu(X) t^{\dim X},$$

^{*}u487971i@ecs.osaka-u.ac.jp.

⁺tsujie.shuhei@a.hokkyodai.ac.jp. S. T. was supported by JSPS KAKENHI, Grant Number JP22K13885.

[‡]uchiumi.ryou.1xu@ecs.osaka-u.ac.jp. R. U. was supported by JST SPRING, Grant Number JP-MJSP2138.

[§]yoshinaga@math.sci.osaka-u.ac.jp. M. Y. was partially supported by JSPS KAKENHI, Grant Number JP23H00081.

where L(A) is ordered by the reverse inclusion and μ denotes the **Möbius function** on the lattice L(A).

A typical example of an arrangement is the **braid arrangement** \mathcal{B}_{ℓ} in \mathbb{R}^{ℓ} whose defining polynomial is the **Vandermonde determinant**, i.e.,

$$Q(\mathcal{B}_{\ell}) = \prod_{1 \le i < j \le \ell} (x_j - x_i) = \begin{vmatrix} 1 & x_1 & x_1^2 & \dots & x_1^{\ell-1} \\ 1 & x_2 & x_2^2 & \dots & x_2^{\ell-1} \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & x_\ell & x_\ell^2 & \dots & x_\ell^{\ell-1} \end{vmatrix}.$$

The characteristic polynomial of the braid arrangement \mathcal{B}_{ℓ} is

$$\chi(\mathcal{B}_{\ell},t)=t(t-1)(t-2)\cdots(t-\ell+1).$$

There are mysterious similarities between the braid arrangements and the arrangements consisting of all hyperplanes in vector spaces over finite fields. Let *q* be a prime power and \mathbb{F}_q the finite field of order *q*. Define the arrangement $\mathcal{A}_{all}(\mathbb{F}_q^{\ell})$ as the set of all hyperplanes in \mathbb{F}_q^{ℓ} . Its defining polynomial is the determinant of **Moore matrix**, i.e.,

$$Q\left(\mathcal{A}_{\text{all}}(\mathbb{F}_{q}^{\ell})\right) = \prod_{i=1}^{\ell} \prod_{c_{1},\dots,c_{i-1}\in\mathbb{F}_{q}} (c_{1}x_{1}+\dots+c_{i-1}x_{i-1}+x_{i}) = \begin{vmatrix} x_{1} & x_{1}^{q} & x_{1}^{q^{2}} & \dots & x_{1}^{q^{\ell-1}} \\ x_{2} & x_{2}^{q} & x_{2}^{q^{2}} & \dots & x_{2}^{q^{\ell-1}} \\ \vdots & \vdots & \vdots & \vdots \\ x_{\ell} & x_{\ell}^{q} & x_{\ell}^{q^{2}} & \dots & x_{\ell}^{q^{\ell-1}} \end{vmatrix}$$

The characteristic polynomial of $\mathcal{A}_{all}(\mathbb{F}_q^{\ell})$ is

$$\chi\left(\mathcal{A}_{\mathrm{all}}(\mathbb{F}_q^\ell), t\right) = (t-1)(t-q)(t-q^2)\cdots(t-q^{\ell-1}).$$

By formally replacing q^k in the expressions of $Q\left(\mathcal{A}_{all}(\mathbb{F}_q^\ell)\right)$ and $\chi\left(\mathcal{A}_{all}(\mathbb{F}_q^\ell), t\right)$ with k, we obtain the expressions for $Q(\mathcal{B}_\ell)$ and $\chi(\mathcal{B}_\ell, t)$. A similar phenomenon can be observed in the context of freeness of arrangements. An arrangement \mathcal{A} is said to be **free** if the module of logarithmic polynomial vector fields $D(\mathcal{A})$ is a free module over the polynomial ring (See [8] for details). Both of $Q(\mathcal{B}_\ell)$ and $\mathcal{A}_{all}(\mathbb{F}_q^\ell)$ are free with bases

$$\sum_{i=1}^{\ell} x_i^k \partial_i \left(0 \le k \le \ell - 1 \right) \text{ for } D(\mathcal{B}_{\ell}) \text{ and } \sum_{i=1}^{\ell} x_i^{q^k} \partial_i \left(0 \le k \le \ell - 1 \right) \text{ for } D\left(\mathcal{A}_{\text{all}}(\mathbb{F}_q^{\ell}) \right),$$

where ∂_i denotes $\frac{\partial}{\partial x_i}$ for each $i \in \{1, \dots, \ell\}$ (See [8, Example 4.22 and 4.24]).

