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Signed combinatorial interpretations
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Abstract. We prove the existence of signed combinatorial interpretations for several
large families of structure constants. These families include standard bases of symmet-
ric and quasisymmetric polynomials, as well as various bases in Schubert theory. The
results are stated in the language of computational complexity, while the proofs are
based on the effective Möbius inversion.
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1 Introduction

In this paper, we make a systematic study and prove signed combinatorial interpreta-
tions for structure constants for many families of symmetric functions, their relatives,
and generalizations. We present signed combinatorial interpretations in all cases, lead-
ing to the following meta observation:

In algebraic combinatorics, all integral constants
have signed combinatorial interpretations.

This is an extended abstract of [21].

1.1 Signed combinatorial interpretations

Let W := {0, 1}∗ and Wn := {0, 1}n be sets of words. The length |w| is called the size
of w ∈ W. A language is defined as A ⊆ W. Denote An := A ∩ Wn. We say A is in NP

if the membership [w ∈? A] can be decided in polynomial time (in the size |w|), by a
nondeterministic Turing Machine. We view An as the set of combinatorial objects of size n.

Let f : W → N be an integer function. We say that f has a combinatorial interpretation
(also called a combinatorial formula) if f ∈ #P. This means there is a language B ⊆ W2
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in NP, such that for all w ∈ W we have f (w) = #{u : (w, u) ∈ B}. In algebraic com-
binatorics, all standard combinatorial interpretations are in #P. These include character
degrees f λ = χλ(1), Kostka numbers Kλµ, and the Littlewood–Richardson (LR) coefficients
cλ

µν, see e.g. [18]. For broader discussion, consult [13, 20].
Let f : {0, 1}∗ → Z be an integer function. We say that function f has a signed

combinatorial interpretation (also called signed combinatorial formula), if f = g − h for some
g, h ∈ #P. The set of such functions is denoted GapP := #P−#P.

In algebraic combinatorics, there are many natural examples of signed combinatorial
interpretations. As we mentioned above, these include character values χλ(µ) via the
Murnaghan–Nakayama rule. Another example is the inverse Kostka numbers K−1

λµ defined
as the entry in the inverse Kostka matrix (Kλµ)

−1, given by the Eğecioğlu–Remmel rule
[5]. In both cases, the rules subtract the number of certain rim hook tableaux, some with
a positive sign and some with a negative, where the sign is easily computable.

Additionally there are many examples of signed combinatorial interpretations for
nonnegative functions. Famously, Kronecker coefficients g(λ, µ, ν) are given by the large
signed summation of the numbers of 3-dimensional contingency arrays. Another cel-
ebrated example is the Schubert structure constants cγ

αβ given by the Postnikov–Stanley
formula in terms of the number of chains in the Bruhat order [23, Corollary 17.13].

1.2 Main results

Let R be a ring and let Υ := {ξα} be a linear basis in R, where the indices form a set A
of combinatorial objects. The structure constants c(α, β, γ) for Υ are defined

ξα · ξβ = ∑
γ∈A

c(α, β, γ) ξγ where α, β ∈ A .

When the structure constants are integral, one can ask whether the function c : A3 → Z

is in GapP, i.e., has a signed combinatorial interpretation. Additionally, when they are
nonnegative, one can ask if c is in #P, i.e., has a (usual) combinatorial interpretation.

Theorem 1.1 (classic structure constants). Let Λn = C[x1, . . . , xn]Sn denote symmetric poly-
nomials in n variables. The following bases in Λn have structure constants in #P : Schur
polynomials {sλ : ℓ(λ) ≤ n}, monomial symmetric polynomials {mλ : ℓ(λ) ≤ n}, power sum
symmetric polynomials {pλ : λ1 ≤ n}, elementary symmetric polynomials {eλ : λ1 ≤ n}, and
complete homogeneous symmetric polynomials {hλ : λ1 ≤ n}.

The last four of these items are completely straightforward and follow directly from
their definition. However, the first item is highly nontrivial.

Now consider deformations of Schur polynomials. Fix q, t, α ∈ Q.

Theorem 1.2. The following bases in Λn have structure coefficients in GapP/FP :
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• Jack symmetric polynomials {Pλ(x; α) : ℓ(λ) ≤ n}, where α > 0,

• Hall–Littlewood polynomials {Pλ(x; t) : ℓ(λ) ≤ n}, where 0 ≤ t < 1, and

• Macdonald symmetric polynomials {Pλ(x; q, t) : ℓ(λ) ≤ n}, where 0 ≤ q, t < 1.

