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Abstract. A polytope is indecomposable if it cannot be expressed (non-trivially) as
a Minkowski sum of other polytopes. Certifying indecomposability is difficult, and
several criteria have been developed since Gale introduced the concept in 1954. Our
first contribution is a new indecomposability criterion that encompasses most of the
previous techniques. The major new ingredient is the introduction of the (extended)
graph of edge-length dependencies, which has diverse applications in the study of de-
formation cones of polytopes. Our main motivation is to provide new indecomposable
deformed permutahedra that are not matroid polytopes. In 1970, Edmonds proposed
the problem of characterizing the extreme rays of the submodular cone, that is, in-
decomposable deformed permutahedra. Matroid polytopes from connected matroids
give one such family of polytopes. We present a new infinite disjoint family via trunca-
tions of certain graphical zonotopes. This way, we obtain 2⌊ n−1

2 ⌋ new indecomposable
deformations of the n-permutahedron Πn ⊆ Rn.

Résumé. Un polytope est indécomposable s’il est impossible de l’écrire comme une
somme de Minkowski (non-triviale). Il est ardu de prouver l’indécomposabilité, et
plusieurs critères ont été développés depuis que Gale a introduit le concept en 1954.
Nous prouvons un nouveau critère qui encapsule la plupart des précédents. L’in-
grédient majeur est la construction du graphe (étendu) des dépendances entre les
longueurs d’arêtes, qui a des applications diverses dans l’étude des cônes des défor-
mations. Notre motivation première est de créer de nouveaux permutaèdres déformés
indécomposables qui ne sont pas des polytopes de matroïdes. En 1970, Edmonds ap-
pelle à caractériser les rayons extrémaux du cône sous-modulaire, c’est-à-dire les per-
mutaèdres déformés indécomposables. Les polytopes de matroïdes sont de tels rayons.
Nous créons une nouvelle famille infinie, disjointe de ces derniers, en tronquant des
zonotopes graphiques. Ainsi, nous obtenons 2⌊ n−1

2 ⌋ nouvelles déformations indécom-
posables du n-permutaèdre Πn ⊆ Rn.
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1 Introduction

We say that a polytope Q is a weak Minkowski summand or a deformation of a polytope P

if there exist a polytope R and λ > 0 such that λP = Q+ R. Closed under addition and
dilation, the set of deformations of P forms a convex cone, called the deformation cone
of P. If all the deformations of P are translated dilates of P, we say that P is indecom-
posable. Indecomposable polytopes are the building blocks of Minkowski addition: they
are the rays of deformation cones, and every polytope is a finite sum of indecomposable
ones. They have applications in convex geometry, game theory, toric varieties, and com-
putational algebra, among others. Since Gale introduced the first criteria for certifying
indecomposability in 1954 [3], many new stronger criteria have been found [3, 5, 6, 11,
12, 14]. Yet, they do not apply to the truncated graphical zonotopes that we will study.

In Theorem 2.14, we provide a new indecomposability criterion that encompasses
the majority of the aforementioned methods. Most of these rely on finding suitable
“strong chains” of “indecomposable subgraphs” in the 1-skeleton of P that meet all facets.
Our method is more flexible, allowing for deducing dependencies between edges of
the 1-skeleton through non-indecomposable subgraphs. It is articulated through the
(extended) graph of edge-length dependencies of a polytope P, which is a clique if and only
if P is indecomposable. Beyond indecomposability, these graphs allow us to deduce
other properties of deformation cones, as demonstrated in Section 3.

