Séminaire Lotharingien de Combinatoire **93B** (2025) Article #153, 12 pp.

α -chromatic symmetric functions

Jim Haglund^{*1}, Jaeseong Oh⁺², and Meesue Yoo^{‡3}

¹Department of Mathematics, University of Pennsylvania, Philadelphia, PA 19104, USA ²June E Huh Center for Mathematical Challenges, Korea Institute for Advanced Study, Seoul 02455, South Korea ³Department of Mathematics, Chungbuk National University, Cheongju 28644, South Korea

Abstract. In this extended abstract, we introduce the *α*-chromatic symmetric functions $\chi_{\pi}^{(\alpha)}[X;q]$, extending Shareshian and Wachs' chromatic symmetric functions with an additional real parameter *α*. We present positive combinatorial formulas with explicit interpretations. Notably, we show an explicit monomial expansion in terms of the *α*-binomial basis and an expansion into certain chromatic symmetric functions in terms of the *α*-falling factorial basis. We also exhibit various Schur positivity results.

Keywords: α -chromatic symmetric functions, Schur positivity, α -binomial coefficients, rook polynomials, hit polynomials

1 Introduction

In his seminal paper [13], Stanley introduced the *chromatic symmetric function* $\chi_G[X]$ as a symmetric function generalization of the chromatic polynomial for graphs. Subsequently, Shareshian and Wachs [12] refined this by defining the *chromatic (quasi)symmetric function* $\chi_G[X;q]$ with an additional parameter q. Notably, Shareshian and Wachs showed that $\chi_{G(\pi)}[X;q]$ is symmetric if the graphs $G(\pi)$ are associated with Dyck paths π .

In this extended abstract, we consider even further generalization of Shareshian and Wachs' chromatic symmetric functions. We introduce a new parameter α to define the α -chromatic symmetric function $\chi_{\pi}^{(\alpha)}[X;q]$ for a Dyck path π , for $\alpha \in \mathbb{R}$, as

$$\chi_{\pi}^{(\alpha)}[X;q] := \chi_{\pi}\left[\frac{q^{\alpha}-1}{q-1}X;q\right].$$

Notably, for a Dyck path π of size *n* (referred to as an *n*-Dyck path from now on), the coefficients of the α -chromatic symmetric function $\chi_{\pi}^{(\alpha)}[X;q]$ lie within the $\mathbb{C}(q)$ -span of

[†]jsoh@kias.re.kr Jaeseong Oh was supported by Korea Institute for Advanced Study (HP083401).

^{*}jhaglund@math.upenn.edu

[‡]meesueyoo@chungbuk.ac.kr Meesue Yoo was supported by NRF grant RS-2024-00344076.

 $\{[\alpha]_q, [\alpha]_q^2, \dots, [\alpha]_q^n\}$, where $[\alpha]_q := \frac{q^{\alpha} - 1}{q - 1}$. We can express each coefficient in terms of two alternative bases:

$$\left\{ \begin{bmatrix} \alpha + k \\ n \end{bmatrix}_{q} \right\}_{k=0,1,\dots,n-1} \quad \text{and} \quad \left\{ [\alpha]_{\overline{q}}^{\underline{k}} \right\}_{k=1,2,\dots,n}. \tag{1.1}$$

Here, $[\alpha]_{\overline{q}}^{\underline{k}} := [\alpha]_q [\alpha - 1]_q \cdots [\alpha - k + 1]_q$ is the *q*-falling factorial and $\begin{bmatrix} \alpha + k \\ n \end{bmatrix}_q = \frac{[\alpha + k]_{\overline{q}}^n}{[n]_q!}$ denotes the *q*-binomial coefficient.

We want to remark that the expansions of $\chi_{\pi}^{(\alpha)}[X;q]$ in terms of α -binomial bases have close connections to the original chromatic symmetric functions and the Schur expansion of the unicellular LLT polynomials, namely, the coefficients of the α -chromatic symmetric functions expressed in terms of the *q*-falling factorial basis serve as an interpolation between the chromatic symmetric functions and the unicellular LLT polynomials. For more details, refer to [9].

This extended abstract presents various positive combinatorial formulas for the α chromatic symmetric functions in these bases or their specialization at q = 1.

2 Backgrounds

2.1 Combinatorics

Throughout this paper, we set $[n] = \{1, 2, ..., n\}$. We shall mainly follow the notations and definitions of [11, 14] for symmetric functions. For a partition λ of n, we let $m_{\lambda}[X]$, $e_{\lambda}[X]$, $h_{\lambda}[X]$, $p_{\lambda}[X]$, $s_{\lambda}[X]$ denote the *monomial*, *elementary*, *complete homogeneous*, *power sum* and *Schur symmetric functions*, respectively. Let Λ_F denote the *F*-algebra of symmetric functions with coefficients in $F = \mathbb{Q}(q, t)$. The elements in Λ_F may be viewed as formal power series over $\mathbb{Q}(q, t)$ in infinitely many variables $X = (x_1, x_2, ...)$ with finite degrees that are invariant under permutations of variables. In this extended abstract, we often replace t by q^{α} , for some α .

