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Abstract.

For a given linear action of a finite group on a lattice and a positive integer g, the mod ¢
permutation representation is a quasi-polynomial in g. In this paper, we compute the
multiplicity of each irreducible representation in the mod g permutation representa-
tion of a classical Weyl group on the two types of lattices, generated by the standard
basis and by coroots.
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1 Introduction

1.1 Quasi-polynomials

Let R be a commutative ring. A function f : Z-y — R is called a quasi-polynomial if
there exists a positive integer 71 € Z~( and polynomials gi(t), ..., g:(t) € R[t] such that

f(q) =g (q), ifg=r modn (1<r<n).

The positive integer 7 is called a period and each polynomial g, is called the constituent
of f. The quasi-polynomial f has degree 4 if all the constituents have degree d. More-
over, the quasi-polynomial f has the gcd-property if the polynomial g, depends on
r only through gcd{7,r}. In other words, g, = &, if ged{n, 71} = ged{n,r2}. Quasi-
polynomials play an important role in many areas of mathematics and appear frequently,
especially as counting functions.

Example 1.1 (The Ehrhart quasi-polynomial). Let P be a rational polytope in R. For
q € Z>p, define

Lp(q) == #(qP N Z!).
Then Lp(q) is a quasi-polynomial ([, Theorem 3.23]), known as the Ehrhart quasi-

polynomial.

* . The author was supported by JST SPRING, Grant Number JP-
M]SP2138.
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Example 1.2 (The characteristic quasi-polynomial). Let L ~ Z’ be a lattice and L" :=
Homyz (L, Z) be the dual lattice. Given ay,...,a, € LY, we can associate a hyperplane
arrangement </ = {Hj,...,H,} in R’ ~ [ ® R, where

Hi={xe LR |aj(x)=0}.

For a positive integer g € Z~, define the mod g complement of the arrangement by

14
M(/,9) == (L/qL)\ U Fi
i=1
={xeLl/qL|aj(x) #0 modgq forallie {1,...,n}}.

It is known ([4, Theorem 2.4]) that
Xquasi(ﬂ{/ q) =#M(<,q)

is a quasi-polynomial with gcd-property. It is called a characteristic quasi-polynomial.
Furthermore, the first constituent of xquasi(#7, t) is equal to the characteristic polynomial
x(,t) of o7, the most important invariant of <.

Example 1.3 (Equivariant Ehrhart theory). Let L ~ Z' be a lattice and let I' be a finite
group acting linearly on L. Suppose that P is a I-invariant lattice polytope. For a
positive integer g € Z~q, the group acts on the lattice points g7 N L. Let x,p denote the
character of this permutation representation. Then the map

F:iqg— xgp

is a quasi-polynomial ([10, Theorem 5.7, Corollary 5.9]). It is an equivariant version
of Ehrhart quasi-polynomials. In fact, for the identity element 1 of I', then x,p(1) =
#(qP N L), hence it is a generalization of Ehrhart theory. Furthermore, the multiplicity
of a fixed irreducible character x in x,p is also a quasi-polynomial in 4.

1.2 mod g permutation representations

In [11], we consider mod g permutation representations for linear finite group actions
on lattices toward an equivariant version of characteristic quasi-polynomials.

Let L be a lattice, and {B1,...,B¢} be a Z-basis of L, thatis, L = ZB1 & --- ®
ZB; ~ Z°. We identify an element x = x181 + --- + x¢B; of L with the row vector
x = (x1,...,x;) of Z*.

Let I" be a finite group and let p : ' — GL(L) be a group homomorphism. Let us
denote the representation matrix of p(y) by R, and we consider the right multiplication,
namely,

p(y):L—L, x+— xR,.
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For a positive integer q € Z-.(, define Z; := Z/qZ. We will consider the following
g-reduction of a vector x = (xy,...,x;) € Z' and an integer matrix A = (aif)ij:

o= Gl bl €ty (4= (),
where [z]; = z+qZ € Z/qZ for z € Z. Then, for a Z-homomorphism ¢ : Z* — Z*
represented by an integer matrix A, we can define the induced morphism ¢j : Zs — ZS
by x — x[A],.