Our driving motivation is to produce new rays of the submodular cone. The n-
permutahedron Πn is the convex hull of the n! permutations of the vector (1, 2, . . . , n) ∈ Rn.
A deformed permutahedron (a.k.a. generalized permutahedron) is a deformation of Πn. Origi-
nally introduced by Edmonds in 1970 under the name of polymatroids in linear optimiza-
tion [2], they were popularized by Postnikov [9] in algebraic combinatorics. Nowadays,
they are widely studied in fields like algebraic combinatorics, statistics, optimization,
and game theory. The deformation cone of the Πn is parametrized by the cone of sub-
modular functions. Edmonds ends his seminal paper [2] by observing the difficulty of
characterizing its extreme rays (i.e. indecomposable deformed permutahedra). This has
been studied from several disciplines, see [13, 17] and their references, but the question is
still wide open. In particular, we are still short of explicit examples. An infinite family of
rays is given by matroid polytopes of connected matroids [7] (see also [17, Section 7.2]).

Graphical zonotopes, which are Minkowski sums of edges of the standard simplex
indexed by the arcs of an associated graph G, are deformed permutahedra. We show
that, when G is a complete bipartite graph Kn,m, we can (deeply) truncate one or two
(particular) vertices of its graphical zonotope to obtain polytopes that are simultane-
ously: deformed permutahedra (Theorem 4.6), indecomposable (Theorem 4.8), and not
matroid polytopes (Theorem 4.9). This way, we obtain 2⌊n−1

2 ⌋ new indecomposable de-
formations of Πn (Corollary 4.4). Moreover, we use some of these examples to refute a
conjecture of Smilansky from 1987 [15, Conjecture 6.12].
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2 New indecomposability criteria

2.1 Preliminaries

A polytope P ⊂ Rd is the convex hull of finitely many points. Its faces are the zero-sets of
non-negative affine functions on P. For a linear functional u ∈ (Rd)∗, let Pu be the face
of P containing the points maximizing u; i.e. Pu = {x ∈ P ; u(x) = maxy∈P u(y)}. Faces
of dimension 0, 1, and codimension 1 are called vertices, edges and facets, respectively. The
sets of vertices, edges and facets of P are denoted V(P), E(P), and F(P). The 1-skeleton
of P is the graph G(P) with node set V(P), and where two vertices are joined by an arc if
they form an edge in E(P). Since several notions of vertex and edge appear in our paper,
we reserve the names vertex and edge for the faces of polytopes, and use node and arc for
graphs. Similarly, we use 1-skeleton instead of graph when referring to G(P).

The Minkowski sum of P and Q is P+ Q :=
{

p + q ; p ∈ P, q ∈ Q
}

. A polytope Q

is a deformation or a weak Minkowski summand of P if there exist R and λ > 0 such that
P = λQ + R. A polytope P is (Minkowski) indecomposable if its only deformations are
of the form λP+ t with λ ≥ 0 and t ∈ Rd (the polytope 0P is the point 0). If Q is a
deformation of P, then dim(Qu) ≤ dim(Pu) for all u ∈ (Rd)∗. In particular, there is a
(not necessarily injective) correspondence between the vertices of P and the vertices of Q.
Let p, p′ be vertices of P and q, q′ be the associated vertices of Q. Then the edges joining
pp′ and qq′ are parallel, and there is some λ ∈ R+ such that

λ(p− p′) = q− q′. (2.1)

In [14], Shephard proved that this property characterizes deformations of P. We use it
to parametrize the cone of deformations of P (modulo translations), and refer to [10,
Appendix] for more details and other parametrizations.

We associate to every deformation Q its edge-length vector ℓ(Q) ∈ R
E(P)
+ , where for

an edge e joining the vertices p and p′, we have that ℓ(Q)e is the λ ≥ 0 from (2.1). The
edge-length deformation cone of P is the set DC(P) consisting of the nonnegative vectors
ℓ ∈ R

E(P)
+ such that for every 2-dimensional face F of P with cyclically ordered vertices

p1p2 . . . pk and edges e1 = p1p2, . . . , ek−1 = pk−1pk, ek = pk p1, the following polygonal
face equation is satisfied:

ℓe1(p1 − p2) + ℓe2(p2 − p3) + · · ·+ ℓek(pk − p1) = 0.

