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Abstract. We develop a systematic theory of Minkowski sum decompositions for
alcoved polytopes, a family of convex polytopes whose facet normals are parallel to
roots of type A. Our main result establishes that the type fan of alcoved polytopes is
two-determined: the Minkowski sum of a collection of alcoved polytopes is alcoved
if and only if each pairwise sum is alcoved. We provide a complete characterization
of compatibility between alcoved simplices via a graphical criterion on ordered set
partitions that remarkably reduces to conditions on subsequences of length at most six.
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1 Introduction

A polytope in Hn = {x1 + · · · + xn = 0} ⊂ Rn is alcoved if all its facet normals are
parallel to the roots ei − ej for some i ̸= j ∈ [n]. Equivalently, a polytope is alcoved if it is
determined by the parameters ai,j ∈ R for 1 ≤ i, j,≤ n via the equation x1 + · · ·+ xn = 0
and the inequalities

xi − xj ≤ ai,j for all i, j ∈ [n], i ̸= j. (1.1)

Alcoved polytopes were introduced by Lam and Postnikov [17] and appeared in dif-
ferent fields under different names. They are known in the literature as polytropes as
they are tropical polytopes which are convex in the usual sense [13]. Moreover, they are
Lipschitz polytopes (for non-symmetric finite metric spaces) [12, 8]. The class of alcoved
polytopes includes order polytopes, hypersimplices, and the associahedron. In appli-
cations, alcoved polytopes play a key role in phylogenetics [21], mechanism design [7],
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algebraic statistics [6], scattering amplitudes [4, 9], positive configuration spaces [3] and
amplituhedra [19], and building theory [15].

Our starting point is the observation that unlike some other families of polytopes
such as generalized permutohedra, alcoved polytopes are not closed under Minkowski
sums in general. This leads to the following natural question.

Problem 1.1. Let P, Q ⊆ Hn be alcoved polytopes. When is the Minkowski sum P+ Q alcoved?
We call the alcoved polytopes P and Q compatible if their sum P + Q is alcoved.

Several prominent alcoved polytopes such as the associahedron and the cyclohedron
are Minkowski sums of alcoved simplices, see Section 5. In particular, the associahe-
dron, which maps onto the connected components in the tiling of the configuration
space M0,n, appears in recent approaches to quantum field theory [5]; it governs the
singularity locus of the tr(ϕ3) amplitude and satisfies certain important physical com-
patibility constraints on pairs of poles, called the Steinmann relations. The study of
pairwise compatible collections of alcoved polytopes could therefore generalize the role
of the associahedron in the Cachazo–He–Yuan formalism [5] to arbitrary alcoved poly-
topes, suggesting new connections between polytope theory and scattering amplitudes.
A more recent such instance is the so-called D̂-polytope recently described in the physics
literature [2], see Theorem 5.1.

Moreover, Problem 1.1 is intimately tied to the general study of the type fan of alcoved
polytopes. Suppose the parameters ai,j from (1.1) minimally define an alcoved polytope.
Then they satisfy the following triangle inequalities [18, Theorem 4.3]:

ai,j + aj,k ≥ ai,k, for all i, j, k.

The cone in R(n−1)n defined by these inequalities has an internal fan structure given by
the different combinatorial types of alcoved polytopes. This fan is type fan of alcoved poly-
topes Fn. This fan was also studied in the context of tropical geometry and optimization
in [14, 20], and is closely related to the so-called resonance arrangement studied in [10, 16].
In this setting, two polytopes P and Q are compatible if and only if their corresponding
points are part of the same cone in the fan Fn. Understanding the compatibility of al-
coved polytopes is therefore equivalent to the study of the cone structure of the type fan
F of alcoved polytopes.

This is an extended abstract of [11].

1.1 Results

In Section 2 we prove that compatibility of alcoved polytopes can be checked on pairs:

Theorem A. Let P1, . . . , Pk be alcoved polytopes in Hn. Suppose Pi and Pj are pairwise compat-
ible for all i ̸= j ∈ [n]. Then the entire collection is compatible, i.e., P1 + · · ·+ Pk is alcoved.
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This in particular means that the combinatorial structure of the type fan is completely
determined by its 2-dimensional cones, see Theorem 2.7.

