Séminaire Lotharingien de Combinatoire **93B** (2025) Article #156, 12 pp.

Permutation representations of classical Weyl groups on mod *q* lattices

Ryo Uchiumi*1

¹Department of Mathematics, Osaka University, Toyonaka, Osaka 560-0043, Japan.

Abstract.

For a given linear action of a finite group on a lattice and a positive integer q, the mod q permutation representation is a quasi-polynomial in q. In this paper, we compute the multiplicity of each irreducible representation in the mod q permutation representation of a classical Weyl group on the two types of lattices, generated by the standard basis and by coroots.

Keywords: classical Weyl groups, lattices, mod *q* permutation representations, quasipolynomials, integer partitions

1 Introduction

1.1 Quasi-polynomials

Let *R* be a commutative ring. A function $f : \mathbb{Z}_{>0} \to R$ is called a **quasi-polynomial** if there exists a positive integer $\tilde{n} \in \mathbb{Z}_{>0}$ and polynomials $g_1(t), \ldots, g_{\tilde{n}}(t) \in R[t]$ such that

$$f(q) = g_r(q)$$
, if $q \equiv r \mod \tilde{n}$ $(1 \le r \le \tilde{n})$.

The positive integer \tilde{n} is called a **period** and each polynomial g_r is called the **constituent** of f. The quasi-polynomial f has degree d if all the constituents have degree d. Moreover, the quasi-polynomial f has the **gcd-property** if the polynomial g_r depends on r only through $gcd\{\tilde{n}, r\}$. In other words, $g_{r_1} = g_{r_2}$ if $gcd\{\tilde{n}, r_1\} = gcd\{\tilde{n}, r_2\}$. Quasipolynomials play an important role in many areas of mathematics and appear frequently, especially as counting functions.

Example 1.1 (The Ehrhart quasi-polynomial). Let \mathcal{P} be a rational polytope in \mathbb{R}^{ℓ} . For $q \in \mathbb{Z}_{\geq 0}$, define

$$\mathcal{L}_{\mathcal{P}}(q) \coloneqq \#(q\mathcal{P} \cap \mathbb{Z}^{\ell}).$$

Then $L_{\mathcal{P}}(q)$ is a quasi-polynomial ([1, Theorem 3.23]), known as the **Ehrhart quasi**polynomial.

^{*}uchiumi.ryou.1xu@ecs.osaka-u.ac.jp. The author was supported by JST SPRING, Grant Number JP-MJSP2138.

Example 1.2 (The characteristic quasi-polynomial). Let $L \simeq \mathbb{Z}^{\ell}$ be a lattice and $L^{\vee} := \text{Hom}_{\mathbb{Z}}(L,\mathbb{Z})$ be the dual lattice. Given $\alpha_1, \ldots, \alpha_n \in L^{\vee}$, we can associate a hyperplane arrangement $\mathscr{A} := \{H_1, \ldots, H_n\}$ in $\mathbb{R}^{\ell} \simeq L \otimes \mathbb{R}$, where

$$H_i \coloneqq \{ x \in L \otimes \mathbb{R} \mid \alpha_i(x) = 0 \}.$$

For a positive integer $q \in \mathbb{Z}_{>0}$, define the mod q complement of the arrangement by

$$M(\mathscr{A},q) := (L/qL)^{\ell} \setminus \bigcup_{i=1}^{\ell} \overline{H}_i$$
$$= \{ \bar{x} \in L/qL \mid \alpha_i(x) \neq 0 \mod q \text{ for all } i \in \{1,\ldots,n\} \}.$$

It is known ([4, Theorem 2.4]) that

$$\chi_{\text{quasi}}(\mathscr{A},q) \coloneqq \#M(\mathscr{A},q)$$

is a quasi-polynomial with gcd-property. It is called a **characteristic quasi-polynomial**. Furthermore, the first constituent of $\chi_{quasi}(\mathscr{A}, t)$ is equal to the **characteristic polynomial** $\chi(\mathscr{A}, t)$ of \mathscr{A} , the most important invariant of \mathscr{A} .

Example 1.3 (Equivariant Ehrhart theory). Let $L \simeq \mathbb{Z}^{\ell}$ be a lattice and let Γ be a finite group acting linearly on L. Suppose that \mathcal{P} is a Γ -invariant lattice polytope. For a positive integer $q \in \mathbb{Z}_{>0}$, the group acts on the lattice points $q\mathcal{P} \cap L$. Let $\chi_{q\mathcal{P}}$ denote the character of this permutation representation. Then the map

$$F: q \longmapsto \chi_{q\mathcal{P}}$$

is a quasi-polynomial ([10, Theorem 5.7, Corollary 5.9]). It is an equivariant version of Ehrhart quasi-polynomials. In fact, for the identity element 1 of Γ , then $\chi_{q\mathcal{P}}(1) = #(q\mathcal{P} \cap L)$, hence it is a generalization of Ehrhart theory. Furthermore, the multiplicity of a fixed irreducible character χ in $\chi_{q\mathcal{P}}$ is also a quasi-polynomial in q.

1.2 mod *q* **permutation representations**

In [11], we consider mod q permutation representations for linear finite group actions on lattices toward an equivariant version of characteristic quasi-polynomials.

