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Abstract. In this extended abstract, we introduce the α-chromatic symmetric functions
χ
(α)
π [X; q], extending Shareshian and Wachs’ chromatic symmetric functions with an

additional real parameter α. We present positive combinatorial formulas with explicit
interpretations. Notably, we show an explicit monomial expansion in terms of the α-
binomial basis and an expansion into certain chromatic symmetric functions in terms
of the α-falling factorial basis. We also exhibit various Schur positivity results.
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1 Introduction

In his seminal paper [13], Stanley introduced the chromatic symmetric function χG[X] as
a symmetric function generalization of the chromatic polynomial for graphs. Subse-
quently, Shareshian and Wachs [12] refined this by defining the chromatic (quasi)symmetric
function χG[X; q] with an additional parameter q. Notably, Shareshian and Wachs showed
that χG(π)[X; q] is symmetric if the graphs G(π) are associated with Dyck paths π.

In this extended abstract, we consider even further generalization of Shareshian and
Wachs’ chromatic symmetric functions. We introduce a new parameter α to define the
α-chromatic symmetric function χ

(α)
π [X; q] for a Dyck path π, for α ∈ R, as

χ
(α)
π [X; q] := χπ

[
qα − 1
q − 1

X; q
]

.

Notably, for a Dyck path π of size n (referred to as an n-Dyck path from now on), the
coefficients of the α-chromatic symmetric function χ

(α)
π [X; q] lie within the C(q)-span of
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{[α]q, [α]2q, . . . , [α]nq}, where [α]q :=
qα − 1
q − 1

. We can express each coefficient in terms of

two alternative bases:{α + k
n


q

}
k=0,1,...,n−1

and
{
[α]kq

}
k=1,2,...,n

. (1.1)

Here, [α]kq := [α]q[α − 1]q · · · [α − k + 1]q is the q-falling factorial and
α + k

n


q

=
[α + k]nq
[n]q!

denotes the q-binomial coefficient.
We want to remark that the expansions of χ

(α)
π [X; q] in terms of α-binomial bases have

close connections to the original chromatic symmetric functions and the Schur expansion
of the unicellular LLT polynomials, namely, the coefficients of the α-chromatic symmetric
functions expressed in terms of the q-falling factorial basis serve as an interpolation
between the chromatic symmetric functions and the unicellular LLT polynomials. For
more details, refer to [9].

This extended abstract presents various positive combinatorial formulas for the α-
chromatic symmetric functions in these bases or their specialization at q = 1.

2 Backgrounds

2.1 Combinatorics

Throughout this paper, we set [n] = {1, 2, . . . , n}. We shall mainly follow the nota-
tions and definitions of [11, 14] for symmetric functions. For a partition λ of n, we
let mλ[X], eλ[X], hλ[X], pλ[X], sλ[X] denote the monomial, elementary, complete homoge-
neous, power sum and Schur symmetric functions, respectively. Let ΛF denote the F-algebra
of symmetric functions with coefficients in F = Q(q, t). The elements in ΛF may be
viewed as formal power series over Q(q, t) in infinitely many variables X = (x1, x2, . . . )
with finite degrees that are invariant under permutations of variables. In this extended
abstract, we often replace t by qα, for some α.

We briefly review plethystic notation. Let E = E(t1, t2, . . . ) be a formal Laurent
series with rational coefficients in t1, t2, . . .. The plethystic substitution pk[E] is defined

by replacing each ti in E by tk
i , i.e., pk[E] = E

(
tk
1, tk

2, . . .
)

and pλ[E] =
ℓ(λ)

∏
i=1

pλi [E]. The

plethystic substitution has the following properties: (1). If X = x1 + x2 + · · ·, then
pk[X] = pk(x1, x2, . . . ); (2). For a real parameter z, pk[zX] = zk pk[X]; (3). pk[(1 − t)X] =

∑i xk
i (1 − tk) = (1 − tk)pk[X]; (4). pk

[
X

1 − q

]
= ∑

i

xk
i

1 − xqk =
1

1 − qk pk[X].
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Then for an arbitrary symmetric function f , we define f [E] by ∑λ cλ pλ[E] if f =

∑λ cλ pλ. Due to the above property (1), it easily follows that for any f ∈ ΛF, f [X] =
f (x1, x2, . . . ). For this reason, it is a common convention in plethystic expression that X
stands for x1 + x2 + · · ·. In a similar vein, for X = x1 + x2 + · · · , Y = y1 + y2 + · · · , we
have f [X + Y] = f (x1, x2, . . . , y1, y2, . . . ) and f [XY] = f (x1y1, x1y2, . . . , x2y1, x2y2, . . . , ).
Refer to [8, 11] for a more comprehensive account.