The edge-length vector of every deformation of P lies in DC(P). Conversely, we can
recover a deformation Pℓ of P (unique up to translation) for every vector ℓ ∈ DC(P).
We fix a vertex p of P. For any other vertex p′ ∈ V(P), there is a path Pp′ = (p =
p0, p1, . . . , pr = p′) joining p and p′ in G(P). Denoting by eij the edge pi pj, we construct
Pℓ := conv

{
∑eij∈Pp′

ℓeij(pj − pi) | for p′ ∈ V(P)
}

.
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2.2 The graph of edge-length dependencies

Definition 2.1. The graph of edge-length dependencies of a polytope P, denoted ED(P) is
the graph whose node set is E(P), the set of edges of P, and where two edges e, f ∈ E(P)
are linked with an arc if for every ℓ ∈ DC(P) we have ℓe = ℓf . In this case, we say that
e and f are dependent.

Example 2.2. P is indecomposable if and only if ED(P) is a complete graph. Indeed, P is
indecomposable when all its deformations are (translations) of dilations of P, that is, if
ℓ(Q) is of the form (λ, . . . , λ) for any deformation Q of P, which is equivalent to ED(P)
being complete.

Example 2.3. If P is a two-dimensional parallelogram with edges e, f, e′, f ′ in cyclic order.
Then ED(P) consists of two disjoint arcs ee′ and ff ′. Indeed, the polygonal face equa-
tions of a parallelogram impose that all of its deformations are parallelograms and that
parallel (opposite) edges have the same length in all deformations.

This example shows that there can be a subset of edges which induces a connected
subgraph in ED(P), but a disconnected subskeleton in G(P) (note that in ED(P) the
edges play the role of nodes whereas in G(P) the play the role of arcs).

Dependency is an equivalence relation on E(P): we directly have that ED(P) is a
cluster graph. We combine this with Example 2.2 to get the next corollary.

Lemma 2.4. All connected components of ED(P) are cliques.

Corollary 2.5. P is indecomposable if and only if ED(P) is connected.

While previous works do not use this language explicitly, many exploited indecom-
posable faces to prove the connectedness of ED(P).

Corollary 2.6. If F is an indecomposable face of P, then its edges form a clique in ED(P).

The asset of our perspective is that it also allows for other methods to find dependen-
cies between the edges. Most of the former methods for proving the indecomposability
of a polytope rely on finding enough “indececomposable subgraphs” of G(P) (such as
triangles), and cleverly tying them together to show that ED(P) is connected. Exam-
ple 2.3 allows us to also exploit parallelisms to deduce connections in ED(P).

Lemma 2.7. Let P be a polytope, and F a two dimensional face that is a parallelogram with edges
e, f, e′, f ′ in cyclic order. Then both ee′ and ff ′ are arcs in ED(P).

We say that a subset of edges X ⊆ E(P) is dependent if they induce a connected
subgraph of ED(P) (and thus a clique, by Lemma 2.4), i.e. if they are pairwise dependent.
For example, in the cube [0, 1]d, any subset of parallel edges is dependent by Lemma 2.7.

With this, we can formulate our first indecomposability criterion (which will be later
subsumed by the stronger, but harder to state Theorem 2.14).
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Theorem 2.8. Let P be a polytope. If there exists a dependent subset of edges X ⊆ E(P) such
that any pair of vertices of P is connected in G(P) through a path of edges in X, then ED(P) is
a complete graph and P is indecomposable.

Proof. Suppose that ED(P) satisfies the hypotheses, and let ℓ ∈ DC(P) be an edge-length
vector in the deformation cone, and Pℓ the associated deformation. Let λ := ℓe for any
e ∈ X (λ does not depend on the edge chosen because because X is a dependent subset).

Now, fix a vertex p0 ∈ P. For any other vertex p there is a path P = (p0, p1, . . . , pr =
p) connecting p0 and p, in which all the edges pi pi+1 belong to X. Use qi to denote the
corresponding vertices of Pℓ. We have

q− q0 = ∑1≤i≤r(qi − qi−1) = ∑1≤i≤r λ(pi − pi−1) = λ(p− p0).