Let Ly := L/qL ~ Zg. The action of I on Ly is induced by p(7)q : Ly — Lg. Let x1,
denote the character of the permutation representation of L;, and consider its irreducible
decomposition:

xr, =m(xuq) - x1+- - +mxe q) - Xe

where {x1,..., Xk} is the set of all irreducible characters of I' and m(;; q) denotes the
multiplicity of x; in xi,.

In [11], it is shown that the multiplicity m(x; q) of the any irreducible character x in
XL, 18 a quasi-polynomial in g with ged-property ([11, Corollary 2.2]). More explicity,

r(7)
m(x; q) = % Y x(7) (H gcd{ewq}> g, (1.1)

yer j=1

where () = rank(R, — I) with the identity matrix I and e,1,...,e, ,(,), with e;1 |
ey2 |+ | €ys(y), are the elementary divisors of the matrix R, — I. Obviously, the
map q — Xi, is also a quasi-polynomial with ged-property. Moreover, their quasi-
polynomial have a period lem { e, ,(,) | v € I } (lLem-period).

1.3 Classical Weyl groups

In this paper, we compute m(; q) for each irreducible character x when a group I' is a
classical Weyl group. In this section, we recall classical Weyl groups and their conjugacy
classes and irreducible characters. See also [2, 12, 12] for detalils.

For { € Z-y, an integer partition of ¢ is an integer sequence A = (Aq,...,A;) sat-
isfying Ay > -+ > Ay > 0and Ay +--- + Ay = £. We define ¢(A) as the length t of A
and |A| = Ay + - - - + A¢. We consider that the empty sequence @ = () to be an integer
partition of 0, with {(®) = 0 and |@| = 0.

1.3.1 Type A/

The Weyl group of type A,_; is the symmetric group &,. The order of &, is #5, = (!
Each element ¢ € &, may be decomposed uniquely into a product of cyclic permutations
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up to the order of factors:

o= (igg - ip,) (i ---ip,), M > > A

Then the integer partition (Ay,...,A:) of ¢ is called the cycle type of 0 € &,. Two
elements of &, are conjugate if and only if they have the same cycle type. In other
words, conjugacy classes of G, are parameterized by integer partitions of /.

Irreducible characters of &, are also parameterized by integer partition of /. We
denote the irreducible character defined by a integer partition A by x*.

1.3.2 Type By and C,

The Weyl group of type B, and C; are the hyperoctahedral group §,, isomorphic to the
semidirect product 65 X &/ (the wreath product G, &y). The order of §, is #§, = 2001,
The hyperoctahedral group §, can be regarded as a subgroup of the symmetric group
SpofIpi={-¢...,—-1,1,...,4} by

Se={ne &y, |n(—i)=—n(i)forallieI,}.

Especially, &5 is to be regarded as a subgroup generalized by the sign transpositions
T, Tyt
ey i i =i i |
s R asisn
j—j if j#Fi, —i

The hyperoctahedral group $; has two types of cyclic permutations, even cyclic
permutations (i - - - i;)+ and odd cyclic permutations (i1 - - - i;)_:

. . R TR 7 . . i1 Iy - A1 Qi
- i)y = 1. . A i1---ig) = 1. . . )
(i )+ (lz I3 11) (i 2 (12 I3 —l1>
where i7y,...,1; € I; and they have pairwise different absolute values. Note that an odd
cyclic permutation (i) of length 1 is equal to the sign transposition 7;. Each element

7 € $; may be decomposed uniquely into a product of two types of cyclic permutations
up to the order of factors:

=1 ip )+ (i i)+ (G- ) — oo (Js1 == Jsps ) —
MZ> 2N, UL > > U

Then the pair of two integer partitions ((A1,...,A¢), (J1,...,}s)) is called the cycle type
of 7 € H. Two elements of §), are conjugate if and only if they have the same cycle type.
Hence conjugacy classes of $); are parameterized by the pair of integer partitions (A, u)
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with |[A| + || = £. Note that an element 7 € $; with cycle type (A, @) can be regarded
as an element of &, with cycle type A. Hence we consider that &, is a subgroup of ;.

