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Abstract. Segre products of posets were defined by Björner and Welker [J. Pure Appl.
Algebra (2005)]. We determine the rank-selected homology representations of the t-
fold Segre power B(t)

n of the Boolean lattice Bn, which carries an action of the t-fold
direct product S×t

n of the symmetric group Sn. We give formulas for the decomposi-
tion into S×t

n -irreducibles of the homology of the full poset, as well as for the diagonal
action of Sn. We show that the stable principal specialisation of the product Frobenius
characteristic coincides with the corresponding rank-selected invariant of the t-fold
Segre power of the subspace lattice.

1 Introduction

Let Bn denote the Boolean lattice of subsets of an n-element set, and let Bn,q denote
the lattice of subspaces of an n-dimensional vector space over the finite field Fq with q
elements. Both lattices are well known to be Cohen–Macaulay [11].

The Segre product of posets was first defined by Björner and Welker, who showed
[4, Theorem 1] that this operation preserves the property of being homotopy Cohen–
Macaulay. Let P(t) denote the t-fold Segre power P ◦ · · · ◦ P (t factors) of a graded poset
P. The Segre square P ◦ P was studied by the first author in [6], when P is the Boolean
lattice Bn or the subspace lattice Bn,q. Segre powers of the subspace lattice Bn,q appear in
an early paper of Stanley [9, Example 1.2], as an example of a binomial poset. See also
[11, Example 3.18.3].

The symmetric group Sn acts on Bn, and hence the Cohen–Macaulay Segre power
B(t)

n of Bn carries two actions, one for the t-fold direct product S×t
n of Sn with itself, and

the other for Sn acting diagonally.
We study both these actions on the rank-selected subposets of the Cohen–Macaulay

poset B(t)
n , giving formulas for their irreducible decomposition for the top homology of

B(t)
n . For the t-fold Segre power of the subspace lattice, a special case of a theorem of

Stanley [9, Theorem 3.1] gives the rank-selected Möbius number. At q = 1 this interprets
the dimension of the top homology of B(t)

n as the number w(t)
n of t-tuples of permutations
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in the symmetric group Sn with no common ascent. The numbers w(2)
n first appear in

work of Carlitz, Scoville and Vaughn [5]. For arbitrary t the numbers w(t)
n also appear in

[1]. Our work lifts Stanley’s enumerative connection between the Segre powers B(t)
n and

B(t)
n,q to their rank-selected homology modules (Theorem 5.4).

We use the Whitney homology technique of [13] and an extension of the product
Frobenius characteristic introduced in [6] to obtain explicit formulas for the (rank-selected)
homology representation of B(t)

n . A key feature of these formulas is Definition 4.6, where
we introduce an injective algebra homomorphism Φt : Λn(x) → ⊗t

j=1Λn(X j) from the
algebra of symmetric functions of homogeneous degree n in a single set of variables, to
the tensor product of the algebras of degree n-symmetric functions in t sets of variables.
We show that Φt maps the elementary symmetric function en to the product Frobenius
characteristic β

(t)
n of the top homology of B(t)

n . By exploiting properties of the homomor-
phism Φt, we obtain the results outlined below. See [7] for the full paper.

(1) Theorem 4.9 gives the irreducible decomposition of the top homology H̃n−2(B(t)
n )

of B(t)
n under the action of S×t

n .
(2) Theorem 4.12 gives a formula for the irreducible decomposition of the diagonal

Sn-action on H̃n−2(B(t)
n ), and an explicit formula for the characters.

(3) Theorem 5.3 gives a recursive formula for the product Frobenius characteristic
of the rank-selected homology, from which one can obtain explicit formulas for the
irreducible decomposition.

(4) Theorem 5.4 shows that the stable principal specialisation of the product Frobe-
nius characteristic of the rank-selected homology of B(t)

n gives, up to a factor, the corre-
sponding rank-selected invariant for B(t)

n,q.
All homology in this work is reduced, and is taken with rational coefficients.

2 Segre powers and rank-selected invariants

We refer the reader to [3]and [11, Chapter 3] for background on posets and topology.
Recall [11] that the product poset P × Q of two posets P, Q has order relation defined

by (p, q) ⩽ (p′, q′) if and only if p ⩽P p′ and q ⩽Q q′. Segre products are defined
in greater generality by Björner and Welker in [4]. This paper is concerned with the
following special case.