We briefly review plethystic notation. Let $E = E(t_1, t_2, ...)$ be a formal Laurent series with rational coefficients in $t_1, t_2, ...$ The *plethystic substitution* $p_k[E]$ is defined by replacing each t_i in E by t_i^k , i.e., $p_k[E] = E(t_1^k, t_2^k, ...)$ and $p_\lambda[E] = \prod_{i=1}^{\ell(\lambda)} p_{\lambda_i}[E]$. The plethystic substitution has the following properties: (1). If $X = x_1 + x_2 + \cdots$, then $p_k[X] = p_k(x_1, x_2, ...)$; (2). For a real parameter z, $p_k[zX] = z^k p_k[X]$; (3). $p_k[(1-t)X] =$ $\sum_i x_i^k(1-t^k) = (1-t^k)p_k[X]$; (4). $p_k\left[\frac{X}{1-q}\right] = \sum_i \frac{x_i^k}{1-xq^k} = \frac{1}{1-q^k}p_k[X]$. Then for an arbitrary symmetric function f, we define f[E] by $\sum_{\lambda} c_{\lambda} p_{\lambda}[E]$ if $f = \sum_{\lambda} c_{\lambda} p_{\lambda}$. Due to the above property (1), it easily follows that for any $f \in \Lambda_F$, $f[X] = f(x_1, x_2, ...)$. For this reason, it is a common convention in plethystic expression that X stands for $x_1 + x_2 + \cdots$. In a similar vein, for $X = x_1 + x_2 + \cdots$, $Y = y_1 + y_2 + \cdots$, we have $f[X + Y] = f(x_1, x_2, ..., y_1, y_2, ...)$ and $f[XY] = f(x_1y_1, x_1y_2, ..., x_2y_1, x_2y_2, ...,)$. Refer to [8, 11] for a more comprehensive account.

Given a Dyck path π , there is a natural way to associate a Hessenberg function $h(\pi)$, a natural unit interval order $P(\pi)$, and a graph $G(\pi)$ for a Dyck path π . We outline those correspondences.

A *Hessenberg function* is a nondecreasing function $h : [n] \rightarrow [n]$ such that $h(i) \ge i$ for all $1 \le i \le n$. For a Dyck path π , if we let $h(\pi)$ be a function whose value at i is the *i*-th column height of π , then $h(\pi)$ is a Hessenberg function. Therefore, a Dyck path determines a Hessenberg function and vice versa.

The *natural unit interval order* is a poset arising from an arrangement of unit intervals. There is a well-known correspondence between Dyck paths and natural unit interval orders and we will take it as a definition of natural unit interval order. For a Dyck path π , $P = P(\pi)$ is a poset on [n] whose order relation is defined by $i <_{P(\pi)} j$ if i < n and $h(\pi)_i + 1 \le j \le n$. In this case, we also denote the order relation by $i <_{\pi} j$ for $i <_{P(\mathbf{m})} j$. In addition, we say (i, j) is an *attacking pair* of π if $i \ne_{\pi} j$.

Given a poset *P*, the *incomparability graph* inc(P) is a graph whose vertex set is the elements of *P* and edges are connecting pairs of incomparable elements in *P*. Notice that for a natural unit interval order $P(\pi)$ associated with a Dyck path π , the corresponding incomparability graph is encoded in the cells between the Dyck path and the main diagonal. We denote this graph by $G(\pi)$.

When referring to a Dyck path π , we implicitly encompass the associated objects discussed above. That is, π will represent not only the Dyck path itself but also its corresponding Hessenberg function $h(\pi)$, the natural unit interval order $P(\pi)$, and the associated incomparability graph $G(\pi)$.

2.2 Chromatic symmetric functions and unicellular LLT polynomials

We define the *inversion* statistic as $\operatorname{inv}_{\pi}(w) = |\{(i, j) : i < j, i \not\leq_{\pi} j, \text{ and } w(i) > w(j)\}|$, for a word $w \in \mathbb{Z}_{>0}^n$ of length n.

Given a Dyck path π , the *chromatic symmetric function* of π is defined by

$$\chi_{\pi}[X;q] = \sum_{\substack{w \in \mathbb{Z}_{\geq 0}^{n} \\ \text{proper}}} q^{\text{inv}_{\pi}(w)} x^{w}, \qquad (2.1)$$

where the sum is over 'proper' colorings of $G(\pi)$, that is, the sum is over the words of length *n* such that $w(i) \neq w(j)$ for $i \not\leq_{\pi} j$. In definition (2.1) for χ_{π} , if we remove the proper condition for *w*, then it becomes the *unicellular LLT polynomial* indexed by π , namely

$$\operatorname{LLT}_{\pi}[X;q] = \sum_{w \in \mathbb{Z}_{>0}^{n}} q^{\operatorname{inv}_{\pi}(w)} x^{w}.$$
(2.2)

Carlsson and Mellit [4] found an explicit relationship between unicellular LLT polynomials and chromatic symmetric functions via a plethystic substitution.

