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Abstract. We classify isomorphism classes of Schubert varieties coming from adjoint
and coadjoint partial flag varieties across all Dynkin types via Hasse diagrams given
by the Chevalley formula.
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1 Introduction

Being relatively simple families of homogeneous spaces, adjoint and coadjoint flag vari-
eties have been extensively studied [1, 3, 8, 10, 14]. There is one of each for every complex
simple reductive group G. The adjoint flag variety is given by the unique closed G-orbit
in P(g), where G acts on its Lie algebra g via the adjoint representation. It is of the form
G/Padjoint, where Padjoint ⊂ G is the parabolic subgroup whose corresponding weight
is the highest (long) root. The coajoint flag variety is G/Pcoadjoint, where Pcoadjoint ⊂ G
is the parabolic subgroup whose corresponding weight is the highest short root. In
simply-laced Lie types, adjoint and codjoint flag varieties coincide. See Table 1 for a
list of adjoint and coadjoint flag varieties and their corresponding Dynkin diagrams. In
each case, the subgroup Padjoint (resp. Pcoadjoint) is determined by the subset of empty
nodes, which are simple roots perpendicular to the highest root (resp. highest short
root). Except in type A, these parabolic subgroups are maximal.

The adjoint (resp. coadjoint) Schubert varieties, being the closure of Borel orbits in
an adjoint (resp. coadjoint) flag variety, are naturally indexed by long roots (resp. short
roots) in the root system. We give the following combinatorial criterion for distinguish-
ing their isomorphism classes.

Theorem 1.1. Let Xα ⊆ X and Yβ ⊆ Y be adjoint or coadjoint Schubert varieties. Then the
following are equivalent:
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(i) Xα and Yβ are isomorphic as abstract algebraic varieties;

(ii) Their corresponding Chevalley–Hasse diagrams, Pα and Pβ, are isomorphic.

The Chevalley–Hasse diagram of a (co)adjoint Schubert variety Xα is a weighted,
directed graph whose vertices index a well-chosen basis (the Schubert basis) of CH(Xα)
and whose edges represent how Pic(Xα) acts on the basis elements via the intersection
product. For a precise definition, as well as an equivalent combinatorial definition based
on the root system, see Section 4.

Adjoint Coadjoint Description

α1 α2
. . .

αn−1 αn
Type An (n ≥ 1):
G/P(co)adjoint ≃ Fl(1, n; n+ 1)

α1 α2
. . .

αn−1 αn α1 α2
. . .

αn−1 αn
Type Bn (n ≥ 2):
G/Padjoint ≃ OGr(2, 2n + 1)
G/Pcoadjoint ≃ Q2n−1

α1 α2
. . .

αn−1 αn α1 α2
. . .

αn−1 αn
Type Cn (n ≥ 3):
G/Padjoint ≃ P2n−1

G/Pcoadjoint ≃ IG(2, 2n)

α1 α2 α3
. . .

αn−2

αn−1

αn

Type Dn (n ≥ 4):
G/P(co)adjoint ≃ OGr(2, 2n)

α1 α3 α4 α5 α6

α2

Type E6

α1 α3 α4 α5 α6 α7

α2

Type E7

α1 α3 α4 α5 α6 α7 α8

α2

Type E8

α1
α2 α3

α4 α1
α2 α3

α4 Type F4

α1 α2 α1 α2 Type G2: G/Pcoadjoint ≃ Q5

Table 1: (Co)adjoint flag varieties.

Our work is analogous to the work of Richmond, Tarigradschi and Xu in [11], where
they proved that two cominuscule Schubert varieties are isomorphic if and only if their
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corresonding labeled posets of roots are isomorphic. Other related works include the
classification of a class of smooth Schubert varieties in type A partial flag varieties by
Develin, Martin, Reiner in [4] and Richmond and Slofstra’s work on the isomorphism
problem of Schubert varieties in complete flag varieties in [13]. The cases of Grassman-
nian Schubert varieties are handled using Young diagrams, by Tarigradschi and Xu in
[15].