Moreover, there are mysterious similarities for subarrangements. Let *G* be a simple graph on $[\ell] = \{1, ..., \ell\}$. Define the **graphic arrangement** \mathcal{A}_G in \mathbb{R}^{ℓ} by

$$\mathcal{A}_G \coloneqq \left\{ \left\{ x_i - x_j = 0 \right\} \mid \{i, j\} \in E_G \right\}.$$

Note that every subarrangement of \mathcal{B}_{ℓ} is of the form \mathcal{A}_{G} and it is well known that the chromatic polynomial $\chi(G, t)$ coincides with the characteristic polynomial $\chi(\mathcal{A}_{G}, t)$. The following proposition for the chromatic polynomial is trivial by definition.

Proposition 1.1. Suppose $\chi(G,k) = 0$ for some $k \in \mathbb{Z}_{>0}$. Then $\chi(G,j) = 0$ for $0 \le j \le k$.

There is a *q*-version of Proposition 1.1.

Proposition 1.2 ([12, Lemma 7]). Let \mathcal{A} be an arrangement in \mathbb{F}_q^{ℓ} . If $\chi(\mathcal{A}, q^k) = 0$ for some $k \in \mathbb{Z}_{\geq 0}$, then $\chi(\mathcal{A}, q^j) = 0$ for any $0 \leq j \leq k$.

Proof. Let $\mathcal{A} \otimes \mathbb{F}_q^k$ denote the subspace arrangement in $(\mathbb{F}_q^k)^\ell$ defined by

$$\mathcal{A} \otimes \mathbb{F}_q^k \coloneqq \left\{ \left. H \otimes_{\mathbb{F}_q} \mathbb{F}_q^k \right| H \in \mathcal{A} \right\}$$

Then the intersection lattices $L(\mathcal{A})$ and $L(\mathcal{A} \otimes \mathbb{F}_q^k) = \left\{ X \otimes_{\mathbb{F}_q} \mathbb{F}_q^k \mid X \in L(\mathcal{A}) \right\}$ are naturally isomorphic. By [3, Proposition 3.1],

$$\chi(\mathcal{A},q^k) = \chi(\mathcal{A} \otimes \mathbb{F}_q^k,q^k) = \#\left((\mathbb{F}_q^k)^\ell \setminus \bigcup_{H \in \mathcal{A}} H \otimes_{\mathbb{F}_q} \mathbb{F}_q^k\right).$$

Thus, if $\chi(\mathcal{A}, q^k) = 0$ and $0 \le j \le k$, then $\chi(\mathcal{A}, q^j) = 0$.

We define the falling factorial $t^{\underline{i}}$ for each $i \in \mathbb{Z}_{>0}$ by $t^{\underline{i}} \coloneqq t(t-1)\cdots(t-i+1)$.

Proposition 1.3 ([10, Theorem 15]). Suppose $\chi(G, t) = \sum_{i=1}^{\ell} c_i t^{\underline{i}}$. Then c_i coincides with the number of stable partitions of G into i blocks, where a stable partition of G is a set partition of the vertex set such that no edge connects vertices within the same block. In other words, c_i coincides with the number of i-dimensional subspaces in $L(\mathcal{B}_{\ell})$ that are not contained in any hyperplanes in \mathcal{A}_G .

Note that the falling factorial $t^{\underline{i}}$ coincides with the characteristic polynomial $\chi(\mathcal{B}_{\ell}, t)$. Define the polynomial $t_{q}^{\underline{i}}$ by

$$t_q^{\underline{\iota}} \coloneqq \chi(\mathcal{A}_{\mathrm{all}}(\mathbb{F}_q^i), t) = (t-1)(t-q)\cdots(t-q^{i-1}).$$

The following is a *q*-version of Proposition 1.3.

Proposition 1.4. Let \mathcal{A} be an arrangement in \mathbb{F}_q^{ℓ} and suppose $\chi(\mathcal{A}, t) = \sum_{i=0}^{\ell} c_i t_q^{\underline{i}}$. Then c_i is the number of *i*-dimensional subspaces in \mathbb{F}_q^{ℓ} that are not contained in any hyperplanes in \mathcal{A} .

Proof. We proceed by double induction on ℓ and $|\mathcal{A}_{all}(\mathbb{F}_q^{\ell}) \setminus \mathcal{A}|$. When $\ell = 1$,

$$t = (t - 1) + 1 = t\frac{1}{q} + t\frac{0}{q}$$
 (for the empty arrangement),
$$t - 1 = t\frac{1}{q}$$
 (for the single-point arrangement).

Therefore the claim is true.

