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Abstract. Motivated by the notion of nice graphs, we introduce the concept of strongly
nice property, which can be used to study the Schur positivity of symmetric functions.
We show that a graph and all its induced subgraphs are strongly nice if and only if
it is claw-free, which strengthens a result of Stanley and provides further evidence
for the well-known conjecture on the Schur positivity of claw-free graphs. As another
application, we solve Wang and Wang’s conjecture on the non-Schur positivity of squid
graphs Sq(2n − 1; 1n) for n ≥ 3 by proving that these graphs are not strongly nice.
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1 Introduction

Schur positivity is of great importance in combinatorics, since it has a deep relationship
with representation theory and algebraic geometry. There have been plenty of conjec-
tures on Schur positivity of certain symmetric functions. One of the most interesting
conjectures is as follows, which was firstly proposed by Gasharov (unpublished) and
explicitly stated by Stanley [7].

Conjecture 1.1 ([7, Conjecture 1.4]). The chromatic symmetric functions of all claw-free graphs
(containing no induced subgraph isomorphic to the claw K1,3) are Schur positive.
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However, in most cases it is very difficult to determine whether a symmetric function
is Schur positive or not, which leads to further study on sufficient or necessary conditions
for Schur positivity. The nice property, which was defined for graphs by Stanley [7],
serves as a useful necessary condition for the Schur positivity of its chromatic symmetric
function. In particular, Stanley proved the following result.

Proposition 1.2 ([7, Proposition 1.5 and Proposition 1.6]). If the chromatic symmetric func-
tion of a graph G is Schur positive, then G is nice. A graph G is claw-free if and only if G and
all its induced subgraphs are nice.

Proposition 1.2 has the following interesting applications. On the one hand, as noted
by Stanley [7], it provides evidence for Conjecture 1.1. On the other hand, one can use the
above result to prove the non-Schur positivity of certain chromatic symmetric functions
by showing that they are not nice. For example, Dahlberg, She and van Willigenburg [1]
used this basic idea to prove that any n-vertex bipartite graph with a vertex of degree
more than ⌈n

2 ⌉ is not Schur positive. The same idea was also used by Wang and Wang
[9] to prove the non-Schur positivity of wheel graphs Wn (n ≥ 7), windmill graphs Wd

n
(n, d ≥ 3), and complete bipartite graphs Km,n (m ≥ 4). Li, Qiu, Yang and Zhang [3]
constructed a family of distributive lattices being not nice, and thus answered an open
problem proposed by Stanley [7].

However, sometimes this approach does not work since there do exist many graphs
which are nice but not Schur positive. In [9] Wang and Wang studied the s-positivity of
a class of squid graphs Sq(2n − 1; 1n) defined by attaching n leaves to one vertex of a
cycle C2n−1, as shown in Figure 1. They proposed the following conjecture.
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Figure 1: The squid graph Sq(2n − 1; 1n)

Conjecture 1.3 ([9, Conjecture 3.4]). The squid graph Sq(2n − 1; 1n) is not Schur positive for
n ≥ 3.

As will be shown in Theorem 4.2, the graph Sq(2n − 1; 1n) is nice for all n ≥ 3. This
implies that it is impossible to prove the non-Schur positivity of these graphs by showing
they are not nice.

Motivated by Conjecture 1.1, Proposition 1.2, and Conjecture 1.3, we introduce the
notion of strongly nice property for graphs and symmetric functions. In Section 2 we
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give the formal definition of strongly nice property, and show that Schur positivity im-
plies strongly nice property. In Section 3 we strengthen Proposition 1.2 to the strongly
nice property. In Section 4 we prove Conjecture 1.3 by showing that Sq(2n − 1; 1n) is
not strongly nice. In Section 5 we propose one question on the strongly nice property of
incomparability graphs of Boolean lattices.

2 Strongly nice property

This section is devoted to defining the strongly nice property for graphs and symmetric
functions, and establishing its connection with Schur positivity. Recall that Stanley [7]
defined the nice property first for graphs, and then for posets by using their incompara-
bility graphs. In this paper, we shall define the strongly nice property first for symmetric
functions, and then for graphs and posets by their chromatic symmetric functions.