Next we focus on alcoved simplices in Section 3. As they are Minkowski indecom-
posable, they are among the rays of the type fan Fn. Up to translation and scaling, every
alcoved simplex in Hn is characterized by an ordered set partition of [n].

In Section 4 we give a characterization for the compatibility of alcoved simplices.

Theorem B. Let S and T be two ordered set partitions of [n] corresponding to the alcoved
simplices ∆S and ∆T in Hn. The simplices ∆S and ∆T are compatible if and only if the simplices
corresponding to the restricted partitions S|I and T|I are compatible for all I ⊂ [n] with |I| ≤ 6.

We prove this theorem in two steps. First, we construct a graph associated to sim-
plices ∆S and ∆T of the ordered set partitions S and T such that the simplices are com-
patible if and only if there is no cycle in this graph of a specific type. Subsequently, we
show that if the graph has such a cycle we can already find such a cycle on a subset of
[n] of size at most 6. As an application, we can swiftly confirm that the D̂n-polytope is
alcoved in Section 4.

1.2 Outlook

Our characterization of compatibility for alcoved simplices raises several questions. The
reduction to conditions on just 6-element subsequences is remarkably simple, yet its
physical meaning remains mysterious. This echoes other “small n” phenomena in quan-
tum field theory and combinatorics, such as the criterion to check matroidal subdivisions
on octahedral faces.

On the other hand, it is known in the context matroids that a matroid polytope
is alcoved if and only if the matroid is a positroid [18]. The Minkowski indecompos-
able positroids are the connected positroids [1]. It remains therefore a fascinating open
question to investigate the compatibility of connected positroids within the type fan of
alcoved polytopes.

2 The type fan of alcoved polytopes

In this section we give (a sketch of) a proof of Theorem A. Let us start with definitions.

Definition 2.1. We call vectors ei,j := ei − ej ∈ Hn ⊂ Rn the roots of type A. We say that a
vector subspace L ⊂ Hn is a root subspace if it is spanned by roots.

We start with a reformulation of alcoved polytopes in terms of their normal fans. A
polytope P in the hyperplane Hn is alcoved if the lineality space L of the normal fan ΣP
is a root subspace and the rays of the quotient fan ΣP/L are generated by roots.

The main technical result we need to prove Theorem A is the following proposition.
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Proposition 2.2. Let L1, . . . , Lk ⊂ Hn be root subspaces, such that Ls ∩ Lt a root subspace for
all 1 ≤ s, t ≤ k. Then L1 ∩ . . . ∩ Lk is a root subspace.

To prove Proposition 2.2, we introduce a graph GL which completely determines the
root subspace L (Definition 2.3). Subsequently, we give a graphical criterion for the
compatibility of root subspaces (Lemma 2.6). However, let us first present a proof of
Theorem A assuming Proposition 2.2.

Proof of Theorem A. The goal is to show that P = P1 + . . . + Pk is alcoved. We can assume
that P is full-dimensional as we can otherwise restrict to the sum of the root subspaces
given by the linear spans of the polytopes P1, . . . , Pk. Let F be a facet of P. Hence, we can
choose faces Γs of Ps for all 1 ≤ s ≤ k such that F = Γ1 + . . . + Γk. Therefore, the normal
ray ρF is given as intersection of the normal cones σs of Γs.

The ray ρF is generated by a root if and only if the linear span of ρF is generated by
a root. Therefore we aim to work with linear spaces instead of cones. To this end we
replace each σs with the smallest face of σs containing ρF. Thus, we obtain the equality

span(ρF) =
k⋂

s=1

span(σs).

So it is enough to show that
⋂k

s=1 span(σs) is generated by roots.
But by the assumptions of the theorem we have that span(σs) as well as span(σs) ∩

span(σt) is generated by roots for every 1 ≤ s, t,≤ k. Indeed, since Ps and Ps + Pt are
alcoved, the rays of their normal fans are all in root directions and hence, every cone
(and its linear span) is generated by roots. Therefore, by Proposition 2.2 we get that⋂k

s=1 span(σs) is generated by roots, and thus ρF is also a multiple of a root.