Suppose that $\ell \geq 2$. Since $\chi(\mathcal{A}_{all}(\mathbb{F}_q^{\ell}), t) = t_{\overline{q}}^{\ell}$, the assertion is true for $\mathcal{A} = \mathcal{A}_{all}(\mathbb{F}_q^{\ell})$. Assume that $\mathcal{A} \subseteq \mathcal{A}_{all}(\mathbb{F}_q^{\ell})$ and $H \in \mathcal{A}$. Then, by the deletion-restriction formula [8, Corollary 2.57], we have

$$\chi(\mathcal{A}',t) = \chi(\mathcal{A},t) + \chi(\mathcal{A}^{H},t) = \sum_{i=0}^{\ell} c_{i} t_{q}^{i} + \sum_{i=0}^{\ell-1} d_{i} t_{q}^{i} = t_{q}^{\ell} + \sum_{i=0}^{\ell-1} (c_{i} + d_{i}) t_{q}^{i-1}.$$

By the induction hypothesis

$$c_{i} = \# \left\{ X \in L(\mathcal{A}_{all}(\mathbb{F}_{q}^{\ell})) \mid \dim X = i, X \not\subseteq K \text{ for any } K \in \mathcal{A} \right\},\$$

$$d_{i} = \# \left\{ X \in L(\mathcal{A}_{all}(H)) \mid \dim X = i, X \not\subseteq H \cap K \text{ for any } K \in \mathcal{A} \setminus \{H\} \right\}.$$

Since

$$\left\{ \begin{array}{l} X \in L(\mathcal{A}_{\mathrm{all}}(\mathbb{F}_q^{\ell})) \mid \dim X = i, X \not\subseteq K \text{ for any } K \in \mathcal{A} \setminus \{H\} \end{array} \right\}$$
$$= \left\{ \begin{array}{l} X \in L(\mathcal{A}_{\mathrm{all}}(\mathbb{F}_q^{\ell})) \mid \dim X = i, X \not\subseteq K \text{ for any } K \in \mathcal{A} \end{array} \right\}$$
$$\sqcup \left\{ X \in L(\mathcal{A}_{\mathrm{all}}(H)) \mid \dim X = i, X \not\subseteq H \cap K \text{ for any } K \in \mathcal{A} \setminus \{H\} \right\},$$

the claim follows.

Example 1.5. Consider the empty arrangement in \mathbb{F}_q^{ℓ} . Then we have

$$t^{\ell} = \sum_{i=0}^{\ell} \binom{\ell}{i}_{q} t^{\underline{i}}_{q},$$

where

$$\binom{\ell}{i}_q = \frac{[\ell]_q [\ell-1]_q \cdots [\ell-i+1]_q}{[i]_q [i-1]_q \cdots [1]_q}$$

is the *q*-binomial coefficient and $[k]_q = \frac{q^k - 1}{q - 1}$ denotes the *q*-integer.

Example 1.6. Consider the Boolean arrangement in $\mathbb{F}_{q'}^{\ell}$ which consists of all coordinate hyperplanes. Then we have

$$(t-1)^{\ell} = \sum_{i=0}^{\ell} (q-1)^{\ell-i} S_q(\ell,i) t_q^{\underline{i}},$$

where $S_q(\ell, i)$ denotes the *q*-Stirling number of the second kind defined by the following recurrence formula.

$$S_q(\ell,i) = S_q(\ell-1,i-1) + [i]_q S_q(\ell-1,i), \qquad S_q(0,i) = \delta_{0,i}.$$

This is a *q*-version of the following well-known formula for the Stirling number of the second kind.

$$t^{\ell} = \sum_{i=0}^{\ell} S(\ell, i) t^{\underline{i}}, \qquad S(\ell, i) = S(\ell - 1, i - 1) + iS(\ell - 1, i).$$

1.2 *q*-deformation of graphic arrangements

We will focus on specific subarrangements of $\mathcal{A}_{all}(\mathbb{F}_q^{\ell})$ that arise from simple graphs. Note that the braid arrangement \mathcal{B}_{ℓ} corresponds to the graphic arrangement associated with the complete graph K_{ℓ} . Thus, it seems natural to assign K_{ℓ} to $\mathcal{A}_{all}(\mathbb{F}_q^{\ell})$. Furthermore, it seems natural to assign every clique of *G* to to the set of all hyperplanes using the coordinates corresponding to the vertices in the clique.

Definition 1.7. We define a *q*-deformation of graphic arrangement \mathcal{A}_G^q in \mathbb{F}_q^ℓ as follows.

$$\mathcal{A}_G^q \coloneqq \bigcup_{\{i_1,\ldots,i_r\}} \left\{ \left\{ a_{i_1} x_{i_1} + \cdots + a_{i_r} x_{i_r} = 0 \right\} \mid (a_{i_1},\ldots,a_{i_r}) \in \mathbb{F}_q^r \setminus \{0\} \right\},$$

where $\{i_1, \ldots, i_r\}$ runs over all cliques of *G*.