We illustrate examples in Section 2 and discuss preliminaries in Section 3. Then in
Section 4, we will construct the Chevalley–Hasse diagram associated with a (co)adjoint
Schubert variety. Our proof of Theorem 1.1 will be sketched very briefly in Section 6.
The direction from isomorphic (co)adjoint Schubert varieties to isomorphic Chevalley–
Hasse diagram is easy by definition, see Proposition 4.4. However, the converse part of
Theorem 1.1 is more complicated: two main techniques, namely minimal embeddings
and foldings, are applied to embed (co)adjoint Schubert varieties into other classes of
Schubert varieties.

2 Examples of Theorem 1.1

Let us first apply Theorem 1.1 in various examples.

Convention 2.1. Throughout the remaining sections: for convenience, for a fixed root
system Φ of some Lie type, we index the simple roots in Φ following Table 1. A general
root α can be expressed uniquely as a linear combination of simple roots, and we will
denote α simply by the coefficients of this expression. For example, the root α2 + α4 + α5
in E7 will be denoted 0101100, and the root −α3 − 2α4 in B4 will be denoted −(0012).

We will omit the directions of edges when we present the Chevalley–Hasse diagram
of a (co)adjoint Schubert variety Xα; instead, we will give the set of vertices a partial
order such that the “heights” of vertices (defined as the minimal length of paths to
the minimal vertex) represent the dimension d of the corresponding class in CH∗(Xα).
And every edge will automatically be directed from the lower-dimensional class to the
higher-dimensional one. See Section 4 for the full definition.

We will denote in this article the (co)adjoint Schubert variety and its Chevalley–
Hasse diagram respectively by X(T, α) and P(T, α), where T is the Cartan type of the
root system Φ and α is a short/long root in Φ labeling the Schubert variety. We will
sometimes use Xα and Pα if the partial flag variety is clear in the context.

Example 2.2. Consider the root system Φ of Cartan type C2; we know that the adjoint
partial flag variety corresponding to this type is P3. Letting α = (01) = α2, we get an
adjoint Schubert variety X(C2, α).

On the other hand, consider the root system Φ′ of Cartan type B3; the corresponding
adjoint flag variety is OGr(2, 2n + 1). Letting β = −(012), we get another Schubert
variety X(B3, β).



4 Linji Chen, Yunhao Lai, and Zhehan Xu

The combinatorial view of Chevalley–Hasse diagrams will be introduced later. Let
us admit the following results: the Chevalley–Hasse diagrams P(C2, α) and P(B3, β) are
both isomorphic to the diagram in Figure 1. Therefore, Theorem 1.1 says X(C2, α) and
X(B3, β) are isomorphic as algebraic varieties.

Note that there is exactly one vertex of each height in Figure 1, which means the
Chow group of this algebraic variety is free of rank 1 in dimensions 0, 1, 2. This is
verified by the fact that X(C2, α) and X(B3, β) are both isomorphic to P2.

Figure 1:
P(C2, α)

≃ P(B3, β) Figure 2:
P(B4,−(0112))

≃ P(C4,−(0111))
≃ P(D4,−(0101))

Figure 3: P(C4,−(0100))

Figure 4: P(C4,−(0010)) Figure 5: P(B4,−(0100)) Figure 6: P(B4,−(0010))

Example 2.3. Now, consider the root system of type D4 with the root −(0101), the root
system of type C4 with the short root −(0111), and the root system B4 with the long root
−(0112). So we get a coadjoint Schubert variety X(C4,−(0111)), an adjoint Schubert
variety X(B4,−(0112)), and a Schubert variety X(D4,−(0101)) which is both coadjoint
and adjoint (as D4 is simply laced).

The Chevalley–Hasse diagrams of all the three varieties are isomorphic to the one
in Figure 2. Since Theorem 1.1 is applicable to one adjoint Schubert variety and one
coadjoint Schubert variety, we deduce that the three Schubert varieties are all isomorphic.
They are all isomorphic to the following Schubert variety in the Grassmannian Gr(2, 8):

Gr2,4(2, 8) := {Σ ∈ Gr(2, 8) |dim(Σ ∩ E2) ≥ 1, Σ ⊆ E4},

where 0 = E0 ⊂ E1 ⊂ . . . ⊂ E8 = C8 is a given flag in C8.
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Example 2.4. Consider the coadjoint Schubert varieties X(C4,−(0100)), X(C4,−(0010))
and the adjoint Schubert varieties X(B4,−(0100)), X(B4,−(0010)). As is illustrated in
Figure 3, Figure 4, Figure 5, and Figure 6, their Chevalley–Hasse diagrams are pairwise
non-isomorphic. Therefore, although the Chow groups these varieties are free of the
same rank in each dimension, Theorem 1.1 says that these varieties are pairwise non-
isomorphic. The point is that an isomorphism between the Chow groups of two distinct
varieties in this example cannot preserve the action of Picard groups.