Proposition 2.1. [4] For a Dyck path π , we have

$$(q-1)^n \chi_{\pi}[X;q] = \text{LLT}_{\pi}[(q-1)X;q].$$
(2.3)

3 α -chromatic symmetric functions

Throughout this paper, we let $Q_{\alpha} = \frac{q^{\alpha}-1}{q-1}$.

Definition 3.1. Given a Dyck path π and $\alpha \in \mathbb{R}$, we define the α -chromatic symmetric *function*

$$\chi_{\pi}^{(\alpha)}[X;q] := \chi_{\pi}\left[Q_{\alpha}X;q\right] = \frac{\text{LLT}_{\pi}\left[(q^{\alpha}-1)X;q\right]}{(q-1)^{n}}.$$
(3.1)

Given a Dyck path π , for $1 \le i \le n$, let $b_i(\pi)$ and $a_i(\pi)$ denote the number of cells below π and strictly above the diagonal y = x, in the *i*th column (row, respectively), from the right (top, respectively). Then, by applying the *superization technique* (cf. [8]) on the right most side of (3.1), we can prove the following proposition.

Proposition 3.2. For an *n*-Dyck path π and a real parameter α ,

$$\chi_{\pi}^{(\alpha)}[1;q] = \chi_{\pi}[Q_{\alpha};q] = q^{\operatorname{area}(\pi)} \prod_{i=1}^{n} [\alpha - a_{i}(\pi)]_{q} = q^{\operatorname{area}(\pi)} \prod_{i=1}^{n} [\alpha - b_{i}(\pi)]_{q}.$$
(3.2)

Remark 3.3. The products occurring in the middle and the right hand side terms of (3.2) are of the form so called *rook product*. Note that the close connection between the chromatic quasisymmetric functions and rook theory has already been revealed in various works (cf. [1, 5]). We also observe many interesting combinatorial properties of rook theory related to the α -chromatic symmetric functions. In particular, we obtain a new solution to Garsia and Remmel's problem of finding a combinatorial description for their *q*-hit numbers for any Ferrers board. See [9] for the details.

Remark 3.4. Recently, Hikita [10] announced a proof of the Stanley–Stembridge conjecture, and his approach uses probabilistic argument observing that

$$\sum_{\lambda \vdash n} q^{|\mathbf{e}| - |\mathbf{e}_{\lambda}|} \frac{c_{\lambda,\pi}(q)}{\prod_{i} [\lambda_{i}]_{q}!} = 1$$
(3.3)

where $\chi_{\pi}(X;q) = \sum_{\lambda \vdash n} c_{\lambda,\pi}(q) e_{\lambda}[X]$ is the *e*-expansion of the chromatic quasisymmetric function indexed by a Dyck path π , $|\mathbf{e}|$ is the number of cells outside of π and $|\mathbf{e}_{\lambda}| = \sum_{i < j} \lambda_i \lambda_j$. We can easily derive (3.3) from (3.2), by applying the principal specialization of the elementary symmetric functions and by letting $\alpha \to \infty$.

3.1 Monomial expansion into α -binomial bases

Given an *n*-Dyck path π , we define an ordering \prec_{π} for *bi-letters* $(i, j) \in \mathbb{Z}_{>0} \times [n]$ as follows:

$$(i,j) \prec_{\pi} (i',j')$$
 if and only if $\begin{cases} i < i' \text{ or} \\ i = i' \text{ and } j <_{\pi} j' \end{cases}$

Here, we consider the second coordinate $j \in [n]$ as elements in the poset $P(\pi)$ corresponding to the Dyck path π . For $\lambda \vdash n$, let $m_i(\lambda)$ denote the number of times *i* occurs as a part in λ , and let $M(\lambda)$ be the set of all words of *weight* λ , which means all words where *i* occurs λ_i times for $i \geq 1$. For a bi-word $(w, \sigma) \in M(\lambda) \times \mathfrak{S}_n$, we say that $i \in [n-1]$ is an *ascent* of (w, σ) with respect to π if

$$(w(i), \sigma(i)) \prec_{\pi} (w(i+1), \sigma(i+1)).$$

We define $\operatorname{asc}_{\pi}(w, \sigma)$ as the number of ascents of (w, σ) with respect to π . We let $\operatorname{comaj}_{\pi}(w, \sigma)$ be the sum of positions where the ascents of (w, σ) occur. Finally, for a bi-word $(w, \sigma) \in M(\lambda) \times \mathfrak{S}_n$, we define a statistic $\operatorname{stat}_{\pi}$ by

$$\operatorname{stat}_{\pi}(w,\sigma) = \operatorname{inv}_{\pi}(w) + \sum_{i=1}^{\ell(\lambda)} \operatorname{inv}_{\pi[w^{-1}(i)]}(\sigma[w^{-1}(i)]) + \binom{n}{2} - nk + \operatorname{comaj}_{\pi}(w,\sigma),$$

where $\pi[A]$ is the induced subgraph π on A. Using these notions, we state a monomial expansion of $\chi_{\pi}^{(\alpha)}[X;q]$ into the basis $\left\{ \begin{bmatrix} \alpha + k \\ n \end{bmatrix}_{q} \right\}_{0 \le k \le n-1}$.