Given a Dyck path π, there is a natural way to associate a Hessenberg function h(π),
a natural unit interval order P(π), and a graph G(π) for a Dyck path π. We outline
those correspondences.

A Hessenberg function is a nondecreasing function h : [n] → [n] such that h(i) ≥ i for
all 1 ≤ i ≤ n. For a Dyck path π, if we let h(π) be a function whose value at i is the
i-th column height of π, then h(π) is a Hessenberg function. Therefore, a Dyck path
determines a Hessenberg function and vice versa.

The natural unit interval order is a poset arising from an arrangement of unit intervals.
There is a well-known correspondence between Dyck paths and natural unit interval
orders and we will take it as a definition of natural unit interval order. For a Dyck path
π, P = P(π) is a poset on [n] whose order relation is defined by i <P(π) j if i < n and
h(π)i + 1 ≤ j ≤ n. In this case, we also denote the order relation by i <π j for i <P(m) j.
In addition, we say (i, j) is an attacking pair of π if i ≮π j.

Given a poset P, the incomparability graph inc(P) is a graph whose vertex set is the
elements of P and edges are connecting pairs of incomparable elements in P. Notice that
for a natural unit interval order P(π) associated with a Dyck path π, the correspond-
ing incomparability graph is encoded in the cells between the Dyck path and the main
diagonal. We denote this graph by G(π).

When referring to a Dyck path π, we implicitly encompass the associated objects
discussed above. That is, π will represent not only the Dyck path itself but also its
corresponding Hessenberg function h(π), the natural unit interval order P(π), and the
associated incomparability graph G(π).

2.2 Chromatic symmetric functions and unicellular LLT polynomials

We define the inversion statistic as invπ(w) = |{(i, j) : i < j, i ≮π j, and w(i) > w(j)}|,
for a word w ∈ Zn

>0 of length n.
Given a Dyck path π, the chromatic symmetric function of π is defined by

χπ[X; q] = ∑
w∈Zn

>0
proper

qinvπ(w)xw, (2.1)

where the sum is over ‘proper’ colorings of G(π), that is, the sum is over the words
of length n such that w(i) ̸= w(j) for i ≮π j. In definition (2.1) for χπ, if we remove
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the proper condition for w, then it becomes the unicellular LLT polynomial indexed by π,
namely

LLTπ[X; q] = ∑
w∈Zn

>0

qinvπ(w)xw. (2.2)

Carlsson and Mellit [4] found an explicit relationship between unicellular LLT poly-
nomials and chromatic symmetric functions via a plethystic substitution.

Proposition 2.1. [4] For a Dyck path π, we have

(q − 1)n χπ[X; q] = LLTπ[(q − 1)X; q]. (2.3)

3 α-chromatic symmetric functions

Throughout this paper, we let Qα = qα−1
q−1 .

Definition 3.1. Given a Dyck path π and α ∈ R, we define the α-chromatic symmetric
function

χ
(α)
π [X; q] := χπ [QαX; q] =

LLTπ[(qα − 1)X; q]
(q − 1)n . (3.1)

Given a Dyck path π, for 1 ≤ i ≤ n, let bi(π) and ai(π) denote the number of cells
below π and strictly above the diagonal y = x, in the ith column (row, respectively),
from the right (top, respectively). Then, by applying the superization technique (cf. [8]) on
the right most side of (3.1), we can prove the following proposition.

Proposition 3.2. For an n-Dyck path π and a real parameter α,

χ
(α)
π [1; q] = χπ[Qα; q] = qarea(π)

n

∏
i=1

[α − ai(π)]q = qarea(π)
n

∏
i=1

[α − bi(π)]q. (3.2)

Remark 3.3. The products occurring in the middle and the right hand side terms of
(3.2) are of the form so called rook product. Note that the close connection between
the chromatic quasisymmetric functions and rook theory has already been revealed in
various works (cf. [1, 5]). We also observe many interesting combinatorial properties of
rook theory related to the α-chromatic symmetric functions. In particular, we obtain a
new solution to Garsia and Remmel’s problem of finding a combinatorial description for
their q-hit numbers for any Ferrers board. See [9] for the details.