Definition 2.1 ([4]). Let P be a bounded graded poset. The t-fold Segre power P(t) := P ◦ · · · ◦ P
(t factors), t ⩾ 2, is the induced subposet of the t-fold product poset P × · · · × P (t factors)
consisting of t-tuples (x1, . . . , xt) such that rank(xi) = rank(xj), 1 ⩽ i, j ⩽ t. When t = 1 we
set P(1) equal to P.
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(a) Hasse diagram of P.
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(b) Hasse diagram of P ◦ P

Figure 1: P ◦ P is an induced subposet of the product poset P × P.

It follows that P(t) is also a ranked poset which inherits the rank function of P.
Figure 1 shows the Segre square P ◦ P of a poset P, an induced subposet of P× P. Missing
in P ◦ P are these elements in the product P × P: (a, c), (a, d), (b, c), (b, d), (c, a), (c, b),
(d, a), (d, b), as well as all (0̂, y), (x, 0̂), (x, 1̂), (1̂, y) for x, y ∈ P.

2.1 Rank-selected invariants

Let P be a finite graded bounded poset of rank n, and let J ⊂ [n − 1] = {1, . . . , n − 1} be
any subset of nontrivial ranks. Let P(J) denote the rank-selected bounded subposet of P
consisting of elements in the rank-set J, together with 0̂ and 1̂. Stanley [11, Section 3.13]
defined two rank-selected invariants α̃P(J) and β̃P(J) as follows: α̃P(J) is the number of
maximal chains in the rank-selected subposet P(J), and β̃P(J) is the integer defined by
either of the equivalent equations

β̃P(J) = ∑
U⊆J

(−1)|J|−|U|α̃P(U), α̃P(J) = ∑
U⊆J

β̃P(U). (2.1)

The Möbius number of the rank-selected subposet P(J) [11, Equation (3.54)] is:

β̃P(J) = (−1)|J|−1µP(J)(0̂, 1̂). (2.2)

When the poset P has the recursive structure described in the lemma below, the rank-
selected invariants satisfy a pleasing recurrence that we will use later in Section 5.1.

Lemma 2.2. Let P be a graded, bounded poset of rank n, with the property that for any x ∈ P,
the poset structure of the interval (0̂, x) depends only on the rank of x; we may write Pi = (0̂, x0)
for any x0 of rank i. Let whi(P) denote the number of elements of P at rank i. Then we have a
recurrence for the rank-selected invariants β̃P(J) of P, J = {1 ⩽ j1 < · · · < jr ⩽ n − 1} ⊆
[n − 1].

β̃P(J) + β̃P(J ∖ {jr}) = whjr(P) · β̃Pjr
(J ∖ {jr}) (2.3)

µP(0̂, 1̂) = −
n−1

∑
i=0

whi(P) · µPi(0̂, 1̂). (2.4)
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The condition of the lemma is satisfied by the Boolean lattice Bn and also by the
subspace lattice Bn,q. We can now derive a recurrence for the rank-selected invariants

β̃
B(t)

n,q
(J), J ⊆ [n− 1], of the t-fold Segre power B(t)

n,q. From (2.2), these are also the unsigned

Möbius numbers of the corresponding rank-selected subposets.
Recall that the number of i-dimensional subspaces of the n-dimensional vector space

Fn
q [11, Proposition 1.7.2] is given by the q-binomial coefficient[

n
i

]
q

:=
(1 − qn)(1 − qn−1) · · · (1 − q)

(1 − qi)(1 − qi−1) · · · (1 − q) (1 − qn−i)(1 − qn−i−1) · · · (1 − q)
. (2.5)

Let (−1)n−2W(t)
n (q) be the Möbius number of the t-fold Segre power of the subspace

lattice. For q = 1, Bn,q is just Bn; hence Proposition 2.5 gives W(t)
n (1) = w(t)

n . To avoid an
excess of parentheses, for the kth power of the q-binomial coefficient we write [ni ]

k
q.