Theorem 3.5. *Given a Dyck path* π *, we have*

$$\chi_{\pi}^{(\alpha)}[X;q] = \sum_{\lambda \vdash n} \sum_{k=0}^{n-1} \sum_{\substack{(w,\sigma) \in M(\lambda) \times \mathfrak{S}_n \\ \operatorname{asc}_{\pi}(w,\sigma) = k}} q^{\operatorname{stat}_{\pi}(w,\sigma)} \begin{bmatrix} \alpha + k \\ n \end{bmatrix}_{q} m_{\lambda}[X]$$

Proof. We briefly sketch the proof.

We consider an ordering $1 < \overline{1} < 2 < \overline{2} < \cdots < n < \overline{n}$ on the set of signed alphabets $A_+ \cup A_-$. By applying the superization technique to the LLT polynomials, we get

$$LLT_{\pi}[tX - Y; q] = \sum_{w \in \mathbb{Z}_{>0}^{n}} q^{inv_{\pi}(w)} \prod_{i=1}^{n} (t - q^{N_{\pi}(i)}) x^{w},$$

where $N_{\pi}(i)$ is the number of *j*'s such that $i < j, i \not<_{\pi} j$ and w(i) = w(j). On the left-hand side, by replacing *t* by q^{α} and dividing by $(q-1)^n$, we get the α -chromatic symmetric function:

$$\chi_{\pi}^{(\alpha)}[X;q] = \frac{\text{LLT}_{\pi}[(q^{\alpha}-1)X;q]}{(q-1)^{n}}$$
$$= \sum_{\lambda \vdash n} \sum_{w \in M(\lambda)} q^{\text{inv}_{\pi}(w)} \prod_{i=1}^{\ell(\lambda)} \left(q^{\text{area}(\pi[w^{-1}(i)])} \prod_{j=1}^{\lambda_{i}} [\alpha - a_{j}(\pi[w^{-1}(i)])]_{q} \right) m_{\lambda}[X].$$
(3.4)

For a given positive integer α , a word (coloring) $c \in \mathbb{Z}_{>0}^n$, and another word (decoration) $d \in \{0, 1, ..., \alpha - 1\}^n$, we say that the bi-word (c, d) is an α -decorated proper coloring of π of weight λ if the weight of c is λ , and for any cell (i, j) with i < j and $i \not\leq_{\pi} j$, we have $(c(i), d(i)) \neq (c(j), d(j))$. Let $C_{\pi, \lambda}^{(\alpha)}$ denote the set of α -decorated proper colorings of weight λ . By Proposition 3.2 we have

$$\prod_{j=1}^{n} [\alpha - a_j(\pi)]_q = q^{-|\operatorname{area}(\pi)|} \sum_{\substack{\sigma \in \{0,1,\dots,\alpha-1\}^n \\ \text{proper coloring of } \pi}} q^{\operatorname{inv}_{\pi}(\sigma) + |\sigma|}.$$

By utilizing (3.4) and the identity above, we get the following monomial expansion

$$\chi_{\pi}^{(\alpha)}[X;q] = \sum_{\lambda \vdash n} \sum_{(c,d) \in \mathcal{C}_{\pi,\lambda}^{(\alpha)}} q^{\mathrm{inv}_{\pi}(c) + |d|} \prod_{i=1}^{\ell(\lambda)} q^{\mathrm{inv}_{\pi[c^{-1}(i)]}(d^{-1}(i))} m_{\lambda}[X].$$
(3.5)

To prove Theorem 3.5, it suffices to verify it for *n* distinct values of α . To that end, we fix an integer α and prove the identity using the bijection below.

Definition 3.6. Consider an integer $0 \le \alpha \le n - 1$. Let $\binom{[\alpha + k]}{n}$ denote the multiset of size *n* whose elements are in $\{0, 1, ..., \alpha + k - n\}$, namely

$$\binom{[\alpha+k]}{n} = \{\tau = (\tau(1), \tau(2), \dots, \tau(n)) \mid 0 \le \tau(i) \le \alpha + k - n, \tau(1) \le \dots \le \tau(n)\}.$$

Note that the size of this set is equal to $\binom{\alpha+k}{n}$. We define

$$\Phi: \bigcup_{k=0}^{n-1} \{ (w,\sigma) \in M(\lambda) \times \mathfrak{S}_n : \operatorname{asc}(w,\sigma) = k \} \times \binom{[\alpha+k]}{n} \to \mathcal{C}_{\pi,\lambda}^{(\alpha)}$$

by $\Phi(w, \sigma, \tau)_{\sigma(i)} = (w(i), \tau(i) + (i-1) - \operatorname{asc}_{\pi}^{\leq i}(w, \sigma))$. Here, $\operatorname{asc}_{\pi}^{\leq i}(w, \sigma)$ counts the ascents occurring in the first i - 1 positions.