Irreducible characters of §); are also parameterized by the pair of integer partitions
(A, u) with |A| + |u| = €. Let x* denote the irreducible character defined by (A, ut).
Then the dimensions of x**, x* and x* are connected by the following relation:

XM xXx()
o Al 2

1.3.3 Type D,

The Weyl group of type Dy is a subgroup of index 2 of the hyperoctahedral group $;
denoted by $. An element 11 € §, is in $, if and only if # has cycle type (A, u) such
that ¢(u) is even. In other words, we can consider that

Se={nen |#{ic[0]|ni)<0}iseven}.

Let C,, denote the conjugacy class of §), parameterized by the pair of partitions
(A, ). Let éMt = Cru N $. If (A, 1) satisfies

M=-=Xn=0 (mod2) and u=0, (1.3)

then C A, 18 the union of two conjugacy classes of $y, which denote 6}1\ " and 5% v These
classes have the following relation:

6/1\,;4 = Tflégx,y'fl = {Tl_lr)/Tl | v € 6%\44 }. (1.4)

If (A, 1) does not satisfy (1.3), then C A 18 also a conjugacy class of $y. All conjugacy
classes of 5 ¢ can be obtained in this way.

Let (A, 1) be the pair of integer partitions satisfying |A| + |u| = £. Let Y denote
the restriction to ), of the irreducible character xM* of §,. If A # u, then Y is also
an irreducible character of £, and furthermore Y"* = x**. But if A = u, then YV
is the sum of two irreducible characters of 5g, which we denote as )’f{"A and )’fﬁ"A . All
irreducible characters of $ ¢ can be obtained in this way. Moreover, the characters )()"V,
x"* and xM* are connected by the following formula:

M)+ XM g)  [XM ) if g € S 15)
The irreducible characters )’(V?’)‘ and Xé’)‘ are connected by the following relation:
7t (n) = % ) forally € . (16)

Note that 7 and 7, 157, are not necessarily conjugate as seen in (1.4).
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2 Lattices generated by the standard basis

2.1 Calculation results of the multiplicities

In this section, suppose that L = Z‘. Let W be a Weyl group of type A,_, By, C; or
D,. We compute the multiplicity m(y; q) of each irreducible character x in Xz Take a

Z-basis {ey, ..., e} of Z', thatis, Z' = Ze; & - - - @ Zey. Then W acts on Z°¢ by

; if w(i) > 0;
wiey = [0 w@ A<i<twew)
—e_y@) ifw(i) <0

Obviously, W also acts on R’ = Re; @ - - - @ Rey in the same way. This is the natural
action as a finite reflection group.

For w € W, let Ry be the representation matrix of w and r(w) denote the rank of
matrix Ry — I, where I is the identity matrix.

Lemma 2.1. For w € W, the following values are all equal to r(w):

(1) The number of eigenvalues of w which are not equal to 1 (counted with multiplicity);
(2) £—L());
(3) £ —dim (R")%;

(4) The minimum number of reflections required to express w as a product of reflections,
where (A, 1) is the cycle type of w and (RY)% = {x € R | w(x) = x }.

We obtain the elementary divisors ey1, . . ., €y () Of Rw — I by computed directly as
follows:

Lemma 2.2. Let w € W with cycle type (A, u). Then
1 if j<r(w)—4L(n); ,
cwi=1y BT < <))
2 if j>r(w) —£(p)
Hence, using (1.1), m(x; q) is obtained as follows:

Theorem 2.3. For an irreducible character x of W, we have

1
m( 9) = g L x(@)g(g) Pelg ™),

weW

where (A, Hw) is the cycle type of w and g(q) = gcd{2,q}.
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Let 1 denote the trivial character of W. By the Shephard—-Todd formula ([V], see also
[¢, Theorem 4.6]), the first constituent m(1; t); of the quasi-polynomial m(1; t) can be
expressed as

1
1 2.1
(L )y = g () - (64 my), 1)
where my, ..., my are the exponents of W.

Let § be the determinant character of W. By (2.1) and the reciprocity theorem ([11,
Theorem 2.10]), the first constituent m(J; t); of the quasi-polynomial m(J; t) can be ex-
pressed as

m(5; D = gt —mr) = (£ = my).

It is well known that the above polynomial on the right hand side is equal to the char-
acteristic polynomial of the Coxeter arrangement of W up to scalar (see [, Corollary
3.3]).