Besides this definition, Athanasiadis [1], and later Postnikov and Stanley [9], also defined deformations of Coxeter arrangements as a generalization of generic arrangements, Linial arrangements, Shi arrangements, Catalan arrangements, etc. Their definition involves copies of translated hyperplanes, whereas the q-deformation focuses on the coefficients of variables and the choice of linear polynomials.

It is expected that \mathcal{A}_G^q has a lot of properties similar to the graphic arrangement \mathcal{A}_G . The organization of this paper is as follows. In Section 2, we will show that the characteristic polynomial of \mathcal{A}_G^q determines the chromatic polynomial *G* when *q* is large enough (Theorem 2.1 and Corollary 2.2) and we will describe a relationship between the characteristic polynomial and the numbers of stable partitions of *G* (Theorem 2.4). In Section 3, we will show that \mathcal{A}_G^q is free if and only if *G* is chordal as in the case of graphic arrangements (Theorem 3.2) and in Section 4, we construct an explicit basis for $D(\mathcal{A}_G^q)$ for a chordal graph *G* (Theorem 4.2).

2 Characteristic polynomial

Theorem 2.1. *For any* $k \in \mathbb{Z}_{\geq 0}$ *,*

$$\frac{\chi(\mathcal{A}_G^q, q^k)}{(q-1)^\ell} \equiv \chi(G, k) \pmod{q-1}.$$

Proof. Let $V = \mathbb{F}_q^k$. Define

$$\underline{\chi}_{G}^{q}(V) \coloneqq \left\{ \begin{array}{c} (v_{1}, \dots, v_{\ell}) \in V^{\ell} \\ \mathbf{v}_{i_{1}}, \dots, \mathbf{v}_{i_{p}} \end{array} \right\} \text{ is linearly independent} \\ \text{over } \mathbb{F}_{q} \text{ if } \{i_{1}, \dots, i_{p}\} \text{ is a clique of } G. \end{array} \right\}$$

Note that $\chi(\mathcal{A}_G^q, q^k) = #\underline{\chi}_G^q(V)$. The group $(\mathbb{F}_q^{\times})^{\ell}$ acts on $\underline{\chi}_G^q(V)$ by

$$(a_1,\ldots,a_\ell)\cdot(v_1,\ldots,v_\ell)\coloneqq(a_1v_1\ldots,a_\ell v_\ell)$$

Therefore $\# \underline{\chi}_{G}^{q}(\mathbb{P}(V)) = \frac{\chi(\mathcal{A}_{G}^{q}, q^{k})}{(q-1)^{\ell}}$, where

$$\underline{\chi}_{G}^{q}(\mathbb{P}(V)) \coloneqq \left\{ \left. (\overline{v}_{1}, \dots, \overline{v}_{\ell}) \in \mathbb{P}(V)^{\ell} \right| \left. \begin{array}{c} \{v_{i_{1}}, \dots, v_{i_{p}}\} \text{ is linearly independent} \\ \text{over } \mathbb{F}_{q} \text{ if } \{i_{1}, \dots, i_{p}\} \text{ is a clique of } G. \end{array} \right\}$$

Let
$$T := (\mathbb{F}_q^{\times})^k / \mathbb{F}_q^{\times}(1, 1, \dots, 1)$$
. Let $x = \begin{pmatrix} x_1 \\ \vdots \\ x_k \end{pmatrix} \neq 0$. Then *T* acts on $\mathbb{P}(V)$ by
 $\overline{(a_1, \dots, a_k)} \cdot \overline{x} = \overline{\begin{pmatrix} a_1 x_1 \\ \vdots \\ a_k x_k \end{pmatrix}}$.

Let $v(x) := \# \{ i \in [k] \mid x_i \neq 0 \}$. Then it is easily seen that

$$\#(T \cdot \overline{x}) = (q-1)^{\nu(x)-1}$$

In particular, $\overline{x} \in \mathbb{P}(V)$ is a fixed point if and only if $\overline{x} = \overline{e}_i$ for some *i*. Consider the diagonal *T*-action on $\mathbb{P}(V)^{\ell}$. This induces a *T*-action on $\underline{\chi}_G^q(\mathbb{P}(V))$. The fixed point set is

$$\underline{\chi}_{G}^{q}(\mathbb{P}(V))^{T} = \begin{cases} (\overline{e}_{s_{1}}, \dots, \overline{e}_{s_{\ell}}) & \{e_{s_{i_{1}}}, \dots, e_{s_{i_{p}}}\} \text{ is linearly independent} \\ \text{over } \mathbb{F}_{q} \text{ if } \{i_{1}, \dots, i_{p}\} \text{ is a clique of } G. \end{cases}$$

Note that $\{e_{s_{i_1}}, \ldots, e_{s_{i_p}}\}$ is linearly independent if and only if they are mutually different. Therefore we have

$$#\underline{\chi}_{G}^{q}(\mathbb{P}(V))^{T} = \chi(G,k).$$

Any other orbits have cardinalities divisible by q - 1. This completes the proof.