Let us begin with some basic definitions on symmetric functions. For more details,
see [4] or [8]. Given a set of countably infinite indeterminates x = {x1, x2, . . .}, the
algebra Q[[x]] is defined to be the commutative algebra of formal power series in these
indeterminates over the rational field Q. The algebra of symmetric functions ΛQ(x)
is defined as the subalgebra of Q[[x]] consisting of formal power series f of bounded
degree and satisfying

f (x) = f (x1, x2, . . .) = f (xω(1), xω(2), . . .)

for any permutation ω of positive integers. We usually abbreviate f (x) to f throughout
this paper.

The bases of ΛQ(x) are indexed by (integer) partitions. A partition of n is a sequence
λ = (λ1, . . . , λℓ) satisfying

λ1 ≥ λ2 ≥ · · · ≥ λℓ > 0 and λ1 + λ2 + · · ·+ λℓ = n,

where ℓ = ℓ(λ) denotes the length of λ. By convention, we set λi = 0 for i > ℓ(λ). Given
two partitions λ, µ of the same number n, we say λ ≥ µ in dominance order if

k

∑
i=1

λi ≥
k

∑
i=1

µi

holds for all k ≥ 1.
This paper is mainly concerned with two bases of ΛQ(x): the monomial symmet-

ric functions mλ and the Schur functions sλ. For any partition λ = (λ1, . . . , λℓ), the
monomial symmetric function mλ is defined as

mλ = ∑
α

xα,
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where α ranges over all distinct permutations of (λ1, . . . , λℓ, 0, 0, . . .) and xα = xα1
1 xα2

2 · · ·
for α = (α1, α2, . . .). The Schur function sλ is defined as

sλ = ∑
µ

Kλµmµ,

where Kλµ denotes the number of semi-standard Young tableaux of shape λ and type µ.
Given a symmetric function f and a basis {bλ} of ΛQ(x), let [bλ] f denote the coefficient
of bλ in f . A symmetric function f is said to be Schur positive or s-positive if [sλ] f ≥ 0 for
any partition λ.

The chromatic symmetric functions of graphs have been extensively studied since
they were introduced by Stanley [6]. Let G be a graph with vertices V(G) = {v1, . . . , vd}.
Then the chromatic symmetric function of G is defined by Stanley as

XG = ∑
κ

xκ(v1)
· · · xκ(vd)

,

where κ : V(G) → {1, 2, . . .} ranges over all proper colorings of G, i.e., κ(u) ̸= κ(v) for
any edge uv ∈ E(G). As for any poset P, the chromatic symmetric function is defined
on its incomparability graph inc(P), whose vertex set consists of elements of P and edge
set is formed by pairs of vertices not comparable in P.

Stanley obtained a combinatorial expansion of XG in terms of monomial symmetric
functions by using stable partitions of V(G). By a stable partition of G we mean a set
partition B = {B1, . . . , Bk} of V(G) such that any pair of vertices in the same block Bi (1 ≤
i ≤ k) are not adjacent (or equivalently, Bi is a stable set). A semi-ordered stable partition
is obtained by ordering the blocks of the same size. For instance, taking G to the empty
graph on five vertex set V(G) = {1, 2, 3, 4, 5}, one should consider {{2, 3}, {4, 5}, {1}}
and {{4, 5}, {2, 3}, {1}} as the same stable partition of V(G) but as two different semi-
ordered stable partitions. The type of a (semi-ordered) stable partition B is defined to
be the integer partition formed by rearranging the block sizes |B1|, . . . , |Bk| in weakly
decreasing order. Stanley obtained the following result.

Proposition 2.1 ([6, Proposition 2.4]). Let ãλ be the number of semi-ordered stable partitions
of G of type λ. Then

XG = ∑
λ

ãλmλ.