Proposition 2.3. We have the following recurrences for the rank-selected invariants of B(t)
n,q and

for the full poset B(t)
n,q. Here the rank-set J is given by J = {1 ⩽ j1 < · · · < jr ⩽ n − 1}.

β̃
B(t)

n,q
(J) + β̃

B(t)
n,q
(J ∖ {jr}) =

[
n
jr

]t

q
β̃

B(t)
jr ,q
(J ∖ {jr}), (2.6)

W(t)
n (q) = ∑n−1

i=0 (−1)n−1−i[ni ]
t
qW(t)

i (q).

The recurrence (2.6), in conjunction with an equivariant version of the recurrence in
Lemma 2.2 for the Boolean lattice derived in Section 5, will be used in Section 5.1 when
we consider the stable principal specialisation.

We conclude this section by explaining the relevance of the numbers w(t)
n mentioned

in the Introduction. The following expression for β̃
B(t)

n,q
(J) is due to Stanley. Let Asc(σ)

denote the ascent set of σ, i.e. the set {i : 1 ⩽ i ⩽ n − 1, σ(i) > σ(i + 1)} of ascents of σ.

Theorem 2.4 ([9, Theorem 3.1]). Let J ⊆ [n − 1]. Write Jc = [n − 1] ∖ J. Then for the
rank-selected t-fold Segre power B(t)

n,q of the subspace lattice, one has

β̃
B(t)

n,q
(J) = ∑ (σ1,...,σt)∈S×t

n
Jc=∩t

i=1 Asc(σi)

∏t
i=1 qinv(σi).

The Möbius number of B(t)
n,q is thus (−1)n−2W(t)

n (q), where W(t)
n (q) := ∑(σ1,...σt) ∏t

i=1 qinv(σi),
and the sum is over all t-tuples of permutations in Sn with no common ascent.

Setting q = 1 gives the special case of the Segre powers of the Boolean lattice, as
mentioned in the Introduction. The numbers w(t)

n also appear in [1].
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Proposition 2.5 (See [9, Equation (28) and Theorem 3.1]). The Möbius number of B(t)
n is

given by (−1)nw(t)
n , where for n ⩾ 1, w(t)

n is the number of t-tuples of permutations in Sn with
no common ascent. Hence, setting w(t)

0 = 1, the numbers w(t)
n satisfy the recurrence

n

∑
i=0

(−1)iw(t)
i

(
n
i

)t
= 0. (2.7)

One has the generating function ∑n⩾0 w(t)
n

zn

n!t =
1

f (z) , where f (z) = ∑n⩾0(−1)n zn

n!t .

More generally, for the rank selection J ⊆ [n − 1], the Möbius number µ(B(t)
n (J)) of B(t)

n (J)
is given by (−1)|J|−1w(t)

n (J), where w(t)
n (J) is the number of t-tuples of permutations in Sn such

that their set of common ascents coincides with the complement of J in [n − 1].

3 The product Frobenius characteristic

We refer to [8] for all background on symmetric functions and representations of the
symmetric group Sn. In particular, hn, en and pn are respectively the homogeneous,
elementary, and power sum symmetric functions of degree n, giving rise to basis ele-
ments hλ, eλ and pλ indexed by partitions λ of n, in the algebra of symmetric functions
of homogeneous degree n, while sλ is the Schur function indexed by λ.

The action of the symmetric group Sn on the Boolean lattice Bn extends naturally
to an action of the t-fold direct product S×t

n := Sn × · · · ×Sn (t factors), on the Segre
power B(t)

n . To study this action, we define a product Frobenius map Pch, generalizing the
well-known ordinary Frobenius characteristic in [8]. See [6] for the case t = 2.

As in [8, Chapter 1, Section 7], let Rn denote the vector space spanned by the irre-
ducible characters of the symmetric group Sn over Q, or equivalently the vector space
spanned by the class functions of Sn. Let R = ⊕n⩾0Rn. Then R is equipped with
the structure of a graded commutative and associative ring with identity element 1
for the group S0 = {1}, arising from the bilinear map Rm × Rn → Rm+n, defined by
( f , g) 7→ ( f × g) ↑Sm+n

Sm ×Sn
, the induced character from f and g.