Let *L* be a lattice, and $\{\beta_1, \ldots, \beta_\ell\}$ be a \mathbb{Z} -basis of *L*, that is, $L = \mathbb{Z}\beta_1 \oplus \cdots \oplus \mathbb{Z}\beta_\ell \simeq \mathbb{Z}^\ell$. We identify an element $x = x_1\beta_1 + \cdots + x_\ell\beta_\ell$ of *L* with the row vector $x = (x_1, \ldots, x_\ell)$ of \mathbb{Z}^ℓ .

Let Γ be a finite group and let $\rho : \Gamma \to GL(L)$ be a group homomorphism. Let us denote the representation matrix of $\rho(\gamma)$ by R_{γ} , and we consider the right multiplication, namely,

$$\rho(\gamma): L \longrightarrow L, \quad x \longmapsto xR_{\gamma}.$$

For a positive integer $q \in \mathbb{Z}_{>0}$, define $\mathbb{Z}_q \coloneqq \mathbb{Z}/q\mathbb{Z}$. We will consider the following *q*-reduction of a vector $x = (x_1, \ldots, x_\ell) \in \mathbb{Z}^\ell$ and an integer matrix $A = (a_{ij})_{ij}$:

$$[x]_q \coloneqq ([x_1]_q, \dots, [x_\ell]_q) \in L_q^\ell, \qquad [A]_q \coloneqq \left([a_{ij}]_q\right)_{ij'}$$

where $[z]_q = z + q\mathbb{Z} \in \mathbb{Z}/q\mathbb{Z}$ for $z \in \mathbb{Z}$. Then, for a \mathbb{Z} -homomorphism $\varphi : \mathbb{Z}^{\ell} \to \mathbb{Z}^{\ell}$ represented by an integer matrix A, we can define the induced morphism $\varphi_q : \mathbb{Z}_q^{\ell} \to \mathbb{Z}_q^{\ell}$ by $x \longmapsto x[A]_q$.

Let $L_q := L/qL \simeq \mathbb{Z}_q^{\ell}$. The action of Γ on L_q is induced by $\rho(\gamma)_q : L_q \longrightarrow L_q$. Let χ_{L_q} denote the character of the permutation representation of L_q , and consider its irreducible decomposition:

$$\chi_{L_q} = m(\chi_1; q) \cdot \chi_1 + \cdots + m(\chi_k; q) \cdot \chi_k,$$

where $\{\chi_1, ..., \chi_k\}$ is the set of all irreducible characters of Γ and $m(\chi_i; q)$ denotes the multiplicity of χ_i in χ_{L_q} .

In [11], it is shown that the multiplicity $m(\chi; q)$ of the any irreducible character χ in χ_{L_q} is a quasi-polynomial in q with gcd-property ([11, Corollary 2.2]). More explicitly,

$$m(\chi; q) = \frac{1}{\#\Gamma} \sum_{\gamma \in \Gamma} \chi(\gamma) \left(\prod_{j=1}^{r(\gamma)} \gcd\{e_{\gamma,j}, q\} \right) q^{\ell - r(\gamma)}, \tag{1.1}$$

where $r(\gamma) \coloneqq \operatorname{rank}(R_{\gamma} - I)$ with the identity matrix I and $e_{\gamma,1}, \ldots, e_{\gamma,r(\gamma)}$, with $e_{\gamma,1} \mid e_{\gamma,2} \mid \cdots \mid e_{\gamma,r(\gamma)}$, are the elementary divisors of the matrix $R_{\gamma} - I$. Obviously, the map $q \mapsto \chi_{L_q}$ is also a quasi-polynomial with gcd-property. Moreover, their quasi-polynomial have a period lcm { $e_{\gamma,r(\gamma)} \mid \gamma \in \Gamma$ } (lcm-period).

1.3 Classical Weyl groups

In this paper, we compute $m(\chi; q)$ for each irreducible character χ when a group Γ is a classical Weyl group. In this section, we recall classical Weyl groups and their conjugacy classes and irreducible characters. See also [2, 12, 13] for details.

For $\ell \in \mathbb{Z}_{>0}$, an **integer partition** of ℓ is an integer sequence $\lambda = (\lambda_1, ..., \lambda_t)$ satisfying $\lambda_1 \ge \cdots \ge \lambda_t > 0$ and $\lambda_1 + \cdots + \lambda_t = \ell$. We define $\ell(\lambda)$ as the length t of λ and $|\lambda| := \lambda_1 + \cdots + \lambda_t$. We consider that the empty sequence $\emptyset = ()$ to be an integer partition of 0, with $\ell(\emptyset) = 0$ and $|\emptyset| = 0$.

1.3.1 Type $A_{\ell-1}$

The Weyl group of type $A_{\ell-1}$ is the symmetric group \mathfrak{S}_{ℓ} . The order of \mathfrak{S}_{ℓ} is $\#\mathfrak{S}_{\ell} = \ell!$. Each element $\sigma \in \mathfrak{S}_{\ell}$ may be decomposed uniquely into a product of cyclic permutations up to the order of factors:

$$\sigma = (i_{11} \cdots i_{1\lambda_1}) \cdots (i_{t1} \cdots i_{t\lambda_t}), \quad \lambda_1 \ge \cdots \ge \lambda_t.$$

Then the integer partition $(\lambda_1, ..., \lambda_\ell)$ of ℓ is called the **cycle type** of $\sigma \in \mathfrak{S}_\ell$. Two elements of \mathfrak{S}_ℓ are conjugate if and only if they have the same cycle type. In other words, conjugacy classes of \mathfrak{S}_ℓ are parameterized by integer partitions of ℓ .