Since this holds for any vertex q ∈ V(Pℓ), we have Pℓ = λP, up to translation. Thus, P
is indecomposable, and ED(P) is complete by Lemma 2.4.

2.3 The extended graph of edge-length dependencies

For some applications, it is useful to extend ED(P) with more pairs of vertices which,
while not forming an edge, always satisfy an equation like (2.1). This allows us to
present a stronger indecomposability theorem that subsumes the criterion stated before
(and many previous criteria).

Definition 2.9. A rigid pair of vertices of a polytope P is a pair of vertices pi pj (not
necessarily in forming an edge) such that for any deformation Q of P, there is some
λij ∈ R+ so that λij(pi− pj) = qi− qj where qi and qj are the vertices of Q corresponding
to pi and pj. The extended graph of edge-length dependencies of P, denoted ED∗(P), is the
graph whose nodes are the rigid pairs of P, and where two such couples pi pj and pk pl
are joined by an arc in ED∗(P) if λij = λkl. We say that these two rigid pairs are dependent.

Computing all rigid pairs of vertices (and thus the nodes of ED∗(P)) is not easy, but
this is usually not needed. The next result shows how to derive some of them.

Lemma 2.10. Let p and p′ be vertices of P that are connected in G(P) through a path of depen-
dent edges. Then, for any deformation Q we have λ(p′− p) = q′− q where λ = ℓe for any edge
e in the path joining p and p′, and q and q′ are the corresponding vertices in Q.

Of course, ED(P) is a subgraph of ED∗(P), and ED∗(P) is mainly interesting to
deduce properties of ED(P). Many properties carry over from ED(P) to ED∗(P). We
omit their proof because it is analogous to those of Lemmas 2.4 and 2.7 and Corollary 2.6

Lemma 2.11. The connected components of ED∗(P) are cliques.



6 A. Padrol and G. Poullot

The following analogues of Corollary 2.6 and Lemma 2.7 admit more natural word-
ings in terms of indecomposable geometric graphs as in [5, 11, 12]. However, for the sake of
brevity and self-containment, we formulate everything in terms of polytopes.

Corollary 2.12. Let P be a polytope, and p1, . . . , pr ∈ V(P). If conv(p1, . . . , pr) is indecom-
posable and its 1-skeleton only consists of rigid pairs, then the corresponding nodes of ED∗(P)
induce a clique.

Lemma 2.13. Let P be a polytope, and p1, p2, p3, p4 some of its vertices whose convex hull is a
parallelogram in that cyclic order. If p1p2, p2p3, p3p4 and p4p1 are rigid pairs, then p1p2 and
p3p4, as well as p2p3 and p4p1 are connected in ED∗(P).

We say that a subset S ⊆ V(P) of vertices is dependent if every pair of vertices of S is a
rigid pair, and they are all pairwise dependent. Note that despite our presentation, this
dependence is not arising from an equivalence relation on the set of vertices (as it could
be that both pi pj and pi pk form rigid pairs, but that these pairs are not dependent, like
in a parallelogram), but from an equivalence relation on the set of pairs of vertices.

We are ready to state our main theorem of this part, and some of its consequences.
We omit its proof due to space constraints. It combines ideas from Theorem 2.8 and [6].

Theorem 2.14. Let P be a polytope. If there is a dependent subset of vertices S ⊆ V(P) such
that every facet of P contains a vertex in S, then P is indecomposable.

With the following lemma, we see directly that Theorem 2.8 is a corollary of Theo-
rem 2.14, as it implies that the whole set of vertices is dependent.

Lemma 2.15. If the vertices in S ⊆ V(P) are pairwise connected in G(P) through a path of
dependent edges, then S is dependent.

This also implies McMullen’s and Shephard’s criteria from [6, 14]. In fact, [6, Theorem 1]
cites [14, Theorem 12] with a slightly stronger statement: both are true. We cite this
stronger version, which also follows from Theorem 2.14. A strong chain of faces of a
polytope P is a sequence of faces F0, . . . ,Fk such that dim(Fi ∩ Fi−1) ≥ 1 for 1 ≤ i ≤ k.
Any vertex or edge of F0 is said to be connected to any vertex or edge of Fi with 1 ≤ i ≤ k.