Then the fact that the map Φ is a bijection gives a way to collect $\begin{pmatrix} \alpha + k \\ n \end{pmatrix}$ terms in the monomial expansion of Theorem 3.5. See [9] for a fuller account.

3.2 The XY technique and $(\alpha)^{\underline{k}}$ expansion

Now we consider the $(\alpha)^{\underline{k}}$ basis expansion.

Given two sets of variables *X*, *Y*, let $XY = \{x_iy_j : i, j \ge 1\}$ and π be a Dyck path.

Theorem 3.7.

$$\chi_{\pi}[XY;q] = \sum_{\lambda \vdash n} m_{\lambda}[X] \sum_{w \in M(\lambda)} q^{\operatorname{inv}_{\pi}(w)} \chi_{\beta(\pi,w)}(Y;q),$$
(3.6)

where the n-Dyck path $\beta(\pi, w)$ corresponds to the graph G_{β} obtained by starting with G_{π} colored by w, and then removing all edges which connect two vertices a, b with different colors (i.e. vertices satisfying $w(a) \neq w(b)$).

Proof. Define a total order on ordered pairs of positive integers (*a*, *b*) as follows:

if
$$a < c$$
 then $(a, b) < (c, d)$ for all b, d and also $(b, a) < (b, c)$ for all b . (3.7)

By definition,

$$\chi_{\pi}[XY;q] = \sum_{\substack{C \in (\mathbb{Z}^2)^n \\ C \text{ proper}}} q^{\operatorname{inv}_{\pi}(C)} \prod_{i \ge 1} x_{w_i} y_{z_i},$$
(3.8)

where $C_i = (w_i, z_i)$ with both w and z in \mathbb{Z}_+^n , and we use (3.7) to determine inequalities among the C_i 's. Now for any i < j where $(j,i) \in G_{\pi}$, if $w_i \neq w_j$, then whether or not C_i and C_j contribute to $inv_{\pi}(C)$ is completely determined by the values of w_i and w_j . On the other hand, if $w_i = w_j$, then whether C_i and C_j contribute to $inv_{\pi}(C)$ is completely determined by the values of z_i and z_j , and in this case we also must have $z_i \neq z_j$, otherwise the coloring C of G_{π} would not be proper. It follows that

$$\operatorname{inv}_{\pi}(C) = \operatorname{inv}_{\pi}(w_1, w_2, \dots, w_n) + \operatorname{inv}_{\beta(\pi, w)}(z_1, z_2, \dots, z_n),$$
(3.9)

where the first term on the right counts the inversions amongst C_i , C_j which have unequal first coordinates, and $\operatorname{inv}_{\beta(\pi,w)}$ counts the inversions amongst C_i , C_j which have equal first coordinates. Thus the contribution to $\chi_{\pi}[XY;q]$ from all colorings C whose first coordinate w has weight λ on the right-hand-side of (3.8) factors into a term of weight λ in the X variables, times a sum of terms in the Y variables, which are over proper colorings of $G_{\beta(\pi,w)}$. We leave it to the reader to show that $G_{\beta(\pi,w)}$ is a unit interval order when G_{π} is.

Corollary 3.8. *Given an* n*-Dyck path* π *, let*

$$\chi_{\pi}^{(\alpha)}[X;q] = \sum_{\lambda \vdash n} C_{\pi,\lambda}(\alpha) s_{\lambda}[X].$$
(3.10)

Then if $\alpha \in \mathbb{N}$ *,* $C_{\pi,\lambda}(\alpha) \in \mathbb{N}[q]$ *and furthermore has a combinatorial interpretation.*

Proof. Let $X = Q_{\alpha}$ in (3.6). Clearly $m_{\lambda}[Q_{\alpha}] \in \mathbb{N}[q]$ since $\alpha \in \mathbb{N}$. Since all the Schur coefficients of the $\chi_{\beta(\pi,w)}(Y;q)$ are in $\mathbb{N}[q]$ and count weighted *P*-tableaux by the result of Shareshian and Wachs, everything in (3.6) is positive and has a combinatorial interpretation.

A set partition of [n] is a collection of nonempty subsets of [n] such that each element in [n] is included in exactly one subset. Each subset in a set partition is called a *part*. The set of set partitions of [n] into k parts is denoted by S(n,k).

For an *n*-Dyck path π and a set partition *S* of [n], we assign a Dyck path $\beta(\pi, S)$ as follows. First, order the parts of *S* as $S = \{S^{(1)}, \ldots, S^{(k)}\}$ and let w_S be the word obtained by replacing elements in $S^{(i)}$ with *i*. Now define

$$\beta(\pi, S) := \beta(\pi, w_S).$$

Using this, we present the expansion of α -chromatic symmetric functions into $(\alpha)^{\underline{k}}$ basis.