To prove Proposition 2.2 we first need to set up some notation.

Definition 2.3. For a root subspace L ⊂ Hn we define an undirected graph GL as follows

(1) The vertices of GL are labeled by [n].

(2) The graph GL has an edge {i, j} if eij ∈ L (note that as L is a subspace, it contains the root
eij if and only it contains the root eji.

Remark 2.4. Since Hn = {x1 + · · ·+ xn = 0} is the root subspace of all roots, the graph
GHn is the complete graph on n vertices. Similarly, for a general root subspace L we get
that each connected component of GL is a complete graph.

Any linear combination of roots ∑1≤i<j≤n wijeij defines a weighted sum of oriented
edges of GHn by assigning the orientation j → i and weight wij to every edge {i, j}.
Two such combinations ∑1≤i<j≤n wijeij and ∑1≤i<j≤n w′

ijeij give rise to the same element
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of Hn if and only if their difference ∑1≤i<j≤n(wij − w′
ij)eij defines a linear combination

of oriented cycles in GHn (here we view the edges with a negative weight as i → j).
Now, let L, M be two root subspaces within Hn. An element x is in the intersection

L ∩ M if it can be simultaneously represented by a linear combination of oriented edges
from GL and GM. The difference of these two representation is thus a linear combination
of cycles supported on the edges GL ∪ GM. On the other hand, every oriented cycle C
supported on GL ∪ GM yields an element of L ∩ M via taking the linear combination

xC = ∑
{i,j}∈C∩GL

eij = − ∑
{s,t}∈C∩GM

est. (2.1)

This leads to the following lemma:

Lemma 2.5. Let L, M be two root subspaces within Hn. The intersection L ∩ M is generated by
elements corresponding to oriented cycles in GL ∪ GM as in (2.1).

In addition, a little more careful analysis allows to show the following Lemma.

Lemma 2.6. Let L, M be two root subspaces within Hn. The intersection L ∩ M is a root
subspace if and only if the there is no chordless cycle of length at least four in GL ∪ GM.

Proof. Key points of the proof are

• a chordless cycle in GL ∪ GM has to be alternating (i.e. if an edge in C is in GL the
next one on C must be in GM);

• an alternating cycle C produces an element xC ∈ L ∩ M;

• if the length of C is at least 4, the element xC is not a root and can’t be written as
combination of roots in L ∩ M since C is chordless.

Now we are ready to prove Proposition 2.2.

Proof of Proposition 2.2. It is enough to show the statement for k = 3. Indeed assuming
this case, the general case follows via induction after replacing L1, L2 by L1 ∩ L2. In the
case k = 3, let us define Lij := Li ∩ Lj for 1 ≤ i < j ≤ 3. Since Lij is a root subspace, we
get GLij = GLi ∩ GLj .

Assume that there is an element x ∈ L1 ∩ L2 ∩ L3 = L12 ∩ L3 which is not a linear
combination of roots in L12 ∩ L3. By Lemma 2.6, there is a chordless, strictly alternating
cycle C in GL12 ∪ GL3 of length at least four. On the other hand, since L13 is a root
subspace, the cycle C has a chord in GL1 ∪ GL3 . In fact, since GL1 ∪ GL3 does not have any
chordless cycles of length at least four, the vertices of C belong to the same connected
component of GL1 . Hence GL1 restricted to the vertices of C is a complete graph.

The same argument also applies to GL2 restricted to the vertices of C. Therefore,
GL12 = GL1 ∩ GL2 restricted to vertices of C is also a complete graph which contradicts
the assumption of C being chordless in GL12 ∪ G3.
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Theorem A has the following consequence for the type fan of alcoved polytopes.

Theorem 2.7. The type fan of alcoved polytopes is two-determined, i.e. if in a collection of rays
ρ1, . . . , ρs any pair ρi, ρj belongs to some cone of Fn, then there exists a cone containing the whole
collection.

3 Alcoved simplices

An ordered set partition of the set [n] is an ordered tuple T = (B1, . . . , Bℓ) of pairwise
disjoint subsets Bi ⊆ [n] such that ∪ℓ

j=1Bj = [n]. We denote the set of ordered set
partitions of [n] by OSP(n).