Let Λm(X) be the ring of symmetric functions in the set of variables X, of homo-
geneous degree m, and let Λ(X) = ⊕m⩾0Λm(X). Write µ ⊢ n for an integer partition
µ = (µ1 ⩾ · · · ⩾ µℓ) of the integer n ⩾ 1, so that ∑ℓ

i=1 µi = n, µi ⩾ 1 for all i, and ℓ(µ) for
the number of parts µi of µ. (There is only one integer partition of 0, the empty partition
with zero parts.)

Let n = (n1, . . . , nt) ∈ Zt
⩾0 be a t-tuple of nonnegative integers, and let Sn be the

direct product of symmetric groups ×t
i=1 Sni . The irreducible characters of Sn are in-

dexed by t-tuples of partitions λ = (λ1, . . . , λt) where λi ⊢ ni. Let Rn denote the vector
space spanned by the irreducible characters, of the direct product of symmetric groups
Sn over Q. Then Rn = ⊗iRni . Let R = ⊕n∈Zt

⩾0
Rn.
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Let (Xi), i = 1, . . . , t be t sets of variables. For each i we consider the ring of symmet-
ric functions Λni(Xi) in the variables (Xi), of homogeneous degree ni. As in [8, Chapter
1, Section 5, Example 25], we identify the tensor product

⊗t
i=1 Λni(Xi) with products of

functions of t sets of variables (Xi)t
i=1, symmetric in each set separately, i.e., with the

vector space spanned by the set of elements
{

∏t
i=1 fni(Xi) : fni(Xi) ∈ Λni(Xi)

}
. Thus⊗t

i=1 fni(Xi) 7→ ∏t
i=1 fni(Xi).

Definition 3.1 (cf. [6, Definition 3.2]). Define the product Frobenius characteristic Pch : Rn →⊗t
i=1 Λni(Xi) as follows. Let fni ∈ Rni and define

Pch

(
t⊗

i=1

fni

)
:=

t

∏
i=1

ch( fni)(Xi),

where ch denotes the ordinary Frobenius characteristic map on R. This can be extended multi-
linearly to all of Rn. In particular for the irreducible character χλ =

⊗t
i=1 χλi

indexed by the
t-tuple λ = (λ1, . . . , λt), we have Pch(χλ) = ∏t

i=1 sλi(Xi), a product of Schur functions in t
different sets of variables.

Expanding in terms of power sum symmetric functions, for an arbitrary character χ of Sn we
obtain the formula Pch(χ) = ∑µ χ(µ)∏t

i=1 z−1
µi ∏t

i=1 pµi(Xi), where we have written χ(µ) for

the value of the character χ on the conjugacy class of Sn indexed by the t-tuple µ = (µ1, . . . , µt),
µi ⊢ ni, and zµ is the order of the centraliser in Sn of an element of cycle-type µ ⊢ n.

When t = 1, Pch(χ) = ch(χ) for all characters χ of Sn, and the product Frobenius
characteristic coincides with the ordinary characteristic map.

There is an inner product on
⊗t

i=1 Λni(Xi) defined by〈
∏t

i=1 fi, ∏t
i=1 gi

〉
:= ∏t

i=1⟨ fi, gi⟩Λni (Xi),

where ⟨ fi, gi⟩Λni (Xi) is the usual inner product [8] in a single set of variables Xi.

Example 3.2. Let t = 2. Consider the regular representation ψ of S2 ×S3. Then ψ decomposes
into irreducibles as χ((2),(3)) + χ((12),(3)) + 2χ((2),(2,1)) + 2χ((12),(2,1)) + χ((2),(13)) + χ((12),(13)).
Using X1 and X2 for the two sets of variables, we have

Pch(ψ) = s(2)(X1)s(3)(X2) + s(12)(X1)s(3)(X2) + 2s(2)(X1)s(2,1)(X2)

+ 2s(12)(X1)s(2,1)(X2) + s(2)(X1)s(13)(X2) + s(12)(X1)s(13)(X2)

= h2
1(X1)h3

1(X2)

We want Pch to be a ring homomorphism with respect to an induction product akin
to the usual induction product. In [6, Definition 3.6], this induction product was defined
to take an ordered pair (ψ, ϕ) where ψ is a character of Sk ×Sℓ and ϕ is a character of
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Sm ×Sn, and produce a character of Sk+m ×Sℓ+n. For the t-fold products, we wish to
take a character ψ of Sm =×t

i=1 Smi and a character ϕ of Sn =×t
i=1 Sni , and map the

pair (ψ, ϕ) to a character of Sm+n =×t
i=1 Smi+ni . Here m + n = (m1 + n1, . . . , mt + nt).