3 Preliminaries

3.1 Adjoint Schubert varieties and Coadjoint Schubert varieties

First, let us recall some definitions. Let G be a complex reductive algebraic group with
a fixed Borel subgroup B and a maximal torus T. The triple (G, B, T) determines a root
system Φ in the weight lattice M = Hom(T, C∗), with a root basis ∆ and Weyl group
W = NG(T)/T = ⟨sα |α ∈ ∆⟩, where sα is the reflection with respect to the simple root α.
We consider the cases when W is finite. For a subset I ⊆ ∆, WI denotes ⟨sα |α ∈ I⟩ ⊂ W.
There is a minimal parabolic subgroup P ⩽ G containing B and ⟨sα |−α ∈ I⟩. The quo-
tient space G/P is called a partial flag variety, and the closure of orbits Xw = BwP/P
are called Schubert varieties. All Schubert varieties are indexed by W/WI , or equiva-
lently by W I , the set of all minimal length coset representatives of W/WI . If w ∈ W I ,
dim Xw = ℓ(w).

Let Θ be the highest (long) root in the root system. The weight ϖ = Θ is called
adjoint weight. The partial flag variety G/P is called adjoint if P is the parabolic subgroup
associated to ϖ1. In Table 1, set I consists of the unfilled nodes in the Dynkin diagram.
In this case, we have WI = StabW(Θ), and W acts transitively on Φlong; thus there is a
bijection

W I −→ Φlong
w 7−→ w(−Θ),

so we may just define Xw(−Θ) := Xw.2 Therefore, the Schubert varieties in an adjoint
partial flag variety can be indexed by long roots in the root system.

The coadjoint case is pretty much the same, except that ‘long’ shall be replaced with
‘short’: We define ϖ = θ, the highest short root, as the coadjoint weight3; there is a

1That is, P corresponds to the simple roots αi such that ⟨ϖ, αi⟩ = 0.
2In fact, our indexing of roots differs from the definition in literature, such as in [10], by an action of

−w0 on the root space. Here w0 ∈ W is the element with maximal Coxeter length. But note that −w0
permutates the simple roots which induces an automorphism of the Dynkin diagram, so this difference
does not affect anything in our consideration.

3Note that our definition of coadjoint weight agrees with [3] but differs from [1] by a multiplicity of
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bijection between coadjoint Schubert varieties and the set of short roots. Also, we define
Xw(−θ) := Xw.

3.2 Chow groups, Picard groups and the Chevalley formula

Here, we list several well-known results for the Chow groups of the Schubert varieties,
which we will refer to in the rest of the paper.

Lemma 3.1 ([5, Corollary of Theorem 1]; also see [7, Example 1.9.1]). The Schubert classes
[Xu] such that Xu ⊆ Xw are exactly the minimal elements in the extremal rays of the effective
cone in CH∗(Xw). Moreover, these classes form an integral basis of CH∗(Xw).

Lemma 3.2 ([3, Proposition 2.8, part (ii)]).

Xα ⊆ Xβ ⇔


β − α = ∑

αi∈∆
ciαi with ci ≥ 0, if α, β are of the same sign;

Supp(α) ∪ Supp(β) is connected, if α ∈ Φ− and β ∈ Φ+.

Here, the connectedness is counted as in the Dynkin diagram.

We mainly focus on the multiplication of Pic(Xw) on CH∗(Xw), however, the follow-
ing lemma allows us to reduce to the multiplication of Pic(X) on CH∗(X) by projection
formula.