Irreducible characters of \mathfrak{S}_{ℓ} are also parameterized by integer partition of ℓ . We denote the irreducible character defined by a integer partition λ by χ^{λ} .

1.3.2 Type B_ℓ and C_ℓ

The Weyl group of type B_{ℓ} and C_{ℓ} are the hyperoctahedral group \mathfrak{H}_{ℓ} , isomorphic to the semidirect product $\mathfrak{S}_{2}^{\ell} \rtimes \mathfrak{S}_{\ell}$ (the wreath product $\mathfrak{S}_{2} \wr \mathfrak{S}_{\ell}$). The order of \mathfrak{H}_{ℓ} is $\#\mathfrak{H}_{\ell} = 2^{\ell} \ell!$. The hyperoctahedral group \mathfrak{H}_{ℓ} can be regarded as a subgroup of the symmetric group $\mathfrak{S}_{I_{\ell}}$ of $I_{\ell} := \{-\ell, \ldots, -1, 1, \ldots, \ell\}$ by

$$\mathfrak{H}_{\ell} = \{ \eta \in \mathfrak{S}_{I_{\ell}} \mid \eta(-i) = -\eta(i) \text{ for all } i \in I_{\ell} \}.$$

Especially, \mathfrak{S}_2^{ℓ} is to be regarded as a subgroup generalized by the sign transpositions $\tau_1, \ldots, \tau_{\ell}$:

$$\tau_i: \begin{cases} j \longmapsto -j & \text{if } j = i, \ -i; \\ j \longmapsto j & \text{if } j \neq i, \ -i \end{cases} \quad (1 \le i \le \ell).$$

The hyperoctahedral group \mathfrak{H}_{ℓ} has two types of cyclic permutations, even cyclic permutations $(i_1 \cdots i_t)_+$ and odd cyclic permutations $(i_1 \cdots i_t)_-$:

$$(i_1 \cdots i_t)_+ = \begin{pmatrix} i_1 & i_2 & \cdots & i_{t-1} & i_t \\ i_2 & i_3 & \cdots & i_t & i_1 \end{pmatrix}, \qquad (i_1 \cdots i_t)_- = \begin{pmatrix} i_1 & i_2 & \cdots & i_{t-1} & i_t \\ i_2 & i_3 & \cdots & i_t & -i_1 \end{pmatrix},$$

where $i_1, \ldots, i_t \in I_\ell$ and they have pairwise different absolute values. Note that an odd cyclic permutation $(i)_-$ of length 1 is equal to the sign transposition τ_i . Each element $\eta \in \mathfrak{H}_\ell$ may be decomposed uniquely into a product of two types of cyclic permutations up to the order of factors:

$$\eta = (i_{11} \cdots i_{1\lambda_1})_+ \cdots \cdots (i_{t1} \cdots i_{t\lambda_t})_+ (j_{11} \cdots j_{1\mu_1})_- \cdots \cdots (j_{s1} \cdots j_{s\mu_s})_-,$$
$$\lambda_1 \ge \cdots \ge \lambda_t, \quad \mu_1 \ge \cdots \ge \mu_s.$$

Then the pair of two integer partitions $((\lambda_1, ..., \lambda_t), (\mu_1, ..., \mu_s))$ is called the **cycle type** of $\eta \in \mathfrak{H}_{\ell}$. Two elements of \mathfrak{H}_{ℓ} are conjugate if and only if they have the same cycle type. Hence conjugacy classes of \mathfrak{H}_{ℓ} are parameterized by the pair of integer partitions (λ, μ)

with $|\lambda| + |\mu| = \ell$. Note that an element $\eta \in \mathfrak{H}_{\ell}$ with cycle type (λ, \emptyset) can be regarded as an element of \mathfrak{S}_{ℓ} with cycle type λ . Hence we consider that \mathfrak{S}_{ℓ} is a subgroup of \mathfrak{H}_{ℓ} .

Irreducible characters of \mathfrak{H}_{ℓ} are also parameterized by the pair of integer partitions (λ, μ) with $|\lambda| + |\mu| = \ell$. Let $\chi^{\lambda, \mu}$ denote the irreducible character defined by (λ, μ) . Then the dimensions of $\chi^{\lambda, \mu}$, χ^{λ} and χ^{μ} are connected by the following relation:

$$\frac{\chi^{\lambda,\mu}(1)}{\ell!} = \frac{\chi^{\lambda}(1)\chi^{\mu}(1)}{|\lambda|! \cdot |\mu|!}.$$
(1.2)

1.3.3 Type D_{ℓ}

The Weyl group of type D_{ℓ} is a subgroup of index 2 of the hyperoctahedral group \mathfrak{H}_{ℓ} denoted by $\tilde{\mathfrak{H}}_{\ell}$. An element $\eta \in \mathfrak{H}_{\ell}$ is in $\tilde{\mathfrak{H}}_{\ell}$ if and only if η has cycle type (λ, μ) such that $\ell(\mu)$ is even. In other words, we can consider that

$$\widetilde{\mathfrak{H}}_{\ell} = \left\{ \, \eta \in \mathfrak{H}_{\ell} \mid \# \left\{ \, i \in [\ell] \mid \eta(i) < 0 \, \right\} \, ext{is even} \,
ight\}.$$