Stanley [7] showed that the Schur positivity of XG can be used to study the nice
property of G, and vice versa. A graph G is called nice if, for any pair of partitions λ, µ

satisfying λ ≥ µ in dominance order, the graph G must contain a stable partition of type
µ as long as G contains a stable partition of type λ. By Proposition 2.1, a graph G is nice
if and only if whenever the coefficient ãλ of mλ in XG does not vanish and whenever
λ ≥ µ in dominance order, then the coefficient ãµ does not vanish. In this manner, the
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nice property can be naturally defined for any symmetric function. Precisely, we say
that a symmetric function f is nice if for any pair of partitions µ ≤ λ in dominance order
with [mλ] f > 0 we have [mµ] f > 0.

In the following we strengthen the nice property of symmetric functions to a quanti-
tive version.

Definition 2.2. A symmetric function f is said to be strongly nice if [mµ] f ≥ [mλ] f whenever
µ ≤ λ in dominance order.

We say that a graph G is strongly nice if XG is strongly nice, or equivalently, if the
number of semi-ordered stable partitions of G of type µ is more than or equal to that of
type λ for any pair µ ≤ λ. The following result implies that strongly nice property is
more powerful than nice property for studying Schur positivity or non-Schur positivity.

Lemma 2.3. A strongly nice symmetric function is always nice, and an s-positive symmetric
function is always strongly nice.

Proof. The first assertion follows directly from the definitions. To prove the second, we
need to use the monotonicity of the Kostka numbers due to White [10], who proved that
Kνµ ≥ Kνλ whenever µ ≤ λ in dominance order. Suppose that f = ∑ν cνsν with cν ≥ 0
for all ν. Then

[mµ] f = [mµ]∑
ν

cνsν = [mµ]∑
ν

cν ∑
ρ

Kνρmρ = ∑
ν

cνKνµ ≥ ∑
ν

cνKνλ = [mλ] f .

This completes the proof.

Remark 2.4. Similar to the nice property, the strongly nice property is also not equivalent to
s-positivity, even in the special case of chromatic symmetric functions. Figure 2 presents a graph
which is strongly nice but not s-positive, whose chromatic symmetric functions is calculated by
SageMath [5] as

720m(1,1,1,1,1,1) + 168m(2,1,1,1,1) + 44m(2,2,1,1) + 6m(2,2,2) + 12m(3,1,1,1) + 6m(3,2,1) + 2m(3,3)

=152s(1,1,1,1,1,1) + 52s(2,1,1,1,1) + 26s(2,2,1,1) − 4s(2,2,2) + 2s(3,1,1,1) + 4s(3,2,1) + 2s(3,3).

Figure 2: A strongly nice graph without Schur positivity
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3 Claw-free graphs

In this section we shall study the strongly nice property of claw-free graphs. The main
result of this section is as follows, which strengthens Proposition 1.2 and provides further
evidence for Conjecture 1.1.

Theorem 3.1. A graph G is claw-free if and only if G and all its induced subgraphs are strongly
nice.

Proof. The sufficiency is straightforward since the claw graph is not strongly nice. In-
deed, the chromatic symmetric function of the claw graph is

XK1,3 = 24m(1,1,1,1) + 6m(2,1,1) + m(3,1),

while (2, 2) < (3, 1) but [m(2,2)]XK1,3 = 0 < 1 = [m(3,1)]XK1,3 .
Now we proceed to prove the necessity. It suffices to prove the following claim since

any induced subgraph of a claw-free graph is also claw-free.
Claim. If a graph G is claw-free, then it is strongly nice.
To prove the strongly nice property of claw-free graphs, by definition, we only need

to show that [mµ]XG ≥ [mλ]XG for all partitions µ, λ with λ covering µ under dominance
order. Such partitions are characterized as follows: if µ is covered by λ, then there exists
i < j such that µi = λi − 1, µj = λj + 1, and µk = λk for k ̸= i, j. Note that 0 ≤ λj ≤ λi − 2
since µi ≥ µj ≥ 1. Clearly, if µ is covered by λ, then ℓ(µ) = ℓ(λ) or ℓ(µ) = ℓ(λ) + 1.