Theorem 3.9. For an n-Dyck path π , the α -chromatic symmetric function $\chi_{\pi}^{(\alpha)}[X;1]$ at q = 1 in terms of the falling factorial basis $\{(\alpha)^{\underline{k}}\}_{1 \le k \le n}$ is

$$\chi_{\pi}^{(\alpha)}[X;1] = \sum_{k=1}^{n} (\alpha)^{\underline{k}} \sum_{S \in S(n,k)} \chi_{\beta(\pi,S)}[X;1].$$
(3.11)

In particular, the α -chromatic symmetric function $\chi_{\pi}^{(\alpha)}[X;1]$ is positively expanded in terms of the basis $\{(\alpha)^{\underline{k}}s_{\lambda}\}_{\substack{1 \leq k \leq n, \\ \lambda \vdash n}}$.

Proof of Theorem 3.9. Let *w* be a word of length *n*. Define S(w) to be the set partition such that *i* and *j* belong to the same part of S(w) if and only if w(i) = w(j). For example, $S(31321) = \{\{1,3\}, \{2,5\}, \{4\}\}$. By letting $X = Q_{\alpha}$ and Y = X in (3.6), we have

$$\chi_{\pi}^{(\alpha)}[X;q] = \sum_{\lambda \vdash n} m_{\lambda} \left[Q_{\alpha} \right] \sum_{w \in M(\lambda)} q^{\mathrm{inv}_{\pi}(w)} \chi_{\beta(\pi,w)}(Y;q),$$

We let q = 1 to obtain

$$\chi_{\pi}^{(\alpha)}[X;1] = \sum_{\lambda \vdash n} \sum_{w \in M(\lambda)} \binom{\alpha}{\ell(\lambda)} \binom{\ell(\lambda)}{m_1(\lambda), m_2(\lambda), \cdots, m_{\ell(\lambda)}(\lambda)} \chi_{\beta(\pi,w)}[X;1], \quad (3.12)$$

where $m_i(\lambda)$ denotes the multiplicity of *i* in the partition λ .

For a set partition *S* of *n*, one can associate a partition $\lambda(S)$ by reordering the sizes of each part of *S* to a non-increasing sequence. Let $S(n, \lambda)$ be the set of set partitions *S* with $\lambda(S) = \lambda$.

Fix a partition $\lambda \vdash n$ and a set partition $S \in S(n, \lambda)$. Note that the number of words w satisfying S(w) = S is given by $m_1(\lambda)!m_2(\lambda)!\cdots m_{\ell(\lambda)}(\lambda)!$. Therefore, we can rewrite (3.12) as

$$\chi_{\pi}^{(\alpha)}[X;1] = \sum_{\lambda \vdash n} \sum_{S \in \mathcal{S}(\lambda)} {\alpha \choose \ell(\lambda)} {\ell(\lambda) \choose m_1(\lambda), m_2(\lambda), \cdots} m_1(\lambda)! \cdots m_{\ell(\lambda)}(\lambda)! \chi_{\beta(\pi,S)}[X;1]$$
$$= \sum_{\lambda \vdash n} \sum_{S \in \mathcal{S}(\lambda)} {\alpha \choose \ell(\lambda)} \chi_{\beta(\pi,S)}[X;1],$$

which finishes the proof.

Remark 3.10. Due to Hikita's proof of Stanley–Stembridge conjecture [10], Theorem 3.9 gives *e*-positivity of the α -chromatic symmetric functions.

3.3 Further results on Schur expansions

This section proves the Schur positivity of α -chromatic symmetric functions into two binomial bases $\left\{ \begin{bmatrix} \alpha + k \\ n \end{bmatrix}_q \right\}_{0 \le k \le n-1}$ and $\left\{ \begin{bmatrix} \alpha \\ k \end{bmatrix}_q \right\}_{1 \le k \le n}$. Notably, we establish a general result for Schur positivity of $s_{\lambda}[Q_{\alpha}X]$.

Lemma 3.11. For a partition λ , $s_{\lambda}[Q_{\alpha}X]$ is Schur positive in terms of the bases

$$\left\{ \begin{bmatrix} \alpha + k \\ n \end{bmatrix}_{q} \right\}_{0 \le k \le n-1} and \left\{ \begin{bmatrix} \alpha \\ k \end{bmatrix}_{q} \right\}_{1 \le k \le n}$$

As a Corollary, the Schur positivity of α -chromatic symmetric function $\chi_{\pi}^{(\alpha)}[X;q]$ in terms of $\left\{ \begin{bmatrix} \alpha + k \\ n \end{bmatrix}_{q} \right\}_{0 \le k \le n-1}$ and $\left\{ \begin{bmatrix} \alpha \\ k \end{bmatrix}_{q} \right\}_{1 \le k \le n}$ follows from the Schur positivity of the usual chromatic symmetric functions [6, 12].