Let $C_{\lambda,\mu}$ denote the conjugacy class of \mathfrak{H}_{ℓ} parameterized by the pair of partitions (λ, μ) . Let $\widetilde{C}_{\lambda,\mu} := C_{\lambda,\mu} \cap \mathfrak{H}_{\ell}$. If (λ, μ) satisfies

$$\lambda_1 \equiv \dots \equiv \lambda_{\ell(\lambda)} \equiv 0 \pmod{2} \text{ and } \mu = \emptyset,$$
 (1.3)

then $\widetilde{C}_{\lambda,\mu}$ is the union of two conjugacy classes of $\widetilde{\mathfrak{H}}_{\ell}$, which denote $\widetilde{C}_{\lambda,\mu}^1$ and $\widetilde{C}_{\lambda,\mu}^2$. These classes have the following relation:

$$\widetilde{C}^{1}_{\lambda,\mu} = \tau_1^{-1} \widetilde{C}^{2}_{\lambda,\mu} \tau_1 = \{ \tau_1^{-1} \gamma \tau_1 \mid \gamma \in \widetilde{C}^{2}_{\lambda,\mu} \}.$$
(1.4)

If (λ, μ) does not satisfy (1.3), then $\widetilde{C}_{\lambda,\mu}$ is also a conjugacy class of $\widetilde{\mathfrak{H}}_{\ell}$. All conjugacy classes of $\widetilde{\mathfrak{H}}_{\ell}$ can be obtained in this way.

Let (λ, μ) be the pair of integer partitions satisfying $|\lambda| + |\mu| = \ell$. Let $\tilde{\chi}^{\lambda,\mu}$ denote the restriction to $\tilde{\mathfrak{H}}_{\ell}$ of the irreducible character $\chi^{\lambda,\mu}$ of \mathfrak{H}_{ℓ} . If $\lambda \neq \mu$, then $\tilde{\chi}^{\lambda,\mu}$ is also an irreducible character of $\tilde{\mathfrak{H}}_{\ell}$, and furthermore $\tilde{\chi}^{\lambda,\mu} = \tilde{\chi}^{\mu,\lambda}$. But if $\lambda = \mu$, then $\tilde{\chi}^{\lambda,\lambda}$ is the sum of two irreducible characters of $\tilde{\mathfrak{H}}_{\ell}$, which we denote as $\tilde{\chi}_{1}^{\lambda,\lambda}$ and $\tilde{\chi}_{2}^{\lambda,\lambda}$. All irreducible characters of $\tilde{\mathfrak{H}}_{\ell}$ can be obtained in this way. Moreover, the characters $\chi^{\lambda,\mu}$, $\chi^{\mu,\lambda}$ and $\tilde{\chi}^{\lambda,\mu}$ are connected by the following formula:

$$\frac{\chi^{\lambda,\mu}(\eta) + \chi^{\mu,\lambda}(\eta)}{2} = \begin{cases} \widetilde{\chi}^{\lambda,\mu}(\eta) & \text{if } \eta \in \widetilde{\mathfrak{H}}_{\ell}; \\ 0 & \text{if } \eta \notin \widetilde{\mathfrak{H}}_{\ell}. \end{cases}$$
(1.5)

The irreducible characters $\tilde{\chi}_1^{\lambda,\lambda}$ and $\tilde{\chi}_2^{\lambda,\lambda}$ are connected by the following relation:

$$\widetilde{\chi}_{1}^{\lambda,\lambda}(\eta) = \widetilde{\chi}_{2}^{\lambda,\lambda}(\tau_{1}^{-1}\eta\tau_{1}) \quad \text{for all } \eta \in \widetilde{\mathfrak{H}}_{\ell}.$$
(1.6)

Note that η and $\tau_1^{-1}\eta\tau_1$ are not necessarily conjugate as seen in (1.4).

2 Lattices generated by the standard basis

2.1 Calculation results of the multiplicities

In this section, suppose that $L = \mathbb{Z}^{\ell}$. Let W be a Weyl group of type $A_{\ell-1}$, B_{ℓ} , C_{ℓ} or D_{ℓ} . We compute the multiplicity $m(\chi; q)$ of each irreducible character χ in $\chi_{\mathbb{Z}_q^{\ell}}$. Take a \mathbb{Z} -basis $\{e_1, \ldots, e_{\ell}\}$ of \mathbb{Z}^{ℓ} , that is, $\mathbb{Z}^{\ell} = \mathbb{Z}e_1 \oplus \cdots \oplus \mathbb{Z}e_{\ell}$. Then W acts on \mathbb{Z}^{ℓ} by

$$w(e_i) = \begin{cases} e_{w(i)} & \text{if } w(i) > 0; \\ -e_{-w(i)} & \text{if } w(i) < 0 \end{cases} \quad (1 \le i \le \ell, \ w \in W).$$

Obviously, *W* also acts on $\mathbb{R}^{\ell} = \mathbb{R}e_1 \oplus \cdots \oplus \mathbb{R}e_{\ell}$ in the same way. This is the natural action as a finite reflection group.

For $w \in W$, let R_w be the representation matrix of w and r(w) denote the rank of matrix $R_w - I$, where I is the identity matrix.