Corollary 2.16 ([14, Theorem 12], [6, Theorem 1]). Let P be a polytope. If any pair of vertices
of P can be connected by a strong chain of indecomposable faces, then P is itself indecomposable.

Proof. If p, q ∈ V(P) are connected by a strong chain of indecomposable faces, then they
are connected by a dependent set of edges, by Corollary 2.6. By Lemma 2.15, V(P) is a
dependent set. Every facet contains a vertex, and we conclude by Theorem 2.14.

Another indecomposability criterion was introduced in [6]. While not strictly com-
parable to Corollary 2.16, both turn out to be consequences of Theorem 2.14. A family
of faces F of a polytope is strongly connected if for any F,G ∈ F there is a strong chain
F = F0, F1, . . . ,Fk = G with each Fi ∈ F . We say that F touches a face F if (

⋃F )∩ F ̸= ∅.
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Corollary 2.17 ([6, Theorem 2]). If a polytope P has a strongly connected family of indecom-
posable faces which touches each of its facets, then P is itself indecomposable.

Proof. The vertices of the faces in the strongly connected family form a dependent subset
by Corollary 2.12 and Lemma 2.11. We conclude with Theorem 2.14.

From Theorem 2.14 we can also naturally derive other stronger indecomposability
criteria from [5, 11, 12]. However, these results involve the concept of indecomposable
geometric graph, which we have decided to omit from this abstract for the sake of brevity.

3 Other applications: Cartesian products and zonotopes

The (extended) graph of edge-length dependencies has applications beyond indecom-
posability criteria. For example, it is easy to see that the number of connected compo-
nents of ED(P) is an upper bound for the dimension of the deformation cone.

We showcase first an application concerning Cartesian products. The Cartesian prod-
uct of P ⊆ Rd and Q ⊆ Re is P× Q =

{
(p, q) ∈ Rd+e ; p ∈ P, q ∈ Q

}
⊆ Rd+e. Its faces

are of the form F× G where F and G are faces of P and Q, respectively.

Theorem 3.1. All deformations of a Cartesian product P×Q are of the form P′ ×Q′, where P′

and Q′ are deformations of P and Q respectively. Consequently, the deformation cone of P×Q is
the Cartesian product of the deformation cones of P and Q: DC(P×Q) = DC(P)×DC(Q).

Proof. Let e ∈ E(P) and q, q′ ∈ V(Q). Consider a path q0 = q, q1, . . . , qk = q′ from q to
q′ in the 1-skeleton G(Q). For each 1 ≤ i ≤ k, fi := conv(qi−1, qi) is an edge of Q. Hence
e× fi is a parallelogram face of P× Q, and thus e× qi and e× qi−1 are dependent by
Lemma 2.7. By transitivity, the edges e× q and e× q′ of P×Q are dependent.

Hence, in a deformation R of P× Q, all the faces corresponding to P× q with q ∈
V(Q) are translations of the same deformation P′ of P, because they have the same edge-
lengths. Similarly, all the faces of the form p× Q with p ∈ V(P) are translations of the
same deformation Q′ of Q. Since R and P′ × Q′ have the same edge-lengths, they must
coincide up to translation.

A zonotope is a Minkowski sum of segments Z = ∑r
i=1[pi, qi], where we use the

notation [pi, qi] := conv(pi, qi).