Corollary 2.2. If $q > \ell^{\ell}$, then $\chi(\mathcal{A}_{G}^{q}, t)$ determines $\chi(G, t)$.

Proof. Note that $\chi(G,t)$ is determined by the values $\chi(G,1), \chi(G,2), \ldots, \chi(G,\ell)$. For $k \in [\ell]$, we have $\chi(G,k) \leq k^{\ell} < q-1$. Hence $\chi(G,k)$ is the remainder of $\frac{\chi(\mathcal{A}_{G}^{q},q^{k})}{(q-1)^{\ell}}$ divided by q-1.

Remark 2.3. There exists a pair of graphs (G, H) depicted in the following picture such that $\chi(\mathcal{A}_G^2, t) = \chi(\mathcal{A}_H^2, t)$ but $\chi(G, t) \neq \chi(H, t)$.

The characteristic polynomials are as follows.

$$\begin{split} \chi(\mathcal{A}_G^2,t) &= \chi(\mathcal{A}_H^2,t) = t^7 - 30t^6 + 376t^5 - 2545t^4 + 9934t^3 - 21880t^2 + 24384t - 10240, \\ \chi(G,t) &= t^7 - 14t^6 + 83t^5 - 265t^4 + 474t^3 - 441t^2 + 162t, \\ \chi(H,t) &= t^7 - 14t^6 + 83t^5 - 264t^4 + 468t^3 - 430t^2 + 156t. \end{split}$$

The characteristic polynomial $\chi(\mathcal{A}_G^q, t)$ can also determine the numbers of stable partitions of *G* by the following theorem.

Theorem 2.4. Let $\chi(\mathcal{A}_G^q, t) = \sum_{i=0}^{\ell} c_i t_q^i$. Then $c_i/(q-1)^{\ell-i}$ is a non-negative integer and congruent to the number of stable partitions of *G* into *i* blocks modulo q-1.

Proof. By Proposition 1.4, the coefficient c_i is equal to the number of subspaces that are not contained in any hyperplanes in \mathcal{A}_G^q . Since every *i*-dimensional subspace in \mathbb{F}_q^ℓ corresponds to a matrix consisting of ℓ columns with rank *i* in reduced row echelon form, c_i coincides with the number of reduced row echelon form $(v_1, \ldots, v_\ell) \in V^\ell$ such that $\{v_{i_1}, \ldots, v_{i_p}\}$ is linearly independent over \mathbb{F}_q if $\{i_1, \ldots, i_p\}$ is a clique of *G*, where $V = \mathbb{F}_q^i$. Therefore $c_i/(q-1)^{\ell-i}$ equals the number of $(\overline{v}_1, \ldots, \overline{v}_\ell) \in \mathbb{P}(V)^\ell$ such that $\{v_{i_1}, \ldots, v_{i_p}\}$ is linearly independent over \mathbb{F}_q if $\{i_1, \ldots, i_p\}$ is a clique of *G*.

Using the same group action in the proof of Theorem 2.1, we can show that c_i is congruent to the number of reduced row echelon form $(e_{s_1}, \ldots, e_{s_\ell})$ such that $\{e_{s_{i_1}}, \ldots, e_{s_{i_p}}\}$ is linearly independent over \mathbb{F}_q if $\{i_1, \ldots, i_p\}$ is a clique of G, modulo q - 1. From such a matrix $(e_{s_{i_1}}, \ldots, e_{s_{i_\ell}})$, we can construct a stable partition of G consisting of i blocks $\{j \in [\ell] \mid s_j = k\}$ $(1 \le k \le i)$.