Here GapP/FP is a class of rational functions which can be written as f /g where
f ∈ GapP and g ∈ FP is a function which can be computed in polynomial time.

Second, we consider quasisymmetric polynomials which are somewhat intermediate
between symmetric and general polynomials:

Theorem 1.3 (quasisymmetric structure constants). Let QSymn ⊆ C[x1, . . . , xn] be the ring
of quasisymmetric polynomials. The following bases have structure constants in #P :

• monomial quasisymmetric polynomial {Mα}, and

• fundamental quasisymmetric polynomials {Fα}.

The following bases have structure constants in GapP :

• dual immaculate polynomials {S∗
α}, and

• quasisymmetric Schur polynomials {Sα}.

The following bases have structure constants in #P/FP :

• type 1 and type 2 quasisymmetric power sums {Ψα} and {Φα}, as well as

• combinatorial quasisymmetric power sum {pα}.

Here we have α ranges over compositions into at most n positive parts.

The first two items go back to Gessel [8], while the rest are new. Next, recall that
Schubert polynomials mentioned above generalize Schur polynomials and form a linear
basis in the ring of all polynomials. We further generalize Theorem 1.1.

Theorem 1.4 (polynomial structure constants). In the ring of polynomials C[x1, . . . , xn], the
following bases have structure constants in #P :

• monomial slide polynomials {Mα}, and

• fundamental slide polynomials {Fα}.

The following bases have structure constants in GapP :

• Demazure atoms {atomα},

• key polynomials {κα},
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• Schubert polynomials {Sα},

• Lascoux polynomials {Lα}, and

• Grothendieck polynomials {Gα}.

Here we α ∈ Nn ranges over compositions into n nonnegative parts.

The result for Schubert polynomials follows from work of Postnikov and Stanley [23].
We reprove this result in a simpler (but related) way, leading to results in other cases.

Finally, we consider plethysm. Let π : GL(V) → GL(W) and ρ : GL(W) → GL(U)
be polynomial representations of the general linear group. One can define ρ[π] :=
ρ ◦ π to be the composition of these representations. At the level of characters, the
composition above corresponds to plethysm of symmetric functions fµ and gν and gives
plethysm coefficients:

fµ [gν ] = ∑
λ

aλ( fµ, gν) sλ where fµ, gν ∈ Λ ,

and Λ is the inverse limit of Λn in the category of graded rings. It was shown by Fischer
and Ikenmeyer [6, Section 9] that plethysm coefficients for sλ[sµ] are GapP-complete, so
they are in GapP. We generalize to those bases listed in Theorem 1.1.

Theorem 1.5 (plethysm coefficients). Let { fλ} and {gλ} be families of symmetric polynomials
from the following linear bases:

{sλ}, {mλ}, {pλ}, {eλ}, {hλ} .

Then the corresponding plethysm coefficients aλ( fµ, gν) are in GapP.

1.3 Background and motivation

Combinatorial interpretations reveal structure which is a shadow of a rich but non-
quantitative geometric or algebraic structure. For example, standard Young tableaux are
the leading terms in a linear basis of irreducible Sn modules. On a deeper level, they are
a byproduct of the branching rule, which comes from Sn having a long subgroup chain.

Having a combinatorial interpretation does wonders for applications. For example,
for LR-coefficients, these include the saturation theorem, an efficient algorithm for positiv-
ity [cλ

µν >? 0], and various lower and upper bounds. Even with combinatorial interpre-
tations in special cases, remarkable applications follow. For example, for the Kronecker
coefficients, these include unimodality and NP-hardness of positivity [g(λ, µ, ν) >? 0].

Naturally, a signed combinatorial interpretation is inherently less powerful than an
unsigned one. Yet this is usually the best known tool to obtain any results. For the
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Kronecker coefficients, the signed combinatorial interpretation mentioned above gives
both a fast algorithm to compute the numbers and a sharp upper bound in some cases.

An interesting case study is the Murnaghan–Nakayama (MN) rule for Sn character
values χλ(µ), defined as a signed sum over certain rim hook tableaux. This gives upper
bounds for character values, which in turn implies upper bounds for mixing times of
random walks on Sn generated by conjugacy classes. For µ a rectangle, rim hook tableaux
given by the MN rule have the same sign. This led to rich developments, including
combinatorial proofs of character orthogonality, applications in probability, tilings, and
LLT polynomials describing representations of Hecke algebra at roots of unity.