Lemma 2.1. For $w \in W$, the following values are all equal to r(w):

- (1) The number of eigenvalues of w which are not equal to 1 (counted with multiplicity);
- (2) $\ell \ell(\lambda);$
- (3) $\ell \dim (\mathbb{R}^{\ell})^w$;
- (4) The minimum number of reflections required to express w as a product of reflections,

where (λ, μ) is the cycle type of w and $(\mathbb{R}^{\ell})^w = \{ x \in \mathbb{R}^{\ell} \mid w(x) = x \}.$

We obtain the elementary divisors $e_{w,1}, \ldots, e_{w,r(w)}$ of $R_w - I$ by computed directly as follows:

Lemma 2.2. Let $w \in W$ with cycle type (λ, μ) . Then

$$e_{w,j} = \begin{cases} 1 & \text{if } j \le r(w) - \ell(\mu); \\ 2 & \text{if } j > r(w) - \ell(\mu) \end{cases} \quad (1 \le j \le r(w)).$$

Hence, using (1.1), $m(\chi; q)$ is obtained as follows:

Theorem 2.3. For an irreducible character χ of W, we have

$$m(\chi; q) = \frac{1}{\#W} \sum_{w \in W} \chi(w) g(q)^{\ell(\mu_w)} q^{\ell(\lambda_w)},$$

where (λ_w, μ_w) is the cycle type of w and $g(q) \coloneqq \gcd\{2, q\}$.

Let **1** denote the trivial character of *W*. By the Shephard–Todd formula ([9], see also [8, Theorem 4.6]), the first constituent $m(\mathbf{1}; t)_1$ of the quasi-polynomial $m(\mathbf{1}; t)$ can be expressed as

$$m(\mathbf{1}; t)_1 = \frac{1}{\#W}(t+m_1)\cdots(t+m_\ell), \qquad (2.1)$$

where m_1, \ldots, m_ℓ are the exponents of *W*.

Let δ be the determinant character of W. By (2.1) and the reciprocity theorem ([11, Theorem 2.10]), the first constituent $m(\delta; t)_1$ of the quasi-polynomial $m(\delta; t)$ can be expressed as

$$m(\delta; t)_1 = \frac{1}{\#W}(t - m_1) \cdots (t - m_\ell).$$

It is well known that the above polynomial on the right hand side is equal to the characteristic polynomial of the Coxeter arrangement of *W* up to scalar (see [8, Corollary 3.3]).

2.2 Factorization of the multiplicity

Let *W* be a classical Weyl group. For a character χ of *W*, define $M_W(\chi; s, t) \in \mathbb{Z}[s, t]$ by

$$M_W(\chi; s, t) \coloneqq \sum_{w \in W} \chi(w) s^{\ell(\mu_w)} t^{\ell(\lambda_w)},$$

where (λ_w, μ_w) is the cycle type of w. For simplicity, we denote $M_W(\chi; 1, t)$ (for s = 1) by $M_W(\chi; t)$. Define a function $g(q) \coloneqq \gcd\{2, q\}$. From Theorem 2.3, we have

$$m(\chi; q) = \frac{M_W(\chi; g(q), q)}{\#W}.$$
(2.2)

Let λ be an integer partition. Define a multiset A_{λ} as

$$A_{\lambda} \coloneqq \bigsqcup_{i=1}^{\ell(\lambda)} \{ i - j \mid 1 \le j \le \lambda_i \}$$

2.2.1 Type $A_{\ell-1}$

Suppose that $W = \mathfrak{S}_{\ell}$ (type $A_{\ell-1}$). Let χ^{λ} denote the irreducible character parameterized by an integer partition λ . Since $\ell(\mu_{\sigma}) = 0$ for all $\sigma \in \mathfrak{S}_{\ell}$, then $M_{\mathfrak{S}_{\ell}}(\chi^{\lambda}; t) = M_{\mathfrak{S}_{\ell}}(\chi^{\lambda}; s, t)$. It is known that the factorization formula for $M_{\mathfrak{S}_{\ell}}(\chi^{\lambda}; t)$: **Theorem 2.4** (Littlewood [6, p. 56], Molchanov [7, Theorem 1]). *The roots of the polynomial* $M_{\mathfrak{S}_{\ell}}(\chi^{\lambda}; t)$ are the numbers in A_{λ} :

$$M_{\mathfrak{S}_{\ell}}(\chi^{\lambda};t) = \chi^{\lambda}(1) \prod_{a \in A_{\lambda}} (t-a) = \chi^{\lambda}(1) \prod_{i=1}^{\ell(\lambda)} \prod_{j=1}^{\lambda_i} (t-i+j).$$

Corollary 2.5. Let χ^{λ} be the irreducible character of \mathfrak{S}_{ℓ} parameterized by an integer partition λ . Then we have

$$m(\chi^{\lambda};q) = \frac{\chi^{\lambda}(1)}{\ell!} \prod_{a \in A_{\lambda}} (q-a) = \frac{\chi^{\lambda}(1)}{\ell!} \prod_{i=1}^{\ell(\lambda)} \prod_{j=1}^{\lambda_i} (q-i+j).$$

Hence $m(\chi^{\lambda}; q)$ *is a quasi-polynomial with the minimal period* 1 *(just a polynomial).*

2.2.2 Type B_ℓ and C_ℓ

Suppose that $W = \mathfrak{H}_{\ell}$ (type B_{ℓ} or C_{ℓ}). For the irreducible character $\chi^{\lambda,\mu}$, it is known by Young [13] in the following formula:

$$M_{\mathfrak{H}_{\ell}}(\chi^{\lambda,\mu};s,t) = \frac{2^{\ell}\ell!}{|\lambda|!|\mu|!} M_{\mathfrak{S}_{|\lambda|}}\left(\chi^{\lambda};\frac{t+s}{2}\right) M_{\mathfrak{S}_{|\mu|}}\left(\chi^{\mu};\frac{t-s}{2}\right),\tag{2.3}$$

where we consider that $M_{\mathfrak{S}_{|\mathcal{O}|}}(\chi^{\mathcal{O}}; \cdot) = 1.$