Remark 2.5. Some of properties of the chromatic polynomials for finite graphs have *q*-analogues. For example, let us denote by $G + K_m$ the join of a graph *G* and the complete graph K_m . Then it is easily seen that $\chi(G + K_m, t) = t(t - 1) \cdots (t - m + 1)\chi(G, t - m)$. As a *q*-analogue of this formula, we can prove

$$\chi(\mathcal{A}_{G+K_m}^q,t)=(t-1)(t-q)\cdots(t-q^{m-1})q^{m\ell}\chi(\mathcal{A}_G^q,q^{-m}t).$$

3 Freeness

An arrangement A is **supersolvable** if and only if there exists a filtration

$$\varnothing = \mathcal{A}_0 \subseteq \mathcal{A}_1 \subseteq \mathcal{A}_2 \subseteq \cdots \subseteq \mathcal{A}_\ell = \mathcal{A}$$

such that, for each $i \in [\ell]$, rank $A_i = i$ and for any distinct hyperplanes $H, H' \in A_i \setminus A_{i-1}$ there exists H'' such that $H \cap H' \subseteq H''$ [2, Theorem 4.3]. Every supersolvable arrangement is inductively free by [7, Theorem 4.2]. When A is supersolvable with the filtration above, the characteristic polynomial decomposes as

$$\chi(\mathcal{A},t) = \prod_{i=1}^{\ell} (t - |\mathcal{A}_i \setminus \mathcal{A}_{i-1}|).$$

A vertex v of a simple graph G is called **simplicial** if the neighborhood $N_G(v) := \{u \in V_G \mid \{u, v\} \in E_G\}$ is a clique. An ordering (v_1, \ldots, v_ℓ) of the vertices of G is a **perfect elimination ordering** if v_i is simplicial in the subgraph of G induced by $\{v_1, \ldots, v_i\}$ for each $i \in [\ell]$.

Theorem 3.1 (Stanley (See [5, Theorem 3.3]), Dirac [4], Fulkerson–Gross [6]). *The following are equivalent.*

- (1) *G* has a perfect elimination ordering.
- (2) \mathcal{A}_G is supersolvable.
- (3) \mathcal{A}_G is free.
- (4) G is chordal.

Moreover, when (v_1, \ldots, v_ℓ) *is a perfect elimination ordering of G*

$$\chi(\mathcal{A}_G,t) = \prod_{i=1}^{\ell} (t - |N_{G_i}(v_i)|),$$

where $G_i := G[\{v_1, \ldots, v_i\}]$ and $N_{G_i}(v_i)$ is the set of adjacent vertices of v_i in G_i .

Theorem 3.2. The following conditions are equivalent to the conditions in Theorem 3.1.

- (5) \mathcal{A}_{G}^{q} is supersolvable.
- (6) \mathcal{A}_G^q is free.

Moreover, when (v_1, \ldots, v_ℓ) is a perfect elimination ordering of G

$$\chi(\mathcal{A}_{G}^{q},t)=\prod_{i=1}^{\ell}\left(t-q^{|N_{G_{i}}(v_{i})|}\right),$$

where $G_i := G[\{v_1, \ldots, v_i\}]$ and $N_{G_i}(v_i)$ is the set of adjacent vertices of v_i in G_i .

Proof. The proof is very similar to the proof of Theorem 3.1.

To show $(1) \Rightarrow (5)$, let (v_1, \ldots, v_ℓ) be a perfect elimination ordering and (x_1, \ldots, x_ℓ) the corresponding coordinates. Let \mathcal{A}_i be the subarrangement of \mathcal{A}_G^q consisting hyperplanes whose defining linear form contains x_1, \ldots, x_i . Then the filtration

$$\mathcal{A}_1 \subseteq \mathcal{A}_2 \subseteq \cdots \subseteq \mathcal{A}_\ell = \mathcal{A}_G^q$$

guarantees that \mathcal{A}_{G}^{q} is supersolvable and $|\mathcal{A}_{i} \setminus \mathcal{A}_{i-1}| = q^{|N_{G_{i}}(v_{i})|}$.

The implication $(5) \Rightarrow (6)$ follows since every supersolvable arrangement is (inductively) free (Jambu–Terao). To prove $(6) \Rightarrow (4)$ It suffices to show that $\chi(\mathcal{A}_{C_{\ell}}^{q}, t)$ does not factor into the product of linear forms over \mathbb{Z} when $\ell \ge 4$ by Terao's factorization theorem. Since $\chi(\mathcal{A}_{C_{\ell}}^{q}, t) = (t-q)^{\ell} + (-1)^{\ell}(q-1)^{\ell-1}(t-q)$ by the following Lemma 3.3, we have

$$\chi(\mathcal{A}_{C_{\ell}},t) = (q-1)^{\ell}(x^{\ell} + (-1)^{\ell}) = (q-1)^{\ell}x(x^{\ell-1} + (-1)^{\ell}),$$

where $x = \frac{t-q}{q-1}$. Since $x^{\ell} + (-1)^{\ell}$ has an imaginary root, $\chi(\mathcal{A}_{C_{\ell}}^{q}, t)$ does not factor over \mathbb{Z} .