If [mλ]XG = 0, then the inequality naturally holds. From now on, we assume that
[mλ]XG > 0. By Proposition 2.1, [mλ]XG is equal to ãλ, the cardinality of the set Ãλ of
semi-ordered stable partitions of type λ. Hence in the following we shall establish an
injection ϕ from Ãλ to Ãµ. For notational convenience, we use the unique representa-
tion of semi-ordered stable partitions B = {B1, . . . , Bℓ(λ)} of type λ, which is obtained
by arranging the blocks of difference sizes in weakly decreasing order, or equivalently,
requiring that |Bk| = λk for all 1 ≤ k ≤ ℓ(λ).

Consider the subgraph H induced by Bi ∪ Bj, where i, j are uniquely determined by
λ and µ as mentioned above. If λj = 0, then we set Bj = ∅ for convenience, though it
is no longer a valid block of the semi-ordered stable partition B. It is clear that H is a
claw-free bipartite graph. Then the maximum degree of H is at most 2 and H must be a
disjoint union of paths and (even) cycles, where we regard isolated vertices as paths. It
follows from λi > λj that there exists at least one odd path P (containing an odd number
of vertices) with |P∩ Bi| > |P∩ Bj| (actually |P∩ Bi| = |P∩ Bj|+ 1). Now fix an arbitrary
labeling α of V(G). For each odd path P in H, define

α(P) = min{α(v) | v ∈ P}.
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We may assume that such odd paths are P1, . . . , Pt with α(P1) < · · · < α(Pt). Then define
the word of B as

W(B) = c1c2 · · · ct, where ck =

{
1, if |Pk ∩ Bi| > |Pk ∩ Bj|
2, if |Pk ∩ Bi| < |Pk ∩ Bj|

for 1 ≤ k ≤ t.

For example, the semi-ordered stable partition shown in Figure 3 (we only present Bi
and Bj for convenience) has word W(B) = 1211. The desired map ϕ is constructed as

5 7

3 6

1 2 9 10 8

411 12

Bi

Bj

Figure 3: The blocks Bi and Bj

5 7

3 6

1 2 9 8

10411 12

B̄i

B̄j

Figure 4: The blocks B̄i and B̄j

follows. Let w1(W) and w2(W) be the number of 1 and 2 of a word W, respectively. Let
1 ≤ p ≤ t be the smallest index such that w1(c1 · · · cp)− w2(c1 · · · cp) is maximum. Then
we have w1(c1 · · · cp)− w2(c1 · · · cp) ≥ w1(c1 · · · ct)− w2(c1 · · · ct) ≥ 2 since |Bi| = λi ≥
λj + 2 = |Bj|+ 2, which implies p ≥ 2. If follows that cp = 1 since otherwise the desired
index would be p − 1. Define ϕ(B) = B̄, where B̄ is the semi-ordered stable partition
of V(G) obtained from B by exchanging the vertices of Pp in Bi and Bj, or precisely, by
letting

B̄i = (Bi \ V(Pp)) ∪ (Bj ∩ V(Pp)), B̄j = (Bj \ V(Pp)) ∪ (Bi ∩ V(Pp))

and fixing the remaining blocks. One can verify that B̄ ∈ Ãµ. If we define W(B̄) =
c̄1c̄2 · · · c̄t in the same way as W(B), it is clear that c̄p = 2 and c̄l = cl for all l ̸= p.
Moreover, we have

w1(c̄1 · · · c̄k)− w2(c̄1 · · · c̄k) =

{
w1(c1 · · · ck)− w2(c1 · · · ck), if k < p;
w1(c1 · · · ck)− w2(c1 · · · ck)− 2, if k ≥ p.

(3.1)
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We proceed to show that ϕ is injective. To this end, we construct a map φ on the image
set ϕ(Ãλ) and prove that the composition φ ◦ ϕ is the identity map on Ãλ. Note that Ãλ

can be divided into disjoint subsets according to the set Bi ∪ Bj, namely, Ãλ =
⊎

H ÃH
λ ,

where H ranges over all induced subgraphs in

{G[Bi ∪ Bj] | Bi, Bj ∈ B for some semi-ordered stable partion B},

and ÃH
λ denotes the set of semi-ordered stable partition B of type λ with Bi ∪ Bj = V(H).