Theorem 3.2. The deformation cone of a zonotope Z is simplicial and all its deformations are
zonotopes, if and only if all its 2-faces are parallelograms. In this case we have:

DC(Z) =
{
ℓ ∈ R

E(Z)
≥0 ; ℓe = ℓf if e and f are parallel edges

}
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Proof. Let Z = ∑r
i=1 si, where si := [pi, qi], and no two si are parallel (otherwise we

replace them by their sum), and assume all 2-faces are parallelograms. Fix 1 ≤ i ≤ r.
The collection of faces parallel to si (known as the ith zone) is isomorphic to the product
of si with the boundary of πi(Z), where πi is the orthogonal projection in the direction
of si (cf. [1, Section 2.2]). Every edge e of πi(Z) induces a 2-face of Z isomorphic to the
parallelogram e× si. By Lemma 2.7, the subgraph of ED(Z) induced by the edges parallel
to si contains a copy of the 1-skeleton of πi(Z). As the later is (dimZ− 1)-connected, we
deduce that all the edges parallel to si are dependent. Therefore, in any deformation Zℓ
of Z, all the edges parallel to si have the same length λi, and Zℓ must be a translation of
the zonotope ∑r

i=1 λisi. Hence, DC(Z) is linearly isomorphic to the simplicial cone Rr
≥0.

For the reciprocal, see that all faces of a zonotope are its Minkowski summands, and
that a centrally symmetric n-gon has a triangle summand whenever n ≥ 5.

4 New rays of the submodular cone

4.1 Graphical zonotopes

Let G = (V, E) a graph with node set V and arc1 set E. An orientation of G is acyclic if
there is no directed cycle. Let A(G) be the set of acyclic orientations of G. The graphical
zonotope ZG ⊂ RV is defined as the Minkowski sum ZG = ∑{i,j}∈E[ei, ej], where (ei)i∈V

is the standard basis of RV . An ordered partition of G is a pair consisting of a partition
µ of V where each part induces a connected subgraph of G, together with an acyclic
orientation ω of the contraction G

/
µ . The faces of a graphical zonotope are indexed by

ordered partitions (see for example [16, Proposition 2.5] or [1, Section 1.1]). In particular:
1. The vertices of ZG are in bijection with the acyclic orientations A(G). Namely, each

ρ ∈ A(G) is in correspondence with the vertex vρ = ∑i∈V din(i, ρ) ei where din(i, ρ)
is the in-degree of the node i ∈ V in the acyclic orientation ρ.

2. The edges eg,ρ of ZG are in bijection with the couples (g, ρ) where g ∈ E and
ρ ∈ A(G /e ), i.e. with the couples of acyclic orientations ρ1, ρ2 ∈ A(G) which differ
only on the orientation of the arc g. Moreover, if g = {i, j} is oriented i → j in ρ1,
then vρ1 − vρ2 = ej − ei.

3. The 2-faces of ZG are:
(a) Hexagons: one per (t, ρ) where t is a triangle in G and ρ ∈ A(G /t ).
(b) Parallelograms: one per (s, ρ) where s is either the union of two disjoint edges

or an induced path of length 2, and ρ ∈ A(G /s )
This result from [8] follows thus from Theorem 3.2:

Corollary 4.1 ([8, Corollary 2.10]). The deformation cone DC(ZG) is simplicial and all the
deformations of ZG are zonotopes if and only if G is triangle-free.

1Recall that we reserve vertex and edge for the faces of polytopes, and use node and arc for graphs.
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4.2 Truncated graphical zonotopes of complete bipartite graphs

For n, m ≥ 1, let Kn,m be the complete bipartite graph with nodes a1, . . . , an and b1, . . . , bm
and arcs aibj for all i ∈ [n] and j ∈ [m]. Note that Kn,m is triangle-free. We abbreviate
its graphical zonotope by Zn,m := ZKn,m . We define two new polytopes by intersecting
Zn,m with some half-spaces. Precisely, recall that Zn,m is embedded in Rn+m whose
coordinates are labeled by ai, i ∈ [n] and bj, j ∈ [m], and define

Z→n,m := Zn,m ∩
{

x ; ∑m
j=1 xbj ≤ nm− 1

}
, and Z↔n,m := Z→n,m ∩

{
x ; ∑n

i=1 xai ≤ nm− 1
}

.

Example 4.2. We describe Z→n,m and Z↔n,m for n + m ≤ 4, which are those in dimension up
to 3. We summarized their properties in the following table.