There is a well-known explicit formula for the chromatic polynomial of a cycle graph for $\ell \geq 3$.

$$\chi(\mathcal{A}_{C_{\ell}}, t) = (t-1)^{\ell} + (-1)^{\ell}(t-1).$$

The following lemma is a *q*-version of this formula.

Lemma 3.3. Let $\ell \geq 4$. Then

$$\chi(\mathcal{A}^{q}_{C_{\ell}},t) = (t-q)^{\ell} + (-1)^{\ell}(q-1)^{\ell-1}(t-q).$$

Proof. First consider the arrangement \mathcal{B} in \mathbb{F}_q^3 consisting of the following hyperplanes.

$$x_1 = ax_2, \ x_2 = ax_3, \ x_3 = ax_1 \quad (a \in \mathbb{F}_q).$$

Then \mathcal{B} is supersolvable with exponents (1, q, 2q - 1). Using the deletion-restriction theorem [8, Corollary 2.57] q - 1 times, we have

$$\begin{split} \chi(\mathcal{A}^{q}_{C_{4}},t) &= \chi(\mathcal{A}^{q}_{P_{4}},t) - (q-1)\chi(\mathcal{B},t) \\ &= (t-1)(t-q)^{3} - (q-1)(t-1)(t-q)(t-2q+1) \\ &= (t-1)(t-q)\left((t-q)^{2} - (q-1)(t-2q+1)\right) \\ &= (t-1)(t-q)\left((t-q)^{2} - (q-1)(t-q) + (q-1)^{2}\right) \\ &= (t-1)(t-q)\frac{(t-q)^{3} + (q-1)^{3}}{(t-q) + (q-1)} \\ &= (t-q)^{4} + (-1)^{4}(q-1)^{3}(t-1). \end{split}$$

Now suppose that $\ell \ge 5$. Using the deletion-restriction theorem q - 1 times, we have

$$\begin{split} \chi(\mathcal{A}^{q}_{C_{\ell}},t) &= \chi(\mathcal{A}^{q}_{P_{\ell}}) - (q-1)\chi(\mathcal{A}^{q}_{C_{\ell-1}},t) \\ &= (t-1)(t-q)^{\ell-1} - (q-1)(t-q)^{\ell-1} - (-1)^{\ell-1}(q-1)^{\ell-1}(t-q) \\ &= (t-q)^{\ell} + (-1)^{\ell}(q-1)^{\ell-1}(t-q). \end{split}$$

4 Basis construction

Let *G* be a chordal graph with a perfect elimination ordering (v_1, \ldots, v_ℓ) and (x_1, \ldots, x_ℓ) the corresponding coordinates. Define the sets $C_{\geq k}$ and $E_{< k}$ by

 $C_{\geq k} \coloneqq \{k\} \cup \{ i \in [\ell] | \text{there exists a path } v_k v_{j_1} \cdots v_{j_n} v_i \text{ such that } k < j_1 < \cdots < j_n < i \},$ $E_{<k} \coloneqq \{ j \in [\ell] \mid j < k \text{ and } \{v_j, v_k\} \in E_G \}.$

Let $\Delta(x_1, \ldots, x_k)$ denote the Vandermonde determinant:

$$\Delta(x_1,\ldots,x_k) \coloneqq \begin{vmatrix} 1 & x_1 & x_1^2 & \ldots & x_1^{k-1} \\ 1 & x_2 & x_2^2 & \ldots & x_k^{k-1} \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & x_k & x_k^2 & \ldots & x_k^{k-1} \end{vmatrix} = \prod_{1 \le i < j \le k} (x_j - x_i).$$

When $E_{<k} = \{j_1, ..., j_m\}$ with $j_1 < \cdots < j_m$,

$$\Delta(E_{< k}) \coloneqq \Delta(x_{j_1}, \dots, x_{j_m}) \quad \text{and} \quad \Delta(E_{< k}, x_i) \coloneqq \Delta(x_{j_1}, \dots, x_{j_m}, x_i).$$

q-deformation of graphic arrangements

Theorem 4.1 ([11, Theorem 4.1]). Let

$$heta_k \coloneqq \sum_{i \in C_{\geq k}} \frac{\Delta(E_{< k}, x_i)}{\Delta(E_{< k})} \partial_i \qquad (1 \le k \le \ell)$$

Then $\{\theta_1, \ldots, \theta_\ell\}$ *forms a basis for* $D(\mathcal{A}_G)$ *.*