Moreover, we use the shorthand notation (1, 2 3, 4) for the ordered set partition
({1}, {2, 3}, {4}) in OSP(4). An ordered set partition T = (B1, . . . , Bℓ) is called non-
degenerate if each block Bi is a singleton, i.e., contains exactly one element of [n].

Definition 3.1. To each ordered set partition T = (B1, . . . , Bℓ) of [n] we associate an alcoved
simplex ∆T in the hyperplane Hn defined by the following set of (in)equalities in H:

xi = xj for every i, j ∈ Bk and every 1 ≤ k ≤ ℓ,

xi ≤ xj for every i ∈ Bk, j ∈ Bk+1 and every 1 ≤ k ≤ ℓ− 1,

xi ≤ xj + n for every i ∈ Bℓ, j ∈ B1.

We denote by ΣT the normal fan of the simplex ∆T.

Proposition 3.2. For every ordered set partition T the corresponding simplex ∆T is alcoved.
Moreover, every alcoved simplex in Hn is realized by ∆T up to shift and dilation.

As above, we study the compatibility of alcoved simplices through a graph.

Definition 3.3. Let T = (B1, . . . , Bℓ) be an ordered set partition of [n]. We define a graph GT
as a partially directed graph on n vertices which has an undirected clique on the set Bi for every
1 ≤ i ≤ ℓ and a directed edge bi → bi+1 for 1 ≤ i ≤ ℓ (regarded cyclically) where bj ∈ Bj is the
smallest element of a block Bj.

Example 3.4. The alcoved simplex ∆(1,2 3,4) in R4 of the ordered set partition (1, 2 3, 4)
is defined by x1 + · · ·+ x4 = 0 and the (in)equalities x1 ≤ x2 = x3 ≤ x4 ≤ x1 + 4. Its
vertices are (0, 0, 0, 0), (−1,−1,−1, 3) and (−3, 1, 1, 1) and GT is depicted in Figure 1.

Proposition 3.5. Let T = (B1, . . . , Bℓ) be an ordered set partition and let T′ = (B2, . . . , Bℓ, B1)
be the ordered set partition where the blocks are cyclically shifted to the right. Then

ΣT = ΣT′ .
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1 2 3 4

Figure 1: The graph GT of the ordered set partition (1, 2 3, 4).

As we are mostly interested in the common subdivisions of the normal fans of alcoved
simplices, we consider the ordered set partitions up to cyclic shifts. Thus, we assume
that for an ordered set partition T = (B1, . . . , Bℓ) of [n] we have n ∈ Bℓ.

The normal fan ΣT of ∆T for a ordered set partition T = (B1, . . . , Bℓ) can be described
as follows. Let I be the set indexing ordered edges of the partially directed graph GT.
Then the cones of ΣT are in bijection with non-empty subsets of I. More precisely, given
a subset J ⊆ I the corresponding normal cone σJ is positively generated by the roots
appearing in the the transitive closure of the partially ordered graph

ΓσJ := tc(GT \ {ej}j∈J).

Example 3.6. We continue the discussion of the ordered set partition (1, 2 3, 4). It has the
directed edges I = {1 → 2, 2 → 4, 4 → 1}. Figure 2 shows the graphs corresponding to
the normal cones of the subsets J1, J2, J3 of edges to be removed from GT.

All three cones have the 1-dimensional lineality space spanned by the vector e23. In
the quotient space, the cones σJ1/LσJ1

and σJ2/LσJ2
are generated by the roots {e24, e41}

and {e41}, respectively. The cone σJ3 equals the lineality space LσJ3
.

1 2 3 4

(a) J1 := {1 → 2}

1 2 3 4

(b) J2 := {1 → 2, 2 → 4}

1 2 3 4

(c) J3 := {1→2, 2→4, 4→1}

Figure 2: Three graphs of the normal cones of the ordered set partition (1, 2 3, 4).

4 Compatibility of alcoved simplices

4.1 Graphical criterion

In this section, we discuss a graphical criterion to detect when the Minkowski sum of
two alcoved simplices ∆S and ∆T is again an alcoved polytope.
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Definition 4.1. We call two ordered set partitions S and T compatible if the Minkowski sum
∆S + ∆T is alcoved.