Lemma 3.3 ([9, Proposition 6]; also see [2, Proposition 2.2.8, part (ii)] ). The pullback map
Pic(X) → Pic(Xw) is surjective.

By Poincaré duality we may identify the cup product with the cap product H2(X)×
H2N−2q(X) → H2N−2q−2(X). By [7, Example 19.1.11] and [7, Proposition 19.2], we may
moreover identify homology groups and Chow groups of X, while the cup product is
identified with the intersection product Pic(X) × CHN−q(X) → CHN−q−1(X). Using
these identifications, we can give an explicit Chevalley formula for coadjoint and adjoint
partial flag variety. We first define a suitable divisor such that the formula for its action
on the Chow group has a unified form.

Definition 3.4. Given an adjoint partial flag variety X, we define D′
X to be the divisor

corresponding to the adjoint weight ϖ = Θ. Let DX := 1
2 D′

X in adjoint type C, and let
DX := D′

X in other cases. The definition of D′
X in coadjoint cases is similar; moreover, in

coadjoint cases, we always let DX := D′
X.

Finally, if Xw ⊆ X is a (co)adjoint Schubert variety, we define DXw := i∗DX, where
i : Xw ↪→ X is the embedding.

2 in type B. The resulting parabolic subgroups and varieties are the same, but we will need ϖ = θ for
convenience in Section 4.
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Remark 3.5. In adjoint cases, it turns out that D′
X := Dα1 + Dαn in type A, D′

X := 2Dα1 in
type C, and D′

X := Dαi (αi ∈ ∆ \ I is unique) in other cases. In coadjoint cases, it turns
out that D′

X := Dα1 + Dαn in type A, and D′
X := Dαi (αi ∈ ∆ \ I is unique) in other cases.

The reason for the case-by-case definition of DX can be seen in Table (1) in [3]: in
adjoint type C, the weight Θ and the simple root ϖ1 differ by a scalar 2, so in order to
make DXw an invariant on the algebraic structure of Xw, we need to offset this scalar.

Now, we restate the Chevalley formula by Fulton and Woodward for D′
X:

Lemma 3.6 ([6, Lemma 8.1]). Let X be an adjoint (resp. coadjoint) partial flag variety. Then
for α ∈ Φlong (resp. short) we have

D′
X · [Xα] =


∑

γ∈∆, (γ∨,α)>0
(γ∨, α)[Xsγα] if α /∈ ∆long (resp. short);

∑
γ∈∆long (resp. short)

(γ∨, α)[X−γ] if α ∈ ∆long (resp. short).

4 Chevalley–Hasse Diagrams

4.1 Intersection Product and the Definition of Chevalley–Hasse Dia-
gram

Definition 4.1 (Chevalley–Hasse diagram for (co)adjoint Schubert varieties). Let Xβ be
a Schubert variety in the adjoint partial flag variety X = XΘ. We then construct the
Chevalley–Hasse diagram Pβ as follows:

Vertices: all Schubert classes [Xα] such that Xα ⊆ Xβ. By Lemma 3.2, these classes
coincide with those long roots α such that α ≤ β when they are of the same sign, or such
that Supp(α) ∪ Supp(β) is connected when they are of different signs. The vertices have
a natural partial order of inclusion relationship .

Edges: for two long roots α, α′ in the diagram with4 depth(α) = depth(α′)− 1, we
draw n oriented edge(s) from α to α′ if the coefficient of [Xα] in DXβ

· [Xα′ ] under the
selected basis is n. Now Lemma 3.6, together with the relations between DXβ

, DX , and
D′

X, allows us to write the weight as an inner product, which relies only on combinatorial
data of the root system.

We do a similar construction for coadjoint Schubert varieties, with ‘long’ replaced by
‘short’.

4The depth of a root is a standard notation in Coxeter systems. For α ∈ Φ+, depth(α) is the minimal
number of consecutive simple reflections needed to send α to Φ−, and for α ∈ Φ−, depth(α) is just
1 − depth(−α).
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Remark 4.2. (1) Let p be a vertex in the Chevalley–Hasse diagram. Then the dimen-
sion of the associated Schubert class is the minimal length of the path from the
(co)adjoint root to p.