Let $\Delta_q(x_1, \ldots, x_k) \in \mathbb{F}_q[x_1, \ldots, x_k]$ denote the determinant of the Moore matrix. Namely

$$\Delta_q(x_1,\ldots,x_k) = \begin{vmatrix} x_1 & x_1^q & x_1^{q^2} & \ldots & x_1^{q^{k-1}} \\ x_2 & x_2^q & x_2^{q^2} & \ldots & x_k^{q^{k-1}} \\ \vdots & \vdots & \vdots & & \vdots \\ x_k & x_k^q & x_k^{q^2} & \ldots & x_k^{q^{k-1}} \end{vmatrix} = \prod_{i=1}^k \prod_{c_1,\ldots,c_{i-1}\in\mathbb{F}_q} (c_1x_1 + \cdots + c_{i-1}x_{i-1} + x_i).$$

Theorem 4.2. Let

$$\theta_k \coloneqq \sum_{i \in \mathcal{C}_{\geq k}} \frac{\Delta_q(E_{< k}, x_i)}{\Delta_q(E_{< k})} \partial_i \qquad (1 \le k \le \ell).$$

Then $\{\theta_1, \ldots, \theta_\ell\}$ forms a basis for $D(\mathcal{A}_G^q)$.

Proof. Let $K = \{i_1, \ldots, i_m\}$ be a clique of G with $i_1 < \cdots < i_m$. Let $\alpha = c_1 x_{i_1} + c_2 x_{i_2} + \cdots + c_m x_{i_m}$ be a nonzero linear form over \mathbb{F}_q . If $K \cap C_{\geq k} = \emptyset$, then $\theta_k(\alpha) = 0$.

Suppose that $K \cap C_{\geq k} \neq \emptyset$ and take $i_s \in K \cap C_{\geq k}$ with minimal s. Then one can show that $\{i_1, \ldots, i_{s-1}\} \subseteq E_{< k}$ and $\{i_s, i_{s+1}, \ldots, i_m\} \subseteq C_{\geq k}$. Then

$$\theta_k(\alpha) = \sum_{u=s}^k \frac{\Delta_q(E_{$$

Using Saito's criterion [8, Theorem 4.19], we can prove $\{\theta_1, \ldots, \theta_\ell\}$ is a basis.

References

- [1] C. A. Athanasiadis. "Characteristic Polynomials of Subspace Arrangements and Finite Fields". *Advances in Mathematics* **122**.2 (1996), pp. 193–233. DOI.
- [2] A. Björner, P. H. Edelman, and G. M. Ziegler. "Hyperplane arrangements with a lattice of regions". *Discrete & Computational Geometry* **5**.3 (June 1990), pp. 263–288. DOI.
- [3] A. Björner and T. Ekedahl. "Subspace Arrangements over Finite Fields: Cohomological and Enumerative Aspects". *Advances in Mathematics* **129**.2 (Aug. 1997), pp. 159–187. DOI.
- [4] G. A. Dirac. "On rigid circuit graphs". *Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg*. Vol. 25. Springer, 1961, pp. 71–76. DOI.

- [5] P. H. Edelman and V. Reiner. "Free hyperplane arrangements between A_{n-1} and B_n ". *Mathematische Zeitschrift* **215**.1 (1994), pp. 347–365. **DOI**.
- [6] D. Fulkerson and O. Gross. "Incidence matrices and interval graphs". *Pacific journal of mathematics* **15**.3 (1965), pp. 835–855. **DOI**.
- [7] M. Jambu and H. Terao. "Free arrangements of hyperplanes and supersolvable lattices". *Advances in Mathematics* **52**.3 (June 1984), pp. 248–258. DOI.
- [8] P. Orlik and H. Terao. Arrangements of Hyperplanes. Ed. by M. Artin et al. Vol. 300. Grundlehren der mathematischen Wissenschaften. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. DOI.
- [9] A. Postnikov and R. P. Stanley. "Deformations of Coxeter Hyperplane Arrangements". *Journal of Combinatorial Theory, Series A* **91**.1 (2000), pp. 544–597. DOI.
- [10] R. C. Read. "An introduction to chromatic polynomials". *Journal of Combinatorial Theory* **4**.1 (Jan. 1968), pp. 52–71. DOI.
- [11] D. Suyama and S. Tsujie. "Vertex-Weighted Graphs and Freeness of ψ-Graphical Arrangements". Discrete & Computational Geometry 61.1 (Jan. 2019), pp. 185–197. DOI.
- [12] M. Yoshinaga. "Free arrangements over finite field". *Proceedings of the Japan Academy, Series A, Mathematical Sciences* 82.10 (Jan. 2007), pp. 179–182. DOI.