In a different direction, a signed combinatorial interpretation coming from the Frobe-
nius formula, was used to show that deciding positivity [χλ(µ) > 0] of the character value
is PH-hard. Moreover, the character absolute value has no combinatorial interpretation,
unless one believes the polynomial hierarchy collapses.

We emphasize that some natural combinatorial formulas defining the numbers above
are not GapP formulas. For example, the definition of Kronecker coefficients gives:

g(λ, µ, ν) := ⟨χλ, χµ · χν⟩ =
1
n! ∑

σ∈Sn

χλ(σ)χµ(σ)χν(σ) ,

for all λ, µ, ν ⊢ n. This only shows that {g(λ, µ, ν)} are in GapP/FP.
Indeed, while the summation above is in GapP via the MN rule, the division by n!

is not allowed in GapP. The same issue appears also when applying Billey’s formula to
compute Schubert coefficients, the Féray–Śniady formula for the characters, and Hurwitz’s
original formula for the double Hurwitz numbers. These formulas involve divisions, thus
they only prove the corresponding integral functions are in GapP/FP.

There are cases when the integrality was established algebraically. For example, the
integrality χλ(µ) ∈ Z, follows from the fact that σ and σa are conjugate, for all σ ∈ Sn
and (a, ord(σ)) = 1. The proof uses a Galois theoretic argument and a calculation of
cyclotomic polynomials, which cannot be easily translated to a GapP formula. In other
words, being in GapP can be a strong result of independent interest.

2 Basic definitions and notations

We use N = {0, 1, 2, . . .} and [n] = {1, . . . , n}. To simplify notation, for a set X and an
element x ∈ X, we write X − x := X ∖ {x}. Similarly, we write X + y := X ∪ {y}.

Let P = (X,≺) be a poset on the ground set X with a partial order “≺”. Function
h : X2 → R is called triangular w.r.t. P if h(x, y) = 0 unless x ≼ y for all x, y ∈ X, and
h(x, x) ̸= 0 for all x ∈ X. Similarly, function h : X2 → R is called unitriangular w.r.t. P
if it is triangular and h(x, x) = 1 for all x ∈ X.

Fix n. An integer partition λ of k, denoted λ ⊢ k, is a sequence of weakly decreasing
nonnegative integers (λ1, . . . , λn) which sum up to k. Let Un = ∪k{λ ∈ Nn : λ ⊢ k}.
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Similarly a composition (sometimes called weak composition) α of k, denoted α ⊨ k, is a
sequence of nonnegative integers (α1, . . . , αn) which sum up to k. Let Vn,k := {α ∈ Nn :
α ⊨ k}, and let Vn := ∪kVn,k be sets of compositions. A strong composition α ⊨ k has all
parts strictly positive. Let Wn,k := {α ∈ Nm

≥1 : α ⊨ k, m ≤ n}, and let Wn := ∪kWn,k be
sets of strong compositions. Let D(α) := {(i, j) : i ≤ αj} denote the diagram of α.

We write |α| := α1 + . . . + αn the size of the composition, and ℓ(α) the number of
parts in α. For two compositions α, β ⊨ k, the dominance order is defined as follows:

α ⊴ β ⇐⇒ α1 + . . . + αi ≥ β1 + . . . + βi for all i.

For a permutation σ ∈ Sn , the Lehmer code is a sequence c = (c1, . . . , cn) ∈ Nn given
by ci(σ) := #{j > i : σi ≥ σj}. Denote by S∞ the set of bijections w : N≥1 → N≥1 which
eventually stabilize: w(m) = m for m large enough.

The Young diagram of shape λ, denoted [λ], is D(λ). A semistandard Young tableau of
shape λ is a map A : [λ] → N, which is weakly increasing in rows: A(i, j) ≤ A(i, j + 1)
and strictly increasing in columns: A(i, j) < A(i + 1, j). The content of A is a sequence
(m1, m2, . . .), where mk is the number of k in the multiset {A(i, j)}. Let SSYT(λ, µ) denote
the set of semistandard Young tableaux of shape λ and content µ.