Remark 3.4. Recently, Hikita [10] announced a proof of the Stanley–Stembridge conjec-
ture, and his approach uses probabilistic argument observing that

∑
λ⊢n

q|e|−|eλ| cλ,π(q)
∏i[λi]q!

= 1 (3.3)
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where χπ(X; q) = ∑λ⊢n cλ,π(q)eλ[X] is the e-expansion of the chromatic quasisymmetric
function indexed by a Dyck path π, |e| is the number of cells outside of π and |eλ| =
∑i<j λiλj. We can easily derive (3.3) from (3.2), by applying the principal specialization
of the elementary symmetric functions and by letting α → ∞.

3.1 Monomial expansion into α-binomial bases

Given an n-Dyck path π, we define an ordering ≺π for bi-letters (i, j) ∈ Z>0 × [n] as
follows:

(i, j) ≺π (i′, j′) if and only if

{
i < i′ or
i = i′ and j <π j′.

Here, we consider the second coordinate j ∈ [n] as elements in the poset P(π) corre-
sponding to the Dyck path π. For λ ⊢ n, let mi(λ) denote the number of times i occurs
as a part in λ, and let M(λ) be the set of all words of weight λ, which means all words
where i occurs λi times for i ≥ 1. For a bi-word (w, σ) ∈ M(λ) × Sn, we say that
i ∈ [n − 1] is an ascent of (w, σ) with respect to π if

(w(i), σ(i)) ≺π (w(i + 1), σ(i + 1)).

We define ascπ(w, σ) as the number of ascents of (w, σ) with respect to π. We let
comajπ(w, σ) be the sum of positions where the ascents of (w, σ) occur. Finally, for a
bi-word (w, σ) ∈ M(λ)×Sn, we define a statistic statπ by

statπ(w, σ) = invπ(w) +
ℓ(λ)

∑
i=1

invπ[w−1(i)](σ[w
−1(i)]) +

(
n
2

)
− nk + comajπ(w, σ),

where π[A] is the induced subgraph π on A. Using these notions, we state a monomial

expansion of χ
(α)
π [X; q] into the basis

{α + k
n


q

}
0≤k≤n−1

.

Theorem 3.5. Given a Dyck path π, we have

χ
(α)
π [X; q] = ∑

λ⊢n

n−1

∑
k=0

∑
(w,σ)∈M(λ)×Sn

ascπ(w,σ)=k

qstatπ(w,σ)
α + k

n


q

mλ[X].

Proof. We briefly sketch the proof.
We consider an ordering 1 < 1 < 2 < 2 < · · · < n < n on the set of signed alphabets

A+ ∪A−. By applying the superization technique to the LLT polynomials, we get

LLTπ[tX − Y; q] = ∑
w∈Zn

>0

qinvπ(w)
n

∏
i=1

(t − qNπ(i))xw,
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where Nπ(i) is the number of j’s such that i < j, i ≮π j and w(i) = w(j). On the left-hand
side, by replacing t by qα and dividing by (q − 1)n, we get the α-chromatic symmetric
function:

χ
(α)
π [X; q] =

LLTπ[(qα − 1)X; q]
(q − 1)n

= ∑
λ⊢n

∑
w∈M(λ)

qinvπ(w)
ℓ(λ)

∏
i=1

(
qarea(π[w−1(i)])

λi

∏
j=1

[α − aj(π[w−1(i)])]q

)
mλ[X]. (3.4)

For a given positive integer α, a word (coloring) c ∈ Zn
>0, and another word (decora-

tion) d ∈ {0, 1, . . . , α − 1}n, we say that the bi-word (c, d) is an α-decorated proper coloring
of π of weight λ if the weight of c is λ, and for any cell (i, j) with i < j and i ≮π j, we
have (c(i), d(i)) ̸= (c(j), d(j)). Let C(α)

π,λ denote the set of α-decorated proper colorings of
weight λ. By Proposition 3.2 we have

n

∏
j=1

[α − aj(π)]q = q−| area(π)| ∑
σ∈{0,1,...,α−1}n

proper coloring of π

qinvπ(σ)+|σ|.