One can further observe that ϕ(ÃH
λ ) ⊆ ÃH

µ since Bi ∪ Bj = B̄i ∪ B̄j. Hence it suffices to
prove that the restriction of ϕ on ÃH

λ is injective for any H.
When fixing H, the labeling and the definition for the word remain the same. Given

a semi-ordered stable partition B̄ = {B̄1, . . . , B̄ℓ(µ)} in ϕ(ÃH
λ ), consider the word W(B̄) =

c̄1c̄2 · · · c̄t and choose the largest index q such that the number w1(c̄1 · · · c̄q)−w2(c̄1 · · · c̄q)
is maximum. By (3.1) we have q ≤ t − 1 and c̄q+1 = 2. Then define φ(B̄) = B̂, where B̂
is the semi-ordered stable partition of V(G) obtained from B̄ by letting

B̂i = (B̄i \ V(Pq+1)) ∪ (B̄j ∩ V(Pq+1)), B̂j = (B̄j \ V(Pq+1)) ∪ (B̄i ∩ V(Pq+1))

and fixing the remaining blocks. Similarly, define W(B̂) = ĉ1ĉ2 · · · ĉt. One can verify
that ĉq+1 = 1 and ĉl = c̄l whenever l ̸= q + 1. For example, the word in Figure 4 is
W(B̄) = 1212 and W(B̂)) = 1211. We would like to mention that if µj = 1 then B̂j is
empty. By the construction of ϕ and φ, one can check that p = q + 1 if B̄ = ϕ(B). It
follows that φ(ϕ(B)) = φ(B̄) = B, implying the injectivity of ϕ on ÃH

λ . This completes
the proof.

Remark 3.2. In the proof of Proposition 1.2, Stanley only treated stable partitions since the main
focus is the existence and the order is irrelevant. However, in our proof, we have to make use
of the semi-order to define the desired injection, and different blocks of the same size are treated
differently according to the order.

4 Squid graphs

The main objective of this section is to prove Conjecture 1.3. Precisely, we have the
following result.

Theorem 4.1. For n ≥ 3, the squid graph Sq(2n − 1; 1n) is not strongly nice. Moreover,
Sq(2n − 1; 1n) is not s-positive.

Proof. Precisely, we are going to show

[m(n,n,n−1)]XSq(2n−1;1n) < [m(n+1,n−1,n−1)]XSq(2n−1;1n). (4.1)
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Using the labeling in Figure 1, the key observation is that in any stable partition the
size of the block containing u is at most n − 1. Indeed, the vertices v1, . . . , vn cannot be
in a block containing u, and there are at most n − 2 vertices in {u2, . . . , u2n−3} which
can be put into this block. Moreover, it is not difficult to check that there are exactly
n − 1 ways to choose such a block of size n − 1 (choosing n − 2 non-adjacent points in
{u2, . . . , u2n−3}).

Once we have selected a stable set of size n − 1 containing u, deleting these vertices
will result in a subgraph L consisting of one edge and 2n− 2 isolated vertices. Therefore,
the number of ways to obtain a semi-ordered stable partition of type (n, n) in L is (2

1) ·
(2n−2

n−1 ) = 2(2n−2
n−1 ). Similarly, the number of ways to obtain a semi-ordered stable partition

of type (n + 1, n − 1) in L is (2
1) · (

2n−2
n ) = 2(2n−2

n ). Hence,

[m(n,n,n−1)]XSq(2n−1;1n) = 2(n − 1)
(

2n − 2
n − 1

)
,

[m(n+1,n−1,n−1)]XSq(2n−1;1n) = 4(n − 1)
(

2n − 2
n

)
,

where the second equality is obtained by distinguishing the two blocks of size n − 1.
Now (4.1) follows from

2(n − 1)(2n−2
n−1 )

4(n − 1)(2n−2
n )

=
n

2(n − 1)
< 1,

which is valid exactly for n ≥ 3.

Theorem 4.2. The squid graph Sq(2n − 1; 1n) is nice for n ≥ 3.