3 Effective Möbius inversion

Let X = ∪Xn, where Xn ⊆ {0, 1}n, be a family of combinatorial objects. Let P := (X,≺)
be a poset such that x ≺ y only if x, y ∈ Xn for some n. We use Pn = (Xn,≺) to denote
a subposet of P . The height of a poset Q, denoted height(Q), is the size of the maximal
chain in Qn . Then P has polynomial height if height(Pn) ≤ Cnc, for some fixed C, c > 0.

Let δ : X2 → {0, 1} be the delta function defined as δ(x, y) = 1 if x = y, and
δ(x, y) = 0 otherwise. Let ξ : X2 → {0, 1} be the incidence function defined as ξ(x, y) = 1
if x ≼ y and ξ(x, y) = 0 otherwise. Then ξ is poly-time computable, if for all x, y ∈ Xn the
decision problem [x ≼? y] can be decided in O(nc) time, for some fixed c > 0.

The Möbius inverse is a function µ(x, y) : X2 → Z, such that

∑
z∈Xn

ξ(x, z) · µ(z, y) = δ(x, y) for all x, y ∈ Xn .

Proposition 3.1. Let P := (X,≺) be a poset with polynomial height, and suppose that the
incidence function ξ is poly-time computable. Then the Möbius inverse function µ is in GapP.

Let η : X2 → Z be unitriangular w.r.t. P , i.e., η(x, x) = 1 for all x ∈ X, and
η(x, y) ̸= 0 implies x ≼ y and x, y ∈ Xn for some n. The inverse of η (in the incidence
algebra), is a function ρ(x, y) : X2 → Z, such that

∑
z∈Xn

η(x, z) · ρ(z, y) = δ(x, y) for all x, y ∈ Xn .
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Proposition 3.2. Let P := (X,≺) be a poset with polynomial height, and suppose that the
incidence function ξ is poly-time computable. Suppose function η is in GapP. Then the inverse
function of η is also in GapP.

Combining this with (uni)triangularity of the given bases yields our main results.

4 Symmetric polynomials

Let Λn = C[x1, . . . , xn]Sn be the ring of symmetric polynomials. See [18] for background
on bases {pλ}, {eλ} , {hλ} , and {mλ}. Denote by Qm the poset on partitions λ ⊢ m with
dominance order λ ⊴ µ, for λ, µ ⊢ m. It is known that the dominance order is a lattice.
Clearly, height(Qm) = O(m2).

4.1 Structure constants

Recall Schur polynomials {sλ : λ ∈ Un} can be defined as

sλ(x1, . . . , xn) := ∑
µ

Kλµ mµ(x1, . . . , xn),

where the Kostka numbers Kλµ compute the number of semistandard Young tableaux of
shape λ and content µ. The Littlewood–Richardson coefficients cλ

µν are defined by

sµ · sν = ∑
λ

cλ
µν sλ .

Recall that cλ
µν are given as the number of LR-tableaux of shape ν/λ with content µ,

a subset of semistandard Young tableaux, see e.g. [18]. Theorem 1.1 follows by the
definitions of {pλ}, {eλ} , {hλ}, and {mλ} along with the LR rule for {sλ}.

4.2 (q, t) deformations

Following [17], Macdonald symmetric polynomials Pλ can be defined combinatorially:

Pλ(x; q, t) := ∑
µ

mµ(x) ∑
T∈SSYT(λ,µ)

ψT(q, t) ,

where x = (x1, . . . , xn) and ψT(q, t) is a explicit rational function given by a product
formula. For fixed q, t ∈ Q such that 0 ≤ q, t < 1, this function ψ : T → Q is in FP/FP.

The Hall–Littlewood polynomials Pλ(x; t) are defined as Pλ(x; 0, t), see [16]. Similarly,
the Jack symmetric polynomials Pλ(x; α), see [14], specialize Macdonald symmetric poly-
nomials in another direction, Pλ(x; α) := limt→1 Pλ(x; tα, t).
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By the definition above and the explicit form of ψT, Macdonald symmetric polynomi-
als are unitriangular in mµ(x), see [18, Theorem 2.3]. Using Proposition 3.2 we obtain the
GapP result. By the specialization to Hall–Littlewood polynomials and Jack polynomials,
we obtain Theorem 1.2.