Z→n,m Z↔n,m
(m, n) (1,1) (1,2) (1,3) (2,2) (1,2) (1,3) (2,2)
name point triangle strawberry persimmon segment octahedron cuboctahedron
indec. ✔ ✔ ✔ ✔ ✔ ✔ ✗

matroid ✔ ✔ ✗ ✗ ✔ ✔ ✗

The first row answers “Is this polytope indecomposable?”, and the second “Is this
polytope a matroid polytope?” (✔ is “yes”, and ✗ is “no”).

The polytopes Z→3,1, Z↔3,1, and Z→2,2, Z↔2,2 are depicted in Figure 1. The polytope Z→3,1
(nicknamed strawberry) has f -vector is (7, 12, 7); and Z→2,2 (nicknamed persimmon) has f -
vector (13, 24, 13). As illustrated in the figure, ED(Z→3,1), ED(Z↔3,1) and ED(Z→2,2) contain
connected subgraphs whose associated edges touch all the vertices: by Theorem 2.8,
Z→3,1, Z↔3,1 and Z→2,2 are indecomposable. The cuboctahedron Z↔2,2 is decomposable as the
Minkowski sum of a regular tetrahedron and its central reflection.
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Figure 1: (Left to right) strawberry Z→3,1, octahedron Z↔3,1, persimmon Z→2,2, cuboctahe-
dron Z↔2,2. Each polytope is in blue, while the gray dashed edges outline Zn,m. In red,
the subgraphs of ED(P) obtained by linking opposite edges of (some) parallelograms
and edges of (some) triangles (these are the subgraphs from the proof of Theorem 4.8).
ED(Z↔2,2) has two connected components: the cliques on the red and green subgraphs.

Z→3,1 and Z→2,2 are self-dual and have exactly 4 triangular faces. Smilansky proved in
[15, Corollary 6.7, 6.8] that every indecomposable 3-polytope has at least 4 triangular
faces, and has (weakly) more facets than vertices: Z→3,1 and Z→2,2 are extremal in this sense.
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Denote by vn→m (resp. vn←m) the vertex of Zn,m associated to the acyclic orientation
ρn→m (resp. ρn←m) given by ai → bj (resp. ai ← bj)for all i ∈ [n] and j ∈ [m]. An acyclic
orientation of Kn,m is almost left-right (resp. almost right-left) if it is obtained from ρn→m
(resp. ρn←m) by reversing the orientation of one arc called its reversed arc.

Lemma 4.3 (Facial structure of Z→n,m and Z↔n,m). Let n, m ≥ 1 with nm > 2.
1. V(Z→n,m) = V(Zn,m)∖ {vn→m}, and V(Z↔n,m) = V(Zn,m)∖ {vn→m, vn←m}. That is,

Z→n,m = Zn,m ∖ vn→m and Z↔n,m = Zn,m ∖ {vn→m, vn←m}, where P∖ v denotes the poly-
tope obtained as the the convex hull of all the vertices of P except v.

2. The edges of Z→n,m (resp. Z↔n,m) are either: (i) edges of Zn,m not containing vn→m (resp. vn→m
nor vn←m), or (ii) edges vρ1vρ2 for two almost left-right orientations (resp. two almost left-
right or almost right-left orientations) ρ1, ρ2 whose reversed arcs share an endpoint.

Now, we focus on Z→n,m and Z↔n,m for n, m ≥ 1, (n, m) ̸= (1, 1). We prove that they are
deformed permutahedra (Theorem 4.6), indecomposable (except Z↔2,2, Theorem 4.8), and
not matroid polytopes (except Z→1,1, Z→1,2, Z↔1,2, Z↔1,3, Theorem 4.9). This implies that:

Corollary 4.4. For n ≥ 5, there exist (at least) 2⌊n−1
2 ⌋ non-isomorphic indecomposable deformed

permutahedra which are not matroid polytopes.