Theorem 2.6. Let $\chi^{\lambda,\mu}$ be the irreducible character of \mathfrak{H}_{ℓ} parameterized by (λ,μ) . Then we have

$$m(\chi^{\lambda,\mu};q) = m\left(\chi^{\lambda}; \frac{q+g(q)}{2}\right) \cdot m\left(\chi^{\mu}; \frac{q-g(q)}{2}\right)$$
$$= \frac{\chi^{\lambda,\mu}(1)}{2^{\ell}\ell!} \prod_{a \in A_{\lambda}} (q+g(q)-2a) \prod_{b \in A_{\mu}} (q-g(q)-2b)$$

Hence $m(\chi^{\lambda,\mu}; q)$ *is a quasi-polynomial with the minimal period* 2*.*

Proof. It follows from equations (2.2), (2.3) and the dimensional relation (1.2). \Box

2.2.3 Type D_{ℓ}

Suppose that $W = \tilde{\mathfrak{H}}_{\ell}$ (type D_{ℓ}). Let (λ, μ) be the pair of integer partitions satisfying $|\lambda| + |\mu| = \ell$. From the equation (1.5), we have

$$M_{\widetilde{\mathfrak{H}}_{\ell}}(\widetilde{\chi}^{\lambda,\mu};s,t) = \sum_{\eta \in \mathfrak{H}_{\ell}} \frac{\chi^{\lambda,\mu}(\eta) + \chi^{\mu,\lambda}(\eta)}{2} s^{\ell(\mu_{\eta})} t^{\ell(\lambda_{\eta})} = \frac{M_{\mathfrak{H}_{\ell}}(\chi^{\lambda,\mu};s,t) + M_{\mathfrak{H}_{\ell}}(\chi^{\mu,\lambda};s,t)}{2}.$$
(2.4)

Theorem 2.7. Let $\tilde{\chi}^{\lambda,\mu}$ be the irreducible character of $\tilde{\mathfrak{H}}_{\ell}$ parameterized by (λ,μ) satisfying $\lambda \neq \mu$. Then we have

$$\begin{split} m(\widetilde{\chi}^{\lambda,\mu};q) &= m(\chi^{\lambda,\mu};q) + m(\chi^{\mu,\lambda};q) \\ &= m\left(\chi^{\lambda};\frac{q+g(q)}{2}\right) \cdot m\left(\chi^{\mu};\frac{q-g(q)}{2}\right) \\ &+ m\left(\chi^{\mu};\frac{q+g(q)}{2}\right) \cdot m\left(\chi^{\lambda};\frac{q-g(q)}{2}\right). \end{split}$$

Hence $m(\tilde{\chi}^{\lambda,\mu}; q)$ *is a quasi-polynomial with the minimal period* 2*. Proof.* It follows from the equation (2.4) and Theorem 2.6.

Suppose that $\lambda = \mu$. By the relation (1.6), we have

$$M_{\widetilde{\mathfrak{H}}_{\ell}}(\widetilde{\chi}_{1}^{\lambda,\lambda};s,t)=M_{\widetilde{\mathfrak{H}}_{\ell}}(\widetilde{\chi}_{2}^{\lambda,\lambda};s,t).$$

Since $\widetilde{\chi}^{\lambda,\lambda} = \widetilde{\chi}_1^{\lambda,\lambda} + \widetilde{\chi}_2^{\lambda,\lambda}$, then

$$M_{\tilde{\mathfrak{H}}_{\ell}}(\tilde{\chi}_{i}^{\lambda,\lambda};s,t) = \frac{M_{\tilde{\mathfrak{H}}_{\ell}}(\tilde{\chi}_{1}^{\lambda,\lambda};s,t) + M_{\tilde{\mathfrak{H}}_{\ell}}(\tilde{\chi}_{2}^{\lambda,\lambda};s,t)}{2} = \frac{M_{\tilde{\mathfrak{H}}_{\ell}}(\tilde{\chi}^{\lambda,\lambda};s,t)}{2}.$$
 (2.5)

for $i \in \{1, 2\}$.

Theorem 2.8. Let $\tilde{\chi}_1^{\lambda,\lambda}$ and $\tilde{\chi}_2^{\lambda,\lambda}$ be the irreducible characters of $\tilde{\mathfrak{H}}_{\ell}$ parameterized by (λ,λ) . Then we have

$$m(\tilde{\chi}_1^{\lambda,\lambda};q) = m(\tilde{\chi}_2^{\lambda,\lambda};q) = m(\chi^{\lambda,\lambda};q) = m\left(\chi^{\lambda};\frac{q+g(q)}{2}\right) \cdot m\left(\chi^{\lambda};\frac{q-g(q)}{2}\right).$$

f. It follows from equations (2.4), (2.5) and Theorem 2.6.

Proof. It follows from equations (2.4), (2.5) and Theorem 2.6.

In the case of type $A_{\ell-1}$, B_{ℓ} and C_{ℓ} , all the roots of each constituent of the quasipolynomial $m(\chi; q)$ are integers. However, it is not always the case in type D_{ℓ} . This phenomenon has also been observed in characteristic quasi-polynomials of the arrangements of root systems (see [5, Example 3.5]).