Definition 3.3. Let λ = (λ1, . . . , λt), λi ⊢ mi and µ = (µ1, . . . , µt), µi ⊢ ni, so that χλ =⊗t
i=1 χλi

and χµ =
⊗t

i=1 χµi
are respectively irreducible characters of Sm and Sn. The t-fold

induction product χλ ◦ χµ is then defined to be the induced character

χλ ◦ χµ :=
t⊗

i=1

(χλi ⊗ χµi
) ↑Smi+ni

Smi ×Sni
, (3.1)

a character of the direct product Sm+n. Now extend this definition multilinearly to any pair of
representations ψ of Sm =×i Smi and ϕ of Sn =×i Sni , to produce a new representation
ψ ◦ ϕ of Sm+n.

Proposition 3.4. The map Pch is a bijective ring homomorphism, with respect to the induction
product ◦ in R, from R to

⊗t
i=1 Λ(Xi). Explicitly, if m, n ∈ Zt

⩾0 and ψ and ϕ are characters of
Sm and Sn respectively, then Pch(ψ ◦ ϕ) = Pch(ψ) · Pch(ϕ).

We will use the following important special case in the next section.

Corollary 3.5. Let ψ be a character of the t-fold direct product S×t
r and let ϕ be a character of

the t-fold direct product S×t
n−r. Then

(ψ ⊗ ϕ) ↑S
×t
n

S×t
r ×S×t

n−r
= ψ ◦ ϕ, and hence Pch

(
(ψ ⊗ ϕ) ↑S

×t
n

S×t
r ×S×t

n−r

)
= Pch(ψ)Pch(ϕ).

4 The actions of S×t
n and Sn on the homology of B(t)

n

We begin by giving a recurrence for the homology representation of S×t
n for the t-fold

Segre power of Boolean lattices B(t)
n , a Cohen–Macaulay poset. The case t = 2 of the

recurrence appears in [6, Theorem 4.1]. Recall the Whitney homology technique in [13].

Theorem 4.1 ([13, Lemma 1.1 and Theorem 1.2]). Let Q be a bounded and ranked Cohen–
Macaulay poset of rank n, and let G be a finite group of automorphisms of Q. Let WHr(Q) denote
its rth Whitney homology, defined by WHr(Q) =

⊕
x∈Q, rank(x)=r H̃r−2(0̂, x). Then WHr(Q) is

a G-module, and as virtual G-modules one has the identity

H̃n−2(Q) = ∑n−1
r=0 (−1)n−r+1WHr(Q).

Set β
(t)
n :=Pch(H̃n−2(B(t)

n )), n ⩾ 1, the product Frobenius characteristic, and β
(t)
0 :=1.
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Theorem 4.2. Fix t ⩾ 1. The β
(t)
n satisfy the recurrence ∑n

i=0(−1)iβ
(t)
i ∏t

j=1 hn−i(X j) = 0.

This is the group-equivariant version of (2.7). Note the agreement of the next corol-
lary with the case t = 1, when B(t)

n is simply the Boolean lattice Bn, and so its homology
carries the sign representation of Sn.

Corollary 4.3. In the S×t
n -module H̃n−2(B(t)

n ), the multiplicity of
(1) the trivial representation

⊗t
j=1 χ(n) is zero unless n = 1, in which case it is 1;

(2) the sign representation
⊗t

j=1 χ(1n) is 1 for all n ⩾ 1.

Example 4.4. Let t = 2. We use the recurrence to compute some of the symmetric functions
β
(2)
n in two sets of variables X1, X2. We have β

(2)
0 = 1 and β

(2)
1 = h1(X1)h1(X2), the product

characteristic of the trivial representation of S1 ×S1. Then Theorem 4.2 gives

β
(2)
2 = β

(2)
1 (h1(X1)h1(X2))− h2(X1)h2(X2)

= e2(X1)h2(X2) + h2(X1)e2(X2) + e2(X1)e2(X2).