Corollary 3.12. Consequently, if a symmetric function f is Schur positive, then $f[Q_{\alpha}X]$ also exhibits Schur positivity in the bases $\left\{ \begin{bmatrix} \alpha + k \\ n \end{bmatrix}_{q} \right\}_{0 \le k \le n-1}$ and $\left\{ \begin{bmatrix} \alpha \\ k \end{bmatrix}_{q} \right\}_{1 \le k \le n}$. In particular, the Schur coefficients of α -chromatic symmetric function $\chi_{\pi}^{(\alpha)}[X;q]$ of a Dyck path π are in $\mathbb{N}[q]$ when $\chi_{\pi}^{(\alpha)}[X;q]$ is expanded in terms of aforementioned bases.

It is noteworthy that the positivity in terms of the second basis is *weaker* than the positivity in the *q*-falling factorial basis $[\alpha]_{\overline{q}}^{\underline{k}}$. In fact, $s_{\lambda}[Q_{\alpha}X]$ might not be in $\mathbb{N}[q]$ in

terms of the *q*-falling factorial basis $[\alpha]_q^k$. For example, $s_{(2)}[Q_{\alpha}X]$ at q = 1 is

$$\left(\frac{1}{2}\alpha^2 - \frac{1}{2}\alpha\right)s_{(2)}[X] + \left(\frac{1}{2}\alpha^2 + \frac{1}{2}\alpha\right)s_{(1,1)}[X] = \frac{1}{2}(\alpha)^2 s_{(2)}[X] + \left(\frac{1}{2}(\alpha)^2 + (\alpha)^1\right)s_{(1,1)}[X],$$

in which the coefficients are rational in terms of the falling factorial basis (even for q = 1). Nevertheless, we conjecture that the Schur coefficients of the α -chromatic symmetric functions lie in $\mathbb{N}[q]$ in terms of the *q*-falling factorial basis.

Conjecture 3.13. For an *n*-Dyck path π , the coefficients of the α -chromatic symmetric function $\chi_{\pi}^{(\alpha)}[X;q]$ in $\left\{ [\alpha]_{q}^{\underline{k}} s_{\lambda}[X] \right\}_{1 \le k \le n, \lambda \vdash n}$ expansion are in $\mathbb{N}[q]$.

Lastly, we present a symmetry relation for the Schur expansion of the α -chromatic symmetric functions.

Proposition 3.14. For an *n*-Dyck path π , if we let

$$\chi_{\pi}^{(\alpha)}[X;q] = \sum_{k=0}^{n-1} \sum_{\lambda \vdash n} c_{\pi,\lambda,k}^{(\alpha)}(q) \begin{bmatrix} \alpha+k\\n \end{bmatrix}_{q} s_{\lambda}[X],$$

then

$$c_{\pi,\lambda,k}^{(\alpha)}(q) = q^{\operatorname{area}(\pi) + \binom{n}{2}} c_{\pi,\lambda',n-1-k}^{(\alpha)}(q^{-1}).$$

Proof. This symmetry relation easily follows the following relation of the unicellular LLT polynomials [2, Proposition 4.1.4]

$$\omega(\text{LLT}_{\pi}[X;q]) = q^{\text{area}(\pi)} \text{LLT}_{\pi}[X;q^{-1}].$$

For the details, see [9].

4 Final Remarks

4.1 Schur expansion of unicellular LLT polynomials

Proposition 4.1. For an n-Dyck path π , let $c_{\pi,\lambda}^k(q)$ and $d_{\pi,\lambda}^k(q)$ be the Schur coefficients of α -chromatic symmetric function into the bases $\left\{ \begin{bmatrix} \alpha + k \\ n \end{bmatrix}_q \right\}_{0 \le k \le n-1}$ and $\left\{ \begin{bmatrix} \alpha \end{bmatrix}_q^k \right\}_{1 \le k \le n}$, respectively:

$$\chi_{\pi}^{(\alpha)}[X;q] = \sum_{\lambda \vdash n} \sum_{k=0}^{n-1} c_{\pi,\lambda}^{k}(q) \begin{bmatrix} \alpha+k\\n \end{bmatrix}_{q} s_{\lambda}[X] = \sum_{\lambda \vdash n} \sum_{k=1}^{n} d_{\pi,\lambda}^{k}(q) [\alpha]_{q}^{\underline{k}} s_{\lambda}[X].$$

Then we have

$$\operatorname{LLT}_{\pi}[X;q] = \sum_{\lambda \vdash n} \frac{\sum_{k=0}^{n-1} c_{\pi,\lambda}^{k}(q)}{[n]_{q}!} s_{\lambda}[X] = \sum_{\lambda \vdash n} q^{-\binom{n}{2}} d_{\pi,\lambda}^{n}(q) s_{\lambda}[X].$$

At $\alpha = 1$, we have $[\alpha]_{\overline{q}}^{\underline{k}} = 0$ for all k except for k = 1. On the other hand, the α chromatic symmetric function evaluated at $\alpha = 1$ coincides with the original chromatic symmetric function. Consequently, in the expansion of α -chromatic symmetric functions $\chi_{\pi}^{(\alpha)}[X;q]$ using the $\{[\alpha]_{\overline{q}}^{\underline{k}}\}$ basis, the coefficient corresponding to $[\alpha]_{\overline{q}}^{\underline{1}}$ is the chromatic symmetric function $\chi_{\pi}[X;q]$. Based on this observation, Proposition 4.1 implies that the coefficients of the α -chromatic symmetric functions expressed in terms of the q-falling factorial basis serve as an interpolation between the chromatic symmetric functions and the unicellular LLT polynomials.