Example 2.9. Let $\ell = 7$, $\lambda = (2, 1, 1)$ and $\mu = (3)$. Then

$$m(\chi^{\lambda,\mu};q) = \begin{cases} \frac{105(q+1)(q-1)(q+3)(q-3)\cdot(q+1)(q-1)(q+3)}{2^77!} & \text{if } \gcd\{2,q\} = 1;\\ \frac{105q(q+2)(q-2)(q+4)\cdot q(q+2)(q-2)}{2^77!} & \text{if } \gcd\{2,q\} = 2, \end{cases}$$

$$\int \frac{105(q+1)(q+3)(q+5)\cdot(q+1)(q-1)(q-3)(q-5)}{2^7 7!} \quad \text{if } \gcd\{2,q\} = 1;$$

$$m(\chi^{\mu,\lambda};q) = \begin{cases} \frac{105(q+2)(q+4)(q+6) \cdot q(q-2)(q-4)(q-6)}{2^{7}7!} & \text{if } \gcd\{2,q\} = 2 \end{cases}$$

and

$$\begin{split} m(\widetilde{\chi}^{\lambda,\mu};q) &= m(\chi^{\lambda,\mu};q) + m(\chi^{\mu,\lambda};q) \\ &= \begin{cases} \frac{105(q+1)^2(q-1)(q+3)(q-3)(q^2+q-14)}{2^67!} & \text{if } \gcd\{2,q\} = 1; \\ \frac{105q(q+2)(q-2)(q+4)(q^3-2q^2-20q+72)}{2^67!} & \text{if } \gcd\{2,q\} = 2. \end{cases} \end{split}$$

Note that $t^2 + t - 14$ and $t^3 - 2t^2 - 20t + 72$ are irreducible polynomials over $\mathbb{Z}[t]$.

3 Coroot lattices

Let Φ be a root system of type $A_{\ell-1}$, B_{ℓ} , C_{ℓ} or D_{ℓ} and $W = W(\Phi)$ be the Weyl group of Φ . In this section, suppose that *L* is the coroot lattice $\check{Q} = \check{Q}(\Phi)$ of Φ :

$$\check{Q} = \check{Q}(\Phi) = \sum_{\alpha \in \Phi} \mathbb{Z} \alpha^{\vee}, \quad \alpha^{\vee} := \frac{2\alpha}{(\alpha, \alpha)}.$$

We compute the multiplicity $m(\chi; q)$ of each irreducible character χ in $\chi_{\check{Q}_q^{\ell}}$. Especially in this case, $m(\mathbf{1}; q)$ is the Ehrhart quasi-polynomial of the fundamental alcove of Φ with respect to \check{Q} . Haiman [3, Section 7.4] details the case where q is relatively prime to the Coxeter number.

3.1 Type $A_{\ell-1}$

Suppose that Φ is a root system of type $A_{\ell-1}$. Then $W = \mathfrak{S}_{\ell}$ and the coroot lattice \check{Q} can be expressed by

$$\check{Q} = \mathbb{Z}(e_1 - e_2) \oplus \cdots \oplus \mathbb{Z}(e_{\ell-1} - e_{\ell}).$$

Similar to Lemma 2.1, for $\sigma \in \mathfrak{S}_{\ell}$, $r(\sigma)$ is obtained as $r(\sigma) = \ell - \ell(\lambda)$, where λ is the cycle type of σ . We obtain the elementary divisors $e_{\sigma,1}, \ldots, e_{\sigma,r(\sigma)}$ of $R_{\sigma} - I$ by computed directly as follows:

Lemma 3.1. Let $\sigma \in \mathfrak{S}_{\ell}$ with cycle type λ . Then

$$e_{\sigma,1} = \cdots = e_{\sigma,r(\sigma)-1} = 1, \quad e_{\sigma,r(\sigma)} = \gcd\{\lambda_1,\ldots,\lambda_{\ell(\lambda)}\}$$

Theorem 3.2. Let χ^{λ} be the irreducible character of \mathfrak{S}_{ℓ} . Then $m(\chi^{\lambda}; q)$ is a quasi-polynomial with minimal period ℓ . In particular, if $gcd\{\ell, q\} = 1$, then

$$m(\chi^{\lambda};q) = \frac{q^{-1}M_{\mathfrak{S}_{\ell}}(\chi^{\lambda};q)}{\ell!} = \frac{\chi^{\lambda}(1)}{\ell!}q^{-1}\prod_{a\in A_{\lambda}}(q-a).$$

3.2 Type B_ℓ

Suppose that Φ is a root system of type B_{ℓ} . The coroot lattice \check{Q} can be expressed by

$$\check{Q} = \mathbb{Z}(e_1 - e_2) \oplus \cdots \oplus \mathbb{Z}(e_{\ell-1} - e_{\ell}) \oplus \mathbb{Z}(2e_{\ell}).$$

Lemma 3.3. Let $\eta \in \mathfrak{H}_{\ell}$ with cycle type (λ, μ) . Then $r(\eta) = \ell - \ell(\lambda)$ and the following holds:

(1) If λ has at least an odd part, then $e_{\eta,j} = \begin{cases} 1 & \text{if } j \leq r(\eta) - \ell(\mu) + 1; \\ 2 & \text{if } j > r(\eta) - \ell(\mu) + 1 \end{cases}$ $(1 \leq j \leq r(\eta)).$