β
(2)
3 = β

(2)
2 h1(X1)h1(X2)− β

(2)
1 h2(X1)h2(X2) + β

(2)
0 h3(X1)h3(X2)

= (h3(X1)e3(X2) + e3(X1)h3(X2)) + e3(X1)e3(X2) + s(2,1)(X1)s(2,1)(X2)

+ 2
(

s(2,1)(X1)e3(X2) + e3(X1)s(2,1)(X2)
)

.

By definition of the product Frobenius characteristic and the fact that H̃n−1(B(2)
n ) is a

true (Sn ×Sn)-module, it follows that β
(2)
n must have a positive expansion in the basis

{sλ(X1)sµ(X2) : λ, µ ⊢ n}. This is confirmed by the above examples.

Definition 4.5. Define Z(t)
i := ∏t

j=1 hi(X j), and define the degree of Z(t)
i to be i.

Also define, for each λ ⊢ n, Z(t)
λ = ∏j Z(t)

λj
. Thus Z(t)

λ = ∏t
j=1 hλ(X j).

Definition 4.6. Define a map Φt : Λ(X) → ⊗t
j=1 Λ(X j) by setting Φt(hn) := ∏t

j=1 hn(X j) =

Z(t)
n , and extending multiplicatively and linearly to all of Λ(X).

For an integer partition λ ⊢ n of n, let λ′ denote the conjugate partition of λ. Write
ℓ(λ) for the total number of parts of λ, and mi(λ) for the number of parts equal to i.
Also let Kµ,ν be the Kostka number, i.e., the number of semistandard Young tableaux
of shape µ ⊢ n and weight ν ⊢ n [8, Equation (5.12)]. In particular, f µ = Kµ,(1n) is the
number of standard Young tableaux of shape µ.

Proposition 4.7. The map Φt : Λ(X) → ⊗t
j=1 Λ(X j) is an injective degree-preserving algebra

homomorphism such that:
(1) Φt(en) = β

(t)
n .

(2) Φt(sλ) = det(Z(t)
λi−i+j)1⩽i,j⩽ℓ(λ), where Z(t)

0 = 1 and we set Z(t)
m = 0 if m < 0.

(3) Φt(sλ′) = det(β
(t)
λi−i+j)1⩽i,j⩽ℓ(λ), where β

(t)
0 = 1 and we set β

(t)
m = 0 if m < 0.
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Definition 4.8. For λ ⊢ n with mi(λ) parts of size i and number of parts ℓ(λ), define cλ to be
the signed multinomial coefficient

cλ = (−1)n−ℓ(λ)( ℓ(λ)
m1(λ),m2(λ),...

).

The integers cλ play an important role in the irreducible decomposition of β
(t)
n .

Theorem 4.9. For the product Frobenius characteristic β
(t)
n of the top homology of B(t)

n , we have:
(1) β

(t)
n = ∑λ⊢n cλZ(t)

λ .
(2) The multiplicity of the S×t

n -irreducible indexed by the t-tuple of partitions
µ = (µ1, . . . , µt), µj ⊢ n, 1 ⩽ j ⩽ t, in H̃n−2(B(t)

n ) equals ct
µ = ∑λ⊢n cλ ∏t

j=1 Kµj,λ.
(3) Let M(s, h) denote the transition matrix from the basis of Schur functions to the basis of

homogeneous symmetric functions. The multiplicity of the S×t
n -irreducible indexed by the t-tuple

of partitions (µ1, . . . , µt), µi ⊢ n, 1 ⩽ i ⩽ t, in the (possibly virtual) module with product
Frobenius characteristic Φt(sλ) is

⟨Φt(sλ),
t

∏
j=1

sµj(X j)⟩ = ∑
ν⊢n

M(s, h)λ,ν

t

∏
j=1

Kµj,ν. (4.1)

Example 4.10 (Illustrating (4.1)). Let λ = (3, 2, 2). Then sλ = h322 − h331 − h421 + h43 +
h511 − h52. Applying Φt, we obtain, for the multiplicity of the t-tuple of partitions (µ1, . . . , µt)
of 7 in the (possibly virtual) module with product Frobenius characteristic Φt(sλ), the expression

∏t
j=1 Kµj,322 − ∏t

j=1 Kµj,331 − ∏t
j=1 Kµj,421 + ∏t

j=1 Kµj,43 + ∏t
j=1 Kµj,511 − ∏t

j=1 Kµj,52.