4.2 Geometric interpretations

For an *n*-Dyck path π , let Hess(π) be the (regular semisimple) Hessenberg variety associated to π (or the Hessenberg function $h(\pi)$). Tymoczko's dot action on torus equivariant cohomology induces an \mathfrak{S}_n action on the cohomology $H^*(\text{Hess}(\pi))$. Brosnan–Chow [3], and Guay-Paquet [7] independently proved the conjecture of Shareshian–Wachs [12] that this representation coincides with the chromatic symmetric function:

$$\omega \chi_{\pi}[X;q] = \operatorname{Frob}(H^*(\operatorname{Hess}(\pi));q),$$

where Frob is the (graded) Frobenius characteristic map.

Since α -chromatic symmetric functions enjoy various Schur positivity phenomena and symmetry relations, it is tempting to seek a geometric model behind it. For fixed $\alpha \in \mathbb{Z}_{>0}$, it is quite direct to obtain the following geometric interpretation for α -chromatic symmetric function.

Proposition 4.2. Let π be an *n*-Dyck path and $\alpha \in \mathbb{Z}_{>0}$ be a fixed positive integer. Then we have

$$\omega \chi_{\pi}^{(\alpha)}[X;q] = \operatorname{Frob}\left(H^*\left(\operatorname{Hess}(\pi) \times (\mathbb{P}^{\alpha-1})^n\right);q\right).$$

Here $\mathbb{P}^{\alpha-1}$ *is the complex projective space of dimension* $\alpha - 1$ *where* \mathfrak{S}_n *acts by permuting coordinates.*

Unfortunately, if we let α be general (as a parameter), it is unclear how to interpret the α -chromatic symmetric functions in terms of geometry. Such an approach could guide us toward achieving the desired Schur positivity in Conjecture 3.13.

References

[1] A. Abreu and A. Nigro. "Chromatic symmetric functions from the modular law". J. Combin. *Theory Ser. A* **180** (2021), Paper No. 105407, 30. DOI.

- [2] J. Blasiak, M. Haiman, J. Morse, A. Pun, and G. H. Seelinger. "A shuffle theorem for paths under any line". *Forum Math. Pi* **11** (2023), Paper No. e5, 38. DOI.
- [3] P. Brosnan and T. Y. Chow. "Unit interval orders and the dot action on the cohomology of regular semisimple Hessenberg varieties". *Adv. Math.* **329** (2018), pp. 955–1001. DOI.
- [4] E. Carlsson and A. Mellit. "A proof of the shuffle conjecture". J. Amer. Math. Soc. **31**.3 (2018), pp. 661–697. DOI.
- [5] L. Colmenarejo, A. H. Morales, and G. Panova. "Chromatic symmetric functions of Dyck paths and *q*-rook theory". *European J. Combin.* **107** (2023), Paper No. 103595, 36. DOI.
- [6] V. Gasharov. "Incomparability graphs of (3 + 1)-free posets are s-positive". Proceedings of the 6th Conference on Formal Power Series and Algebraic Combinatorics (New Brunswick, NJ, 1994). Vol. 157. 1-3. 1996. DOI.
- [7] M. Guay-Paquet. "A modular relation for the chromatic symmetric functions of (3+ 1)-free posets". 2013. arXiv:1306.2400.
- [8] J. Haglund. *The q,t-Catalan numbers and the space of diagonal harmonics*. Vol. 41. University Lecture Series. With an appendix on the combinatorics of Macdonald polynomials. American Mathematical Society, Providence, RI, 2008, pp. viii+167.
- [9] J. Haglund, J. Oh, and M. Yoo. "α-chromatic symmetric functions". 2024. arXiv:2407.06965.
- [10] T. Hikita. "A proof of the Stanley-Staembridge conjecture". 2024. arXiv:2410.12758.
- [11] I. G. Macdonald. Symmetric functions and Hall polynomials. Second. Oxford Classic Texts in the Physical Sciences. With contribution by A. V. Zelevinsky and a foreword by Richard Stanley. The Clarendon Press, Oxford University Press, New York, 2015, pp. xii+475.
- [12] J. Shareshian and M. L. Wachs. "Chromatic quasisymmetric functions". Adv. Math. 295 (2016), pp. 497–551. DOI.
- [13] R. P. Stanley. "A symmetric function generalization of the chromatic polynomial of a graph". *Adv. Math.* **111**.1 (1995), pp. 166–194. DOI.
- [14] R. P. Stanley. Enumerative combinatorics. Vol. 2. Second. Vol. 208. Cambridge Studies in Advanced Mathematics. With an appendix by Sergey Fomin. Cambridge University Press, Cambridge, [2024] ©2024, pp. xvi+783.