2.2 Factorization of the multiplicity
Let W be a classical Weyl group. For a character x of W, define My (x; s,t) € Z]s, t] by

M X/ s, t Z X Vw te( )
weW

where (A, tw) is the cycle type of w. For simplicity, we denote My (x; 1,¢t) (for s = 1)
by Mw (x; t). Define a function g(g) := gcd{2,q}. From Theorem 2.3, we have

Mw (X; ,
i 0) = W(X#gf,@ 1) 22)

Let A be an integer partition. Define a multiset A, as

t(A)

= {i-jl1<j<Al.
i=1

221 Type Ay

Suppose that W = &, (type Ay_1). Let x* denote the irreducible character parameterized
by an integer partition A. Since £(j,) = 0 forall o € &, then Mg, (x*; t) = Mg, (x"; s, 1).
It is known that the factorization formula for Mg, (x*; t):
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Theorem 2.4 (Littlewood [0, p. 56], Molchanov [/, Theorem 1]). The roots of the polynomial
Ms, (X"; t) are the numbers in A,:

£A) A
Mes,(x"; 1) = x* (1) [T (t=a) =x"(1) (E—i+]).

achA, i=17j

>

I
A
I
_

Corollary 2.5. Let x be the irreducible character of &, parameterized by an integer partition
A. Then we have

A1 HA)A
s q) = 20

S

m

hS
=

:1]:1

Hence m(x"; q) is a quasi-polynomial with the minimal period 1 (just a polynomial).

2.2.2 Type By and Cy

Suppose that W = §, (type B, or Cy). For the irreducible character y#, it is known by
Young [17] in the following formula:

2001 t+s t—s
AL, _ A M.

where we consider that Mg, (x%; ) =1.

Theorem 2.6. Let x* be the irreducible character of $, parameterized by (A, u). Then we have

o0 ) = o (0 TS (g, 1500)

A,
=2 T g+ 5(9) —20) TT (9~ 5(0) —20)

acA, beAy

Hence m(xM*; q) is a quasi-polynomial with the minimal period 2.

Proof. It follows from equations (2.2), (2.3) and the dimensional relation (1.2). O

2.2.3 Type Dy

Suppose that W = §, (type Dy). Let (A, ) be the pair of integer partitions satisfying
Al + || = ¢. From the equation (1.5), we have

A A Al
st = Y XM ) + X (1) Jeuy) 02y — Mg, (x™5 5,t) + My, (X7 5,1)

M
2 2

m
nesy

(2.4)
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Theorem 2.7. Let XM be the irreducible character of $), parameterized by (A, ) satisfying
A # u. Then we have

m(x™; q) = m(xM; q) + m(x"; q)
o (X/\,, q+§(q)) - (Xy; q—zg(q))
. (Xu; M) " (X/\; M) .

Hence m(XM*; q) is a quasi-polynomial with the minimal period 2.

Proof. It follows from the equation (2.4) and Theorem 2.6. O

Suppose that A = p. By the relation (1.6), we have
AN, _ AN,
Mg, (X175 s,t) = M@(Xz ;s b).
Since Y = X" + %3, then

My (007 s,1) + Mg (X3 5,1) Mg (R 5,1)
(A o e 1 7 He\A2 72y B 0 ; S,
Mg, (X;"5 8/1) = : = 5 . (2.5)
fori e {1,2}.
Theorem 2.8. Let )’(“?’A and )’Eé")‘ be the irreducible characters of $, parameterized by (A, A).
Then we have

(T ) = (T ) = m s g) = (i TS ) (1 125,

Proof. It follows from equations (2.4), (2.5) and Theorem 2.6. O

In the case of type Ay_1, By and Cy, all the roots of each constituent of the quasi-
polynomial m(y; q) are integers. However, it is not always the case in type Dy. This
phenomenon has also been observed in characteristic quasi-polynomials of the arrange-
ments of root systems (see [5, Example 3.5]).