By utilizing (3.4) and the identity above, we get the following monomial expansion

χ
(α)
π [X; q] = ∑

λ⊢n
∑

(c,d)∈C(α)π,λ

qinvπ(c)+|d|
ℓ(λ)

∏
i=1

qinv
π[c−1(i)](d

−1(i))mλ[X]. (3.5)

To prove Theorem 3.5, it suffices to verify it for n distinct values of α. To that end, we
fix an integer α and prove the identity using the bijection below.

Definition 3.6. Consider an integer 0 ≤ α ≤ n − 1. Let
[α + k]

n

 denote the multiset of

size n whose elements are in {0, 1, . . . , α + k − n}, namely(
[α + k]

n

)
= {τ = (τ(1), τ(2), . . . , τ(n)) | 0 ≤ τ(i) ≤ α + k − n, τ(1) ≤ · · · ≤ τ(n)}.

Note that the size of this set is equal to (α+k
n ). We define

Φ :
n−1⋃
k=0

{(w, σ) ∈ M(λ)×Sn : asc(w, σ) = k} ×
(
[α + k]

n

)
→ C(α)

π,λ

by Φ(w, σ, τ)σ(i) = (w(i), τ(i) + (i − 1)− asc<i
π (w, σ)). Here, asc<i

π (w, σ) counts the as-
cents occurring in the first i − 1 positions.

Then the fact that the map Φ is a bijection gives a way to collect
(

α + k
n

)
terms in

the monomial expansion of Theorem 3.5. See [9] for a fuller account.
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3.2 The XY technique and (α)k expansion

Now we consider the (α)k basis expansion.
Given two sets of variables X, Y, let XY = {xiyj : i, j ≥ 1} and π be a Dyck path.

Theorem 3.7.

χπ[XY; q] = ∑
λ⊢n

mλ[X] ∑
w∈M(λ)

qinvπ(w)χβ(π,w)(Y; q), (3.6)

where the n-Dyck path β(π, w) corresponds to the graph Gβ obtained by starting with Gπ colored
by w, and then removing all edges which connect two vertices a, b with different colors (i.e.
vertices satisfying w(a) ̸= w(b)).

Proof. Define a total order on ordered pairs of positive integers (a, b) as follows:

if a < c then (a, b) < (c, d) for all b, d and also (b, a) < (b, c) for all b. (3.7)

By definition,

χπ[XY; q] = ∑
C∈(Z2)n

C proper

qinvπ(C) ∏
i≥1

xwi yzi , (3.8)

where Ci = (wi, zi) with both w and z in Zn
+, and we use (3.7) to determine inequalities

among the Ci’s. Now for any i < j where (j, i) ∈ Gπ, if wi ̸= wj, then whether or
not Ci and Cj contribute to invπ(C) is completely determined by the values of wi and
wj. On the other hand, if wi = wj, then whether Ci and Cj contribute to invπ(C) is
completely determined by the values of zi and zj, and in this case we also must have
zi ̸= zj, otherwise the coloring C of Gπ would not be proper. It follows that

invπ(C) = invπ(w1, w2, . . . , wn) + invβ(π,w)(z1, z2, . . . , zn), (3.9)

where the first term on the right counts the inversions amongst Ci, Cj which have unequal
first coordinates, and invβ(π,w) counts the inversions amongst Ci, Cj which have equal
first coordinates. Thus the contribution to χπ[XY; q] from all colorings C whose first
coordinate w has weight λ on the right-hand-side of (3.8) factors into a term of weight
λ in the X variables, times a sum of terms in the Y variables, which are over proper
colorings of Gβ(π,w). We leave it to the reader to show that Gβ(π,w) is a unit interval order
when Gπ is.

Corollary 3.8. Given an n-Dyck path π, let

χ
(α)
π [X; q] = ∑

λ⊢n
Cπ,λ(α)sλ[X]. (3.10)

Then if α ∈ N, Cπ,λ(α) ∈ N[q] and furthermore has a combinatorial interpretation.
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Proof. Let X = Qα in (3.6). Clearly mλ [Qα] ∈ N[q] since α ∈ N. Since all the Schur
coefficients of the χβ(π,w)(Y; q) are in N[q] and count weighted P-tableaux by the re-
sult of Shareshian and Wachs, everything in (3.6) is positive and has a combinatorial
interpretation.

A set partition of [n] is a collection of nonempty subsets of [n] such that each element
in [n] is included in exactly one subset. Each subset in a set partition is called a part. The
set of set partitions of [n] into k parts is denoted by S(n, k).