This example also shows that Φt(sλ) need not be a true module. Indeed, taking t = 2 and
(µ1, µ2) = (43, 61) reveals that the multiplicity of (χµ1

, χµ2
) in Φ2(s322) is −1.

From the preceding theorem we deduce the following otherwise nonobvious fact.

Corollary 4.11. Fix t ⩾ 1. For any fixed t-tuple µ = (µ1, . . . , µt) of partitions of n, the
following sum is a nonnegative integer.

ct
µ = ∑λ⊢n(−1)n−ℓ(λ) ℓ(λ)!

∏i mi(λ)!
∏t

j=1 Kµj,λ.

Let gλ
µ denote the Kronecker coefficient ⟨χλ, ∏t

j=1 χµj⟩, where χµ is the Sn-irreducible
character indexed by µ ⊢ n [8]. Recall [8] the internal product ∗ in the ring of symmetric
functions Λn(X) in a single set of variables X.

Theorem 4.12. For the diagonal Sn-action on H̃n−2(B(t)
n ):

(1) The Frobenius characteristic is this signed sum of inner tensor powers of permutation modules:
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ch H̃n−2(B(t)
n ) = ∑λ⊢n cλ hλ ∗ hλ ∗ · · · ∗ hλ (t factors).

The trace of an element σ ∈ Sn is ∑∑∑λ⊢n cλ (χMλ
(σ))t, where χMλ

is the character of the
permutation module Mλ corresponding to hλ. (2) The multiplicity of the Sn-irreducible indexed
by λ in the diagonal Sn-action on H̃n−2(B(t)

n ) is ∑µ ct
µ gλ

µ , where the sum is over all t-tuples of

partitions µ = (µ1, . . . , µt), µj ⊢ n, 1 ⩽ j ⩽ t.

See [7] for more details on the resulting character values. For small n, one can extract
explicit formulas for the decompositions. In the elementary basis one has:

Proposition 4.13. (1) ch H̃0(B(t)
2 ) = e2 + (2t−1 − 1)e2

1, of dimension w(t)
2 = 2t − 1.

(2) ch H̃1(B(t)
3 ) = e3 + (6t−1 − 3t−1)e3

1, of dimension w(t)
3 = 6(6t−1 − 3t−1) + 1.

(See oeis A248225, A127222 for the sequence {6t − 3t}.)
(3) ch H̃2(B(t)

4 ) = e4 − (2t−1 − 1)e2e2
1 + (2t−1 − 1)e2

2 + γ4 e4
1

where γ4 = (4t−1−1)
3 + 3(6t−2)+2t−2

2 − 18(12t−2) + 24t−1.

5 Rank-selection in B(t)
n

For a fixed subset J of the nontrivial ranks [1, n − 1], the rank-selected subposet B(t)
n (J)

is defined to be the bounded poset {x ∈ B(t)
n : rank(x) ∈ J} with the top and bottom

elements 0̂, 1̂ appended. Since rank-selection preserves the property of being Cohen–
Macaulay [2, Theorem 6.4] these posets have at most one nonvanishing homology mod-
ule, which is in the top dimension. The study of the homology of rank-selected subposets
was initiated in [10].

Denote by β
(t)
n (J) and α

(t)
n (J) respectively the product Frobenius characteristics of the

top homology H̃k−1(Bn(J)) of the rank-selected subposet of B(t)
n for the rank-set J, and

the S×t
n -module MJ of maximal chains in B(t)

n (J). By the general theory in [10], we have

β
(t)
n (J) = ∑U⊆J(−1)|J|−|U|α

(t)
n (U), α

(t)
n (J) = ∑U⊆J β

(t)
n (U).

In particular, the rank-selected invariants β̃P(J), α̃P(J) of Equation (2.1), for P = B(t)
n , are

the respective dimensions of the S×t
n -modules corresponding to β

(t)
n (J) and α

(t)
n (J).