Building on numerical computations we led for n ∈ {3, 4, 5, 6}, we furthermore con-
jecture the following. Let tn be the number of indecomposable deformed permutahedra,
and mn be the number of indecomposable deformed permutahedra which are matroid
polytopes (i.e. deformed permutahedra on 0/1 coordinates). As mn is doubly exponen-
tial, Corollary 4.4 is far too weak to tackle the following conjecture:

Conjecture 4.5. mn/tn → 0 when n→ +∞.

4.2.1 Deformed permutahedra

The deformations of Πn are characterized [9] by having all its edges parallel to ei − ej
(for some i, j). Using Lemma 4.3, we can verify that Z→n,m and Z↔n,m satisfy this condition.

Theorem 4.6. The polytopes Z→n,m and Z↔n,m are deformed permutahedra.

Unfortunately, our construction only gives deformed permutahedra for Kn,m.

Theorem 4.7. For a graph G and a vertex v of ZG, if ZG ∖ v is a deformed permutahedron, then
G is a complete bi-partite graph Kn,m and v = vn→m or v = vm→n.
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4.2.2 Indecomposability

We use Theorem 2.8 to prove indecomposability. For n + m ≤ 4, see Example 4.2.

Theorem 4.8. For n, m ≥ 1 with n + m ≥ 5, Z→n,m and Z↔n,m are indecomposable.

Proof. For an arc ij of Kn,m, call ij-edges the edges of Zn,m, Z→n,m or Z↔n,m in direction ei − ej,
and a-edges the ij-edges for some arc ij (the ones of form (i) in Lemma 4.3). Let EDij
(resp. ED→ij and ED↔ij ) be the subgraph of ED(Zn,m) (resp. ED(Z→n,m) and ED(Z↔n,m))
induced on all ij-edges. We have seen in the proof of Theorem 3.2 that EDij contains
a subgraph isomorphic to the 1-skeleton of the graphical zonotope of Kn,m

/
ij . It is

(n + m − 2)-connected, so removing 1 or 2 vertices does not break connectivity: ED→ij
and ED↔ij are connected. Let ij, ik be two arcs of Kn,m sharing an endpoint. Let ρ1, ρ2 be
their associated almost left-right orientations. The edge vρ1vρ2 shares a triangular 2-face
with an ij-edge and a ik-edge. As any triangle is indecomposable, Corollary 2.6 ensures
that ED→ij and ED→ik are connected together. As Kn,m is connected, so is its line-graph,
thus the subgraph of ED(Z→n,m) induced on the set of all a-edges is connected. The a-
edges form a dependent subset, and every vertex of Z→n,m appears as endpoint of one of
these edges in G(Z→n,m) (because any ρ ∈ A(G) has a re-orientable arc): by Theorem 2.8,
we get that Z→n,m is indecomposable. The same reasoning holds for Z↔n,m.

This allows for refuting Smilanski’s conjecture from 1987 [15, Conjecture 6.12], stating
that a d-polytope P is decomposable if it satisfies

V > 1 +
(

F− 1− ⌊d/2⌋
F− d

)
+

(
F− 1− ⌊(d + 1)/2⌋

F− d

)
, (4.1)

where V := |V(P)|, F := |F(P)|. For d = 4, (4.1) is V ≥ 2F − 4. Both Z→1,4 and Z→2,3 are
indecomposable and yet their f -vectors, (15, 34, 28, 9) and (45, 111, 89, 23), fulfill (4.1).

4.2.3 Not matroid polytopes

The matroid polytope of a matroid is the convex hull of the indicator vectors of its bases.
Matroid polytopes are characterized by being the deformed permutahedra with 0/1-
coordinates [4]. We can show that Z→n,m and Z↔n,m are not matroid polytopes (except for
sporadic cases) by providing vertices whose coordinates take at least 3 different values.

Theorem 4.9. For 1 ≤ n ≤ m, Z→n,m (resp. Z↔n,m) is normally equivalent to a matroid polytope if
and only if n = 1 and m ∈ {1, 2} (resp. n = 1 and m ∈ {1, 2, 3}).
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