For an n-Dyck path π and a set partition S of [n], we assign a Dyck path β(π, S) as
follows. First, order the parts of S as S = {S(1), . . . , S(k)} and let wS be the word obtained
by replacing elements in S(i) with i. Now define

β(π, S) := β(π, wS).

Using this, we present the expansion of α-chromatic symmetric functions into (α)k basis.

Theorem 3.9. For an n-Dyck path π, the α-chromatic symmetric function χ
(α)
π [X; 1] at q = 1

in terms of the falling factorial basis
{
(α)k}

1≤k≤n is

χ
(α)
π [X; 1] =

n

∑
k=1

(α)k ∑
S∈S(n,k)

χβ(π,S)[X; 1]. (3.11)

In particular, the α-chromatic symmetric function χ
(α)
π [X; 1] is positively expanded in terms of

the basis
{
(α)ksλ

}
1≤k≤n,

λ⊢n
.

Proof of Theorem 3.9. Let w be a word of length n. Define S(w) to be the set partition such
that i and j belong to the same part of S(w) if and only if w(i) = w(j). For example,
S(31321) = {{1, 3}, {2, 5}, {4}}. By letting X = Qα and Y = X in (3.6), we have

χ
(α)
π [X; q] = ∑

λ⊢n
mλ [Qα] ∑

w∈M(λ)

qinvπ(w)χβ(π,w)(Y; q),

We let q = 1 to obtain

χ
(α)
π [X; 1] = ∑

λ⊢n
∑

w∈M(λ)

(
α

ℓ(λ)

)(
ℓ(λ)

m1(λ), m2(λ), · · · , mℓ(λ)(λ)

)
χβ(π,w)[X; 1], (3.12)

where mi(λ) denotes the multiplicity of i in the partition λ.
For a set partition S of n, one can associate a partition λ(S) by reordering the sizes

of each part of S to a non-increasing sequence. Let S(n, λ) be the set of set partitions S
with λ(S) = λ.
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Fix a partition λ ⊢ n and a set partition S ∈ S(n, λ). Note that the number of words
w satisfying S(w) = S is given by m1(λ)!m2(λ)! · · ·mℓ(λ)(λ)!. Therefore, we can rewrite
(3.12) as

χ
(α)
π [X; 1] = ∑

λ⊢n
∑

S∈S(λ)

(
α

ℓ(λ)

)(
ℓ(λ)

m1(λ), m2(λ), · · ·

)
m1(λ)! · · ·mℓ(λ)(λ)!χβ(π,S)[X; 1]

= ∑
λ⊢n

∑
S∈S(λ)

(α)ℓ(λ)χβ(π,S)[X; 1],

which finishes the proof.

Remark 3.10. Due to Hikita’s proof of Stanley–Stembridge conjecture [10], Theorem 3.9
gives e-positivity of the α-chromatic symmetric functions.

3.3 Further results on Schur expansions

This section proves the Schur positivity of α-chromatic symmetric functions into two

binomial bases

{α + k
n


q

}
0≤k≤n−1

and

{α

k


q

}
1≤k≤n

. Notably, we establish a general

result for Schur positivity of sλ[QαX].

Lemma 3.11. For a partition λ, sλ [QαX] is Schur positive in terms of the bases{α + k
n


q

}
0≤k≤n−1

and

{α

k


q

}
1≤k≤n

.

As a Corollary, the Schur positivity of α-chromatic symmetric function χ
(α)
π [X; q] in

terms of

{α + k
n


q

}
0≤k≤n−1

and

{α

k


q

}
1≤k≤n

follows from the Schur positivity of the

usual chromatic symmetric functions [6, 12].

Corollary 3.12. Consequently, if a symmetric function f is Schur positive, then f [QαX] also

exhibits Schur positivity in the bases

{α + k
n


q

}
0≤k≤n−1

and

{α

k


q

}
1≤k≤n

. In particular, the

Schur coefficients of α-chromatic symmetric function χ
(α)
π [X; q] of a Dyck path π are in N[q]

when χ
(α)
π [X; q] is expanded in terms of aforementioned bases.