For a standard Young tableau τ of shape λ ⊢ n (see [12] for definitions), the descent
set Des(τ) of τ is the set of entries i such that i + 1 appears in a row strictly below i.

To determine the rank-selected representations of B(t)
n , we use the known results

[10, Section 4] for the Boolean lattice, and then apply the induction product and the
homomorphism Φt to obtain the corresponding results for the Segre product B(t)

n . Note
that while β

(t)
n (J) and α

(t)
n (J) correspond to true S×t

n -modules, Φt(sλ) is in general not a
true module under the image of the product Frobenius map Pch; see Example 4.10.
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Theorem 5.1. For any subset J of nontrivial ranks of B(t)
n , the homomorphism Φt maps the Frobe-

nius characteristic of the Sn-action on the chains of Bn(J) to the product Frobenius characteristic
of the S×t

n -action on the chains of B(t)
n (J). More precisely, we have:

(1) α
(t)
n (J) = Φt(αn(J)) = ∑λ⊢n Φt(sλ) |{SYT τ of shape λ : Des(τ) ⊆ J}|.

(2) β
(t)
n (J) = Φt(βn(J)) = ∑λ⊢n Φt(sλ) |{SYT τ of shape λ : Des(τ) = J}|.

We can now collect some facts about the map Φt : Λ(X) → ⊗t
j=1 Λ(X j).

Proposition 5.2. Let t ⩾ 2 and let f be a symmetric function of degree n. Then Φt( f ) is the
product Frobenius characteristic of a true S×t

n -module in the following cases:
(1) f = hλ, eλ for λ ⊢ n.
(2) f = sλ and λ ⊢ n has at most two parts.
(3) f = sλ and λ ⊢ n is a hook (n − k, 1k).
(4) f is a ribbon Schur function (i.e. f = sλ/µ where the skew shape λ/µ is a ribbon).
Moreover, if Φt(sλ) gives a true S×t

n -module for some t ⩾ 2, then so does Φ2(sλ).

It would be interesting to characterise when Φt(sλ) gives a true S×t
n -module.

By adapting the proof of Theorem 4.2, we also obtain the S×t
n -equivariant version of

(2.6) of Proposition 2.3, a recurrence that will be used in the next section.

Theorem 5.3. Let J = {1 ⩽ j1 < · · · < jr ⩽ n − 1} be a subset of nontrivial ranks in B(t)
n . The

product Frobenius characteristic β
(t)
n (J) = Pch H̃(B(t)

n (J)) of the rank-selected subposet of B(t)
n

satisfies the following recurrence:

β
(t)
n (J) + β

(t)
n (J ∖ {jr}) = β

(t)
jr (J ∖ {jr})

t

∏
i=1

hn−jr(Xi).

5.1 The stable principal specialisation and the subspace lattice

In conclusion, we show that the surprising relationship discovered in [6] between the
Boolean Segre square Bn ◦ Bn and subspace lattice Segre square Bn,q ◦ Bn,q holds for all
rank-selected subposets of the t-fold Segre powers in each case.

The stable principal specialisation [12, Chapter 7, Section 8] of a symmetric function f
in variables x1, x2, . . . is obtained from f by substituting xi → qi−1, i ⩾ 1. Define the
stable principal specialisation ps f of f in ⊗t

i=1Λ(Xi) to be the function of q obtained by
replacing each set of variables Xi by the set {1, q, q2, . . .}. Recall from Section 2 that for
the t-fold Segre power B(t)

n,q and the rank-set J, we denoted by β̃
B(t)

n,q
(J) its rank-selected

Betti number. Theorem 5.3 and the recurrence (2.6) for β̃
B(t)

n,q
(J) now give:
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Theorem 5.4. The stable principal specialisation of β
(t)
n (J) for the rank-selected homology module

of the t-fold Segre power of the Boolean lattice Bn, and the rank-selected Betti number β̃
B(t)

n,q
(J) of

the t-fold Segre power of the subspace lattice Bn,q, are related by the equation

ps β
(t)
n (J) = β̃

B(t)
n,q
(J)∏n

i=1(1 − qi)−t.
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