Example 2.9. Let /{ =7, A = (2,1,1) and u = (3). Then

(105(g+1)(q =) (g +3)(4 =3) - (q+1)(g-1)(9 +3) . o
mc ) = 105q(q +2)(q —2)(q + 4)2.7 57]'(q +2)(g—2) ,f s
' 277! if ged{2,9} =2,
(105(g+1)(q+3)(g+5)-(g+1(q—=1)(g=3)(4-5) . L
D= g 40 ) a3 =2a- D008 Tf e
: 2771 if ged{2, 9} =2
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and

m(XM; q) = m(xM; q) +m(x*; q)

20 _ _ 2 —
105(q + 1)2(q 1)([7;73!)@ D@ 4= a0 = 1;

1059(q+2)(q —2)(9 +4)(4° — 2¢* — 209+ 72)
2671

Note that t> 4+ t — 14 and 3> — 2?> — 20t + 72 are irreducible polynomials over Zt].

if gcd{2,q} =2.

3 Coroot lattices

Let @ be a root system of type A;_1, By, C; or Dy and W = W(®) be the Weyl group of
@. In this section, suppose that L is the coroot lattice O = Q(®) of ®:

Q=0(®)= )Y ZaY, a":= 20

aed (06,06).

~

We compute the multiplicity m(x; q) of each irreducible character x in Xop- Especially

in this case, m(1; q) is the Ehrhart quasi-polynomial of the fundamental alcove of & with
respect to Q. Haiman [3, Section 7.4] details the case where g is relatively prime to the
Coxeter number.

3.1 Type A/,

Suppose that @ is a root system of type A,_;. Then W = &, and the coroot lattice Q can
be expressed by

~

Q=Z(e1—e)D---DZ(ey_1 —ey).

Similar to Lemma 2.1, for ¢ € &y, r(0) is obtained as r(0) = ¢ — ¢(A), where A is the
cycle type of 0. We obtain the elementary divisors 5,1, ..., €, ,(s) of Ry — I by computed
directly as follows:

Lemma 3.1. Let o € &, with cycle type A. Then
€ol = """ = Cop(o)-1 = L, Cor(oe) = ged{A1, ... /AE(A)}'

Theorem 3.2. Let x* be the irreducible character of &,. Then m(x"; q) is a quasi-polynomial
with minimal period ¢. In particular, if gcd{¢,q} =1, then

M, (XY .
mix®; q) = e q) _ 7 T

lZEA)\
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3.2 Type By
Suppose that @ is a root system of type B,. The coroot lattice Q can be expressed by
Q=2Z(er—ex) - ©Z(eg-1—er) DZ(2ey).

Lemma 3.3. Let y € $; with cycle type (A, u). Then r(y) = £ — £(A) and the following holds:
Loaf j<r(n) —£(u) +
2 if j>r(y) —€(u) +
Loif j<r(n)
2 i j=rn)

(1) If A has at least an odd part, then e, ; = { (L<j<r(n).

(2) If A has all even parts and y = @, then e, ; = {

1 if i< —o0);
(3) If A has all even parts and p has all even or all odd parts, e, ; = {2 ij ] ; rEW; EEV;
if j>r(n)—~L(n).

(4) If A has all even parts, u has both even and odd parts, then
Loaf j<r(n) =€) +1;
ej =2 if r(n) =€) +1<j<r(y)
4 if j=r(n).

Theorem 3.4. Let x be the irreducible character of $y. Then m(x; q) is a quasi-polynomial with
minimal period 2 for { = 2 and 4 for ¢ > 3.

3.3 Type C;

Suppose that @ is a root system of type Cy. The coroot lattice Q cen be expressed by
Q=Z(e1—e2) © - ©Z(eg1—er) © Zey.

Since Q is isomorphic to Z¢, r(7) and ¢, 1, ..., are as in Lemma 2.1 and Lemma 2.2.

.7 (1)
Theorem 3.5. Let x be the irreducible character of $)y. Then m(x; q) is a quasi-polynomial with
minimal period 2.

3.4 Type D,
Suppose that @ is a root system of type D,. The coroot lattice Q cen be expressed by
Q=Z(e1—e) ®- - ©Z(eg1—er) DZ(e1+ep).

Since Q is isomorphic to the coroot lattice of type By, r(1) and €yl .-, € are as in

Lemma 3.3.

n,r(n)
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Theorem 3.6. Let X be the irreducible character of $,. Then m(X; q) is a quasi-polynomial with
minimal period 2 for { = 2 and 4 for ¢ > 3.
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