(2) If Xβ ⊆ X is a Schubert variety in the (co)adjoint partial flag variety X. By defini-
tion, DXβ

= i∗DX. Let Pβ and PX be the corresponding Chevalley–Hasse diagrams.
Then it turns out that Pβ is a lower ideal of PX with the unique maximal vertex β.

(3) The Chevalley–Hasse diagrams of partial flag varieties are all vertically symmet-
rical, with the upper half corresponding to the positive roots and the lower half
corresponding to the negative roots. For simplicity, most of the diagrams shown in
this article are only the lower half and the negative roots of the whole diagram.

(4) One may now use Definition 4.1, together with the formula given in Lemma 3.6, to
revisit Section 2 and work out the diagrams explicitly!

Example 4.3. Consider the root system of type F4; the corresponding coadjoint par-
tial flag variety, which is itself the maximal coadjoint variety, is denoted X(F4, θ). Its
Chevalley–Hasse diagram is illustrated in Figure 7. Similarly, the Chevalley–Hasse dia-
gram of X(E7, θ) is illustrated in Figure 8.

Note that the colored parts in Figure 7 and Figure 8 are isomorphic. In fact, as an
example of the techniques we applied to prove Theorem 1.1, we will show the isomor-
phism between those Schubert varieties indexed by the roots marked in blue in F4 and
E7 later in Example 5.3. We will deal with the red parts similarly in Example 5.5.

Figure 7: Lower half of P(F4, θ) Figure 8: Lower half of P(E7, θ)
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4.2 Chevalley–Hasse diagrams serve as Isomorphic Invariants

Proposition 4.4. If two (co)adjoint Schubert varieties are isomorphic, then they have the same
Chevalley–Hasse diagrams. In other words, we have derived one direction of Theorem 1.1.

Sketch of proof. The Chow groups of X, together with the chosen basis {[Xα]}, can be
recovered from purely algebraic structures of Xβ by Lemma 3.1. It suffices to give a
characterization of DXβ

independent of the root system. It can be easily verified that

(†) D = DXβ
is the only divisor in Pic(Xβ) such that D · [Xα] = [pt] for every Schubert

class [Xα] ∈ CH1(Xβ).

Now (†) determines DXβ
by the algebraic structure of Xβ only.

5 Two Techniques for Embedding

Now, we introduce some techniques that allow us to embed some of the (co)adjoint
Schubert varieties into a smaller partial flag variety X′ = G′/P′ (minimal embedding) or
larger partial flag variety Ĝ/P̂ (folding). Note that these embeddings are isomorphisms
when we restrict them to Schubert varieties.

5.1 Minimal embedding

To define the minimal embedding of Schubert varieties, let us first recall the support of
a Weyl group element.

Definition 5.1. Let W be a Weyl group generated by the simple reflections in S. For
w ∈ W, the support S(w) of w is defined as the set of all simple reflections that have
appeared in reduced expressions of w.

Lemma 5.2 ([12, Lemma 4.8]). Let G′ be the reductive subgroup of PS(w) with Weyl group
W ′ = WS(w) and P′

I′ = G′ ∩ PI as the parabolic subgroup of G′, corresponding to I′ := I ∩ S(w).
Set X′ := G′/P′. Note that w ∈ W ′I′ .

Now X′ is again a partial flag variety, whose Dynkin diagram is the full subdiagram D′ of D
with underlying set D ∩ S(w). Let X′

w be the Schubert variety in X′ induced by w ∈ W ′I′ . Then
the natural embedding X′ ↪→ X induces an isomorphism X′

w
∼= Xw.

Example 5.3. In the coadjoint partial flag variety of type F4, take β = −(1110). Then
Pβ is a path of length 5 (see Figure 10; it is exactly the subdiagram marked in blue in
Figure 7). We have

β = s4s3s2s3s4(−θ),

with the simple reflections marked in Figure 10. By Lemma 5.2 we can embed Xβ as
Xw in X′, a partial flag variety with D′ = {α2, α3, α4} of type C3 and I′ = D′ \ {α4}.
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This procedure is illustrated in Figure 9. As Xβ ⊆ X′ = C3/P1 ≃ P5, it follows that
Xβ ≃ P5 as dim Xβ = 5. Moreover, [X−(1111)] is an effective Cartier divisor in P5 which
is a generator of CH4(P

5) ∼= CaDiv(P5), so we must have X−(1111) ≃ P4. Similarly,
X−(1121) ≃ P3 and so on.