(2) If λ has all even parts and $\mu = \emptyset$, then $e_{\eta,j} = \begin{cases} 1 & \text{if } j < r(\eta); \\ 2 & \text{if } j = r(\eta). \end{cases}$

(3) If λ has all even parts and μ has all even or all odd parts, $e_{\eta,j} = \begin{cases} 1 & \text{if } j \le r(\eta) - \ell(\mu); \\ 2 & \text{if } j > r(\eta) - \ell(\mu). \end{cases}$

(4) If λ has all even parts, μ has both even and odd parts, then

$$e_{\eta,j} = \begin{cases} 1 & \text{if } j \le r(\eta) - \ell(\mu) + 1; \\ 2 & \text{if } r(\eta) - \ell(\mu) + 1 < j < r(\eta); \\ 4 & \text{if } j = r(\eta). \end{cases}$$

Theorem 3.4. Let χ be the irreducible character of \mathfrak{H}_{ℓ} . Then $m(\chi; q)$ is a quasi-polynomial with minimal period 2 for $\ell = 2$ and 4 for $\ell \geq 3$.

3.3 Type C_ℓ

Suppose that Φ is a root system of type C_{ℓ} . The coroot lattice \check{Q} cen be expressed by

$$\check{Q} = \mathbb{Z}(e_1 - e_2) \oplus \cdots \oplus \mathbb{Z}(e_{\ell-1} - e_{\ell}) \oplus \mathbb{Z}e_{\ell}.$$

Since \check{Q} is isomorphic to \mathbb{Z}^{ℓ} , $r(\eta)$ and $e_{\eta,1}, \ldots, e_{\eta,r(\eta)}$ are as in Lemma 2.1 and Lemma 2.2. **Theorem 3.5.** Let χ be the irreducible character of \mathfrak{H}_{ℓ} . Then $m(\chi; q)$ is a quasi-polynomial with minimal period 2.

3.4 Type D_ℓ

Suppose that Φ is a root system of type D_{ℓ} . The coroot lattice \check{Q} cen be expressed by

$$\check{Q} = \mathbb{Z}(e_1 - e_2) \oplus \cdots \oplus \mathbb{Z}(e_{\ell-1} - e_\ell) \oplus \mathbb{Z}(e_{\ell-1} + e_\ell).$$

Since \check{Q} is isomorphic to the coroot lattice of type B_{ℓ} , $r(\eta)$ and $e_{\eta,1}, \ldots, e_{\eta,r(\eta)}$ are as in Lemma 3.3.

Theorem 3.6. Let $\tilde{\chi}$ be the irreducible character of $\tilde{\mathfrak{H}}_{\ell}$. Then $m(\tilde{\chi}; q)$ is a quasi-polynomial with minimal period 2 for $\ell = 2$ and 4 for $\ell \geq 3$.

References

- [1] M. Beck and S. Robins. *Computing the continuous discretely*. Vol. 285. Undergraduate Texts in Mathematics. Berlin, Heidelberg: Springer New York, Oct. 2007. DOI.
- [2] R. W. Carter. "Conjugacy classes in the Weyl group". Compositio Mathematica 25.1 (1972), pp. 1–59. Link.
- [3] M. D. Haiman. "Conjectures on the Quotient Ring by Diagonal Invariants". *Journal of Algebraic Combinatorics* **3** (Jan. 1994), pp. 17–76. DOI.
- [4] H. Kamiya, A. Takemura, and H. Terao. "Periodicity of hyperplane arrangements with integral coefficients modulo positive integers". *Journal of Algebraic Combinatorics* 27.3 (May 2008), pp. 317–330. DOI.
- [5] H. Kamiya, A. Takemura, and H. Terao. "The characteristic quasi-polynomials of the arrangements of root systems and mid-hyperplane arrangements". *Arrangements, Local Systems and Singularities. Progress in Mathematics* 283 (2009), pp. 177–190. DOI.
- [6] D. E. Littlewood. "Some Properties of S-Functions". Proceedings of the London Mathematical Society s2-40.1 (1936), pp. 49–71. DOI.
- [7] V. F. Molchanov. "Poincaré polynomials of representations of finite groups generated by reflections". *Mathematical Notes of the Academy of Sciences of the USSR* **31**.6 (June 1982), pp. 423–427. DOI.
- [8] P. Orlik, L. Solomon, and H. Terao. "On Coxeter Arrangements and the Coxeter Number". *Advanced studies in pure mathematics* **8** (1987), pp. 461–477. DOI.
- [9] G. C. Shephard and J. A. Todd. "Finite Unitary Reflection Groups". *Canadian Journal of Mathematics* 6 (1954), pp. 274–304. DOI.
- [10] A. Stapledon. "Equivariant Ehrhart theory". Advances in Mathematics 226.4 (Mar. 2011), pp. 3622–3654. DOI.
- [11] R. Uchiumi and M. Yoshinaga. "The quasi-polynomiality of mod *q* permutation representation for a linear finite group action on a lattice". 2024. arXiv:2409.01084.
- [12] H. Weyl. *The Classical Groups: Their Invariants and Representations*. Princeton: Princeton University Press, 1946. DOI.
- [13] A. Young. "On Quantitative Subsituational Analysis". Proceedings of the London Mathematical Society s2-31 (1930), pp. 273–288. DOI.