Proof. Label the vertices of Sq(2n − 1; 1n) as in Figure 1. Observe that

{{u1, . . . , u2n−3, v1, . . . , vn}, {u2, . . . , u2n−2}, {u}}

is a stable partition of Sq(2n − 1; 1n) of type λ = (2n − 1, n − 1, 1). Let µ = (µ1, . . . , µℓ)
be any partition of 3n − 1. We claim that there exists a stable partition of Sq(2n − 1; 1n)
of type µ if and only if µ ≤ λ in dominance order, which would imply its nice property
by definition.

Suppose that there exists a stable partition of Sq(2n− 1; 1n) of type µ. Then any stable
set of Sq(2n − 1; 1n) has size at most 2n − 1 and hence µ1 ≤ 2n − 1. Note that any odd
cycle cannot be divided into two stable sets since it is not bipartite, which yields µ3 ≥ 1.
It follows that µ1 + µ2 ≤ 3n − 1 − 1 = 3n − 2 = λ1 + λ2, and hence µ ≤ λ.

Conversely, we assume that µ ≤ λ. Then ℓ = ℓ(µ) ≥ 3 and µℓ ≤ n − 1 since
otherwise µ1 + · · ·+ µℓ ≥ ℓn > 3n − 1. Now we proceed to construct a stable partition
B = {B1, B2, . . . , Bℓ} of type µ with |Bk| = µk for each 1 ≤ k ≤ ℓ. At first, we take



10 Ethan Y.H. Li, Grace M.X. Li , Arthur L.B. Yang, and Zhong-Xue Zhang

Bℓ = {u, u2, . . . , u2(µℓ−1)}. If µ1 > n − µl, then we set

B1 =

{
{u2µℓ

, u2(µℓ+1), . . . , u2n−2, v1, v2, . . . , vµ1+µℓ−n}, if µ1 ≤ 2n − µℓ,

{u2µℓ
, u2(µℓ+1), . . . , u2n−2, v1, v2, . . . , vn, u1, u3, . . . , u2(µ1+µℓ−2n)−1}, if µ1 > 2n − µℓ,

where the first is a valid stable set since in this case µ1 + µℓ − n ≤ n, and the second follows from
µ1 ≤ 2n − 1 and 2(µ1 + µℓ − 2n)− 1 ≤ 2(µl − 1)− 1. Then V(Sq(2n − 1; 1n)) \ (B1 ∪ Bℓ) consists
of only isolated points, and hence the other blocks can be chosen arbitrarily. If µ1 ≤ n − µℓ, then
there exists an index i ≥ 1 such that µ1 + · · ·+ µi ≤ n − µℓ and µ1 + · · ·+ µi + µi+1 > n − µℓ.
Since 2(µℓ + µ1 + · · ·+ µi − 1) ≤ 2(n − 1), we can take

Bj = {u2(µℓ+µ1+···+µj−1), u2(µℓ+µ1+···+µj−1+1), . . . , u2(µℓ+µ1+···+µj−1)}

for 1 ≤ j ≤ i. Then we set

Bi+1 = {u2(µℓ+µ1+···+µi), u2(µℓ+µ1+···+µi)+2, . . . , u2n−2, v1, v2, . . . , vµℓ+µ1+···µi+1−n},

which is also possible since µi+1 ≤ µi ≤ n − µℓ and

1 ≤ (µℓ + µ1 + · · ·+ µi) + µi+1 − n ≤ n + (n − µℓ)− n ≤ n.

Now the graph induced by V(Sq(2n − 1; 1n)) \ (B1 ∪ · · · ∪ Bi+1 ∪ Bℓ) consists of only isolated
points, and hence the other blocks Bi+2, . . . , Bℓ−1 could be chosen arbitrarily. This completes the
proof.

Together with Theorem 4.1, the above result shows that squid graphs Sq(2n − 1; 1n)
form an infinite family of nice graphs which are not strongly nice.

5 One open problem

Griggs [2] conjectured that the incomparability graph inc(Bn) of the Boolean lattice Bn
is nice. Stanley [7] further asked whether these graphs are s-positive. Stanley [7] noted
the Schur positivity of Bn for n ≤ 4, which implies that it is strongly nice. We already
verified the nice property of B5 by using SageMath [5]. It is natural to ask the following
problem.

Problem 5.1. Is inc(Bn) strongly nice?
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