Similarly, we can show that the blue part in Figure 8 also corresponds to some Schu-
bert varieties in E7 isomorphic to projective spaces. This fact presents isomorphisms
between Schubert varieties from coadjoint types F4 and E7, as promised in Example 4.3.

α1
α2 α3

α4

Figure 9: taking support of w in F4

-(1232)-(1231)-(1221)-(1121)

P4 ∼= X−(1111)

P5 ∼= X−(1110)

P3 ∼= X−(1121)

s4

s3
s2 s3 s4

Figure 10: diagram P(F4,−(1110))

5.2 Folding

G/P Ĝ/P̂
Bn/P1 = Q2n−1 Dn+1/P1 = Q2n

Cn/P2 = IG(2, 2n) A2n−1/P2 = G(2, 2n)
F4/P4 E6/P1

G2/P1 = Q5 D4/P1 = Q6

Table 2: Hyperplane sections

The main reference of this type of embedding is [10]. Firstly, we introduce the folding
operation between linear algebraic groups. Let Ĝ be a simply connected simple algebraic
group whose Dynkin diagram is as in the second column of Table 2. Let σ ∈ Aut(Ĝ)
be the automorphism induced by the symmetry of the Dynkin diagram of Ĝ. Define
a closed subgroup G := Ĝσ as the fixed locus of σ; other standard subgroups of G are
defined as T := G ∩ T̂, B := G ∩ B̂, P := G ∩ P̂. The embedding of maximal tori gives
rise to a surjective map of root systems π : ΦĜ ↠ ΦG. There is a closed embedding j
from G/P to Ĝ/P̂. Moreover, G/P can be identified as hyperplane sections of Ĝ/P̂. For
more details, see [10, Lemma 4.1].

The map of root systems π induces an embedding ι : WG → WĜ of Weyl groups, by
sending each sα to ∏α̂∈π−1(α) sα̂. The product is well-defined since for every α ∈ Φ and
every α̂, α̂′ ∈ π−1(α), the reflections sα̂ and sα̂′ commute.

The lemma below serves as a useful tool for verifying isomorphisms between Schu-
bert varieties when the minimal embedding method fails.
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Lemma 5.4 ([10, Lemma 4.5]). For w ∈ WP
G with 2ℓ(w) ≤ dim G/P, the closed embedding

gives rise to a isomorphism between Schubert varieties j((G/P)w) = (Ĝ/P̂)w∗ .

Now let us witness the power of Lemma 5.4 by revisiting examples in Figures 7 and 8.

Example 5.5. The folding of Dynkin diagrams from E6 to F4 is illustrated in Figure 11.
By applying Lemma 5.4, the Schubert varieties of coadjoint type F4 indexed by the red

2′ 4′

3′

5′

1′

6′

−→ 1 2 3 4

ι : WF4 ↪→ WE6

s1 7→ s′2
s2 7→ s′4

s3 7→ s′3s′5
s4 7→ s′1s′6

Figure 11: Folding from E6 to F4

vertices in Figure 7 are isomorphic to some Schubert varieties in the cominuscule partial
flag variety E6/P1. On the other hand, by applying Lemma 5.2, the Schubert varieties of
type E7 indexed by the red vertices in Figure 8 are isomorphic to the same set of Schubert
varieties in E6/P1. Therefore we have shown the result promised in Example 4.3.

6 Proof Sketch of Theorem 1.1

We give a brief sketch of our strategy proving the other direction of Theorem 1.1:
(1) We classify the Schubert varieties X(T, β) whose Chevalley–Hasse diagrams are

unique, up to at most an automorphism of the Dynkin diagram. For example, the
(co)adjoint Schubert varieties corresponding to positive roots in most Cartan types
are unique in their isomorphic types.

(2) We use the two techniques for embedding to give the isomorphism between two
Schubert varieties whose Chevalley–Hasse diagrams fall into the same isomorphic
class. Example 5.3 and Example 5.5 provide a good demonstration.
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