It is noteworthy that the positivity in terms of the second basis is weaker than the
positivity in the q-falling factorial basis [α]kq. In fact, sλ [QαX] might not be in N[q] in
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terms of the q-falling factorial basis [α]kq. For example, s(2) [QαX] at q = 1 is(
1
2

α2 − 1
2

α

)
s(2)[X] +

(
1
2

α2 +
1
2

α

)
s(1,1)[X] =

1
2
(α)2s(2)[X] +

(
1
2
(α)2 + (α)1

)
s(1,1)[X],

in which the coefficients are rational in terms of the falling factorial basis (even for q = 1).
Nevertheless, we conjecture that the Schur coefficients of the α-chromatic symmetric
functions lie in N[q] in terms of the q-falling factorial basis.

Conjecture 3.13. For an n-Dyck path π, the coefficients of the α-chromatic symmetric
function χ

(α)
π [X; q] in

{
[α]kqsλ[X]

}
1≤k≤n, λ⊢n

expansion are in N[q].

Lastly, we present a symmetry relation for the Schur expansion of the α-chromatic
symmetric functions.

Proposition 3.14. For an n-Dyck path π, if we let

χ
(α)
π [X; q] =

n−1

∑
k=0

∑
λ⊢n

c(α)π,λ,k(q)
α + k

n


q

sλ[X],

then
c(α)π,λ,k(q) = qarea(π)+(n

2)c(α)π,λ′,n−1−k(q
−1).

Proof. This symmetry relation easily follows the following relation of the unicellular LLT
polynomials [2, Proposition 4.1.4]

ω(LLTπ[X; q]) = qarea(π) LLTπ[X; q−1].

For the details, see [9].

4 Final Remarks

4.1 Schur expansion of unicellular LLT polynomials

Proposition 4.1. For an n-Dyck path π, let ck
π,λ(q) and dk

π,λ(q) be the Schur coefficients of

α-chromatic symmetric function into the bases

{α + k
n


q

}
0≤k≤n−1

and
{
[α]kq

}
1≤k≤n

, respec-

tively:

χ
(α)
π [X; q] = ∑

λ⊢n

n−1

∑
k=0

ck
π,λ(q)

α + k
n


q

sλ[X]=∑λ⊢n ∑n
k=1 dk

π,λ(q)[α]
k
qsλ[X].

Then we have

LLTπ[X; q] = ∑
λ⊢n

∑n−1
k=0 ck

π,λ(q)
[n]q!

sλ[X] = ∑
λ⊢n

q−(n
2)dn

π,λ(q)sλ[X].
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At α = 1, we have [α]kq = 0 for all k except for k = 1. On the other hand, the α-
chromatic symmetric function evaluated at α = 1 coincides with the original chromatic
symmetric function. Consequently, in the expansion of α-chromatic symmetric functions
χ
(α)
π [X; q] using the

{
[α]kq

}
basis, the coefficient corresponding to [α]1q is the chromatic

symmetric function χπ[X; q]. Based on this observation, Proposition 4.1 implies that the
coefficients of the α-chromatic symmetric functions expressed in terms of the q-falling
factorial basis serve as an interpolation between the chromatic symmetric functions and
the unicellular LLT polynomials.

4.2 Geometric interpretations

For an n-Dyck path π, let Hess(π) be the (regular semisimple) Hessenberg variety associ-
ated to π (or the Hessenberg function h(π)). Tymoczko’s dot action on torus equivariant
cohomology induces an Sn action on the cohomology H∗(Hess(π)). Brosnan–Chow [3],
and Guay-Paquet [7] independently proved the conjecture of Shareshian–Wachs [12] that
this representation coincides with the chromatic symmetric function:

ωχπ[X; q] = Frob(H∗(Hess(π)); q),

where Frob is the (graded) Frobenius characteristic map.
Since α-chromatic symmetric functions enjoy various Schur positivity phenomena

and symmetry relations, it is tempting to seek a geometric model behind it. For fixed
α ∈ Z>0, it is quite direct to obtain the following geometric interpretation for α-chromatic
symmetric function.

Proposition 4.2. Let π be an n-Dyck path and α ∈ Z>0 be a fixed positive integer. Then we
have

ωχ
(α)
π [X; q] = Frob

(
H∗
(

Hess(π)× (Pα−1)n
)

; q
)

.

Here Pα−1 is the complex projective space of dimension α − 1 where Sn acts by permuting
coordinates.

Unfortunately, if we let α be general (as a parameter), it is unclear how to interpret the
α-chromatic symmetric functions in terms of geometry. Such an approach could guide
us toward achieving the desired Schur positivity in Conjecture 3.13.
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