4.3 (q, t) analogues

One can also view (q, t) as variables and extend Theorem 1.2. For Hall–Littlewood poly-
nomials Pλ(x; t) ∈ Λ[t], the corresponding Kostka polynomials Kλ,µ(t) ∈ N[t] are the
coefficients of their Schur expansion. They have a known combinatorial interpretation
by Lascoux and Schützenberger (see e.g. [18, Section III.6]). Using the LR rule, we have:

Proposition 4.1. Hall–Littlewood polynomials {Pλ(t)} have structure constants in #P.

Here structure constants form the polynomials cλ
µν(t) ∈ N[t]. The proposition states

there is a #P function f : {(λ, µ, k)} → N, such that cλ
µν(t) = ∑k∈N f (λ, µ, k, ℓ) tk.

Recall the modified Macdonald polynomials H̃µ(x; q, t) ∈ Λ[q, t], see e.g. [11, Theo-
rem 2.8]. They are defined so that the corresponding (q, t)-Kostka polynomials K̃λµ(q, t) ∈
N[q, t] become the coefficients of their expansion in Schur polynomials. The problem of
finding a combinatorial interpretation for the (q, t)-Kostka polynomials remains open

On the other hand, a signed combinatorial interpretation of K̃λµ(q, t) ∈ N[q, t] follows
immediately from Haglund’s monomial formula [11, Appendix A], giving a combinatorial
interpretation for coefficients of their expansion in Schur functions, combined with a
GapP formula for the (usual) inverse Kostka numbers. Using the LR rule again, we
conclude:

Proposition 4.2. Modified Macdonald polynomials {H̃µ(q, t)} have structure constants in
GapP.

5 Quasisymmetric bases

5.1 Posets of interest

Denote by Zn,k = (Wn,k,◁) the poset on strong compositions w.r.t. the dominance order.
Let Zn = ∪kZn,k. Clearly, we have height(Zn,k) = O(kn).

For α ∈ Nm, define sort(α) as the partition formed by listing α in weakly decreasing
order. For α, β ∈ Wn,k we say β is a refinement of α if one can obtain α by adding
consecutive parts of β. This defines the refinement order “≼” on Wn,k . Denote by Dn,k =
(Wn,k,⊴′) the poset on Wn,k where

α ⊴′ β , α, β ∈ Wn,k ⇐⇒
{
sort(β)◁ sort(α) if sort(β) ̸= sort(α),
β ⊴ α if sort(β) = sort(α).
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Observe that height
(
Dn,k

)
= O(kn3).

5.2 Quasisymmetric bases

Let QSymn ⊆ C[x1, . . . , xn] be the ring of quasisymmetric polynomials in n variables.
The monomial quasisymmetric polynomials {Mα : α ∈ Wn} are defined as

Mα(x1, . . . , xn) := ∑
1≤ i1< ...< iℓ≤n

xα1
i1

· · · xαℓ
iℓ

,

where ℓ = ℓ(α) ≤ n. Clearly, {Mα}α∈Wn
is a linear basis in QSymn.

Following [8], the fundamental quasisymmetric polynomials {Fα : α ∈ Wn} are given by

Fα(x1, x2, . . . , xn) := ∑
β≼α

Mβ(x1, x2, . . . , xn).

The dual immaculate polynomials {S∗
α : α ∈ Wn} can be defined by

S∗
α(x1, x2, . . . , xn) := ∑

β

K I
α,β Mβ(x1, x2, . . . , xn),

where K I
α,β counts certain fillings of D(α) with content β, see [3].

The quasisymmetric Schur polynomials {Sα : α ∈ Wn} can be defined by

Sα(x1, x2, . . . , xn) := ∑
β

KS
α,β Mβ(x1, x2, . . . , xn),

where KS
α,β counts particular fillings of D(α) with content β, as defined in [10].

By their definition, {Fα}α∈Wn
are unitriangular w.r.t. the dominance order. The uni-

triangular property for {S∗
α}α∈Wn

and {Sα}α∈Wn
follows by examining the combina-

torial objects computing their corresponding Kostka coefficients. Then the results in
Theorem 1.3 follow from this unitriangular property combined with Proposition 3.2.

Remark 5.1. Structure constants for dual immaculate and quasisymmetric Schur poly-
nomials can be negative. Thus, Theorem 1.3 is optimal.

For brevity, we exclude the details for the combinatorial quasisymmetric power sums
{pα : α ∈ Wn} [1], as well as the type 1 quasisymmetric power sums {Ψα : α ∈ Wn}
and type 2 quasisymmetric power sums {Φα : α ∈ Wn} [2].

6 Polynomial bases

6.1 Posets of interest

For k ∈ Z>0, denote by In,k = (Vn,k,◁) the poset on weak compositions w.r.t. domi-
nance order. Clearly, height(In,k) = O(kn). Let In = ∪kIn,k. Thus height(In) = O(n3).
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6.2 Polynomial bases

For α ∈ Vn, let flat(α) be the strong composition formed by removing 0’s in α. Following
[12, Section 3.4], the monomial slide polynomials {Mα : α ∈ Vn} and the fundamental slide
polynomials {Fα : α ∈ Vn} are defined as

Mα(x) := ∑
β⊴α

flat(β)=flat(α)

xβ and Fα(x) := ∑
β⊴α

flat(β)≼flat(α)

xβ .

The Demazure atoms {atomα : α ∈ Vn} can be defined as atomα(x) := ∑β Katom

α,β xβ.
Here Katom

α,β counts particular fillings of T : D(α) → N≥1, see [19]. The key polynomials
{κα : α ∈ Vn} and Lascoux polynomials {Lα : α ∈ Vn} can be computed as

κα(x) := ∑
S∈Koh(D(α))

xwt(S) and Lα(x) := ∑
S∈KKoh(D(α))

(−1)|α|−#S xwt(S).

Here Koh(D(α)) and KKoh(D(α)) are recursively generated diagrams, see [15] and [22],
respectively.

Let D ⊂ [n] × [n] be a diagram and let (i, j) ∈ D be a box in the diagram. The
ladder move is a transformation D → D − (i, j) + (i − k, j + 1) and the K-ladder move is a
transformation D → D + (i − k, j + 1), allowed only when the following are satisfied:

• (i, j + 1) ̸∈ D,

• (i − k, j), (i − k, j + 1) ̸∈ D for some 0 < k < i, and

• (i − l, j), (i − l, j + 1) ∈ D for all 0 < l < k.

Recall that the Lehmer code code(w) ∈ Nn uniquely determines w ∈ S∞. Let rPipes(w)
denote the set of diagrams obtainable through successive ladder moves, starting from
D(code(w)), where w ∈ Sn. Similarly take Pipes(w) to be the set of diagrams obtainable
through successive ladder and K-ladder moves, starting from D(code(w)), where w ∈ Sn.

Using [4] and [7], the Schubert polynomials {Sw : w ∈ Sn} and Grothendieck polynomials
{Gw : w ∈ Sn} can be defined as

Sw(x) := ∑
P∈ rPipes(w)

xwt(P) and Gw(x) = ∑
P∈Pipes(w)

(−1)|α|−#P xwt(P).

Since code(w) uniquely determines w, we write Sα := Scode−1(α) and Gα := Gcode−1(α).
Theorem 1.4 follows from Proposition 3.2 with the fact that each basis is unitriangular.

Remark 6.1. The poset of monomials is also unitriangular w.r.t. the reverse lexicographic
order, so the Möbius inversion can also be used in this setting. However, the height of
the resulting poset is exponential, so Proposition 3.2 is not applicable.

Remark 6.2. It is easy to see that the structure constants for Demazure atoms, key, and
Lascoux polynomials can be negative without predictable signs. Thus, Theorem 1.3
proving their signed combinatorial interpretation is optimal in this case.
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7 Plethysm and further applications

The proof of Theorem 1.5 follows by the inverse Kostka formula once we show that
the coefficients in the corresponding monomial expansion are in GapP. This follows by
extending the argument in [6, Section 9].

We conclude with one additional application relating structure constants.

Theorem 7.1. Let A = ∪An be a family of combinatorial objects, and let {Gw(x) : w ∈ A} be
a family of symmetric polynomials such that Gw(x) = ∑α∈Vn

cwα Fα(x) where the coefficients
{cwα} are in GapP. Consider the coefficients defined by Gw(x) = ∑λ∈Un dwλ sλ(x) . Then
{dwλ} are also in GapP. Furthermore, the result holds when the Fα are replaced with Mα.

Remark 7.2. Combining Theorem 7.1 with [9, Equation (82)] gives a GapP formula for the
Schur expansion of LLT polynomials. While this expansion is proven to be Schur-positive,
there is no known (unsigned) combinatorial interpretation.
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