We now turn to the graph theoretic side of the story.

Definition 4.2. Let S, T be two ordered set partitions on [n]. Let us define the partially ordered
graph GS,T to be the union GS ∪ Gop

T where in Gop
T all directed edges are reversed. We call edges

in GS upper and those in Gop
T lower.

Let C be a cycle in GS,T. An upper path segment of C is a collection of consecutive upper
edges in C. We call a cycle violating if it has at least two disjoint upper path segments and visits
every vertex of GS,T at most once.

These graphs allow us to prove a graph theoretic criterion of compatible partitions.

Theorem 4.3. The ordered set partitions S, T on [n] are compatible if and only if GS,T does not
have a violating cycle.

The proof of this result uses similar arguments as the ones we outlined in Section 2.
As a corollary of Theorem 4.3 we obtain Theorem B. For the sake of space we will only il-
lustrate this in the case of non-degenerate set partitions, or equivalently full dimensional
alcoved simplices.

4.2 Compatibility of full-dimensional simplices

For S in OSP(n) and a subset I ⊂ [n] we denote the restriction of S to I by S|I .

Definition 4.4. We call S, T ∈ OSP(n) 4-interlaced if there exist 4 distinct elements a, b, c, d ∈
[n] such that the ordered set partitions of S and T restricts respectively to

S|a,b,c,d = (a, b, c, d) and T|a,b,c,d = (c, b, a, d).

We say that S and T are 6-interlaced if there exist 6 distinct elements a, b, c, d, e, f ∈ [n]
such that the ordered set partitions of S and T restricts respectively to one of the two pairs

S|a,b,c,d,e, f = (a, b, c, d, e, f ) and T|a,b,c,d,e, f = (c, d, a, b, e, f ).

S|a,b,c,d,e, f = (a, b, c, d, e, f ) and T|a,b,c,d,e, f = (a, d, e, b, c, f );

These three cases completely characterize compatible non-degenerate partitions.

Theorem 4.5. Let S and T be two non-degenerate ordered set partitions. Then S and T are not
compatible if and only if they are 4- or 6-interlaced.

In particular, S and T are compatible if and only if SI and TI are compatible for any I of size
at most 6.
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In the case of full-dimensional simplices Theorem 4.5 is a refinement of Theorem B.
We begin by proving that interlaced pairs are indeed incompatible.

Proposition 4.6. Let S and T be two non-degenerate set partitions. If S and T are 4- or 6-
interlaced, then S and T are not compatible.

Proof. The proof proceeds by distinguishing the three types of interlacing above by find-
ing a violating cycle in GS,T in each case. First assume that S and T are 4-interlaced.
W.l.o.g. after relabeling we can assume that the elements a, b, c, d are the number 1, 2, 3, 4
in this order. Thus, S|1,2,3,4 = (1, 2, 3, 4) and T|1,2,3,4 = (3, 2, 1, 4). In this case, we find the
violating cycle 1↷2 ↶3↷4 ↶1 of length 4 in GS,T.

The other two cases are treated analogously.

The converse of this statement is the missing piece in the proof of Theorem 4.5.

Proof of Theorem 4.5. To prove the theorem we show that for any pair S and T of in-
compatible non-degenerate set partitions of [n] with n > 6, there exists a proper subset
I ⊂ [n] such that SI and TI are not compatible. Therefore, by applying this reduction
iteratively, we will obtain a proper subset I of size ≤ 6 such that SI and TI are not com-
patible. The theorem then follows from an explicit check of compatibility of ordered set
partitions for n ≤ 6.

To prove the existence of I, let us assume the following reduction. By Theorem 4.3
compatibility of S and T is equivalent to the existence of a violating cycle C in GS,T.
Therefore the restriction of the set partitions S and T to the vertices involved in the cycle
of C is still incompatible. Hence it is enough for us to study the case when the violating
cycle C passes through all vertices of GS,T. Moreover, we can assume that all upper and
all lower path segments of C are just single edges as we could otherwise restrict to start
and end vertices of these segments and obtain a violating cycle on fewer vertices; note
that since the cycle is violating the vertices in the middle of such segments are met by the
cycle exactly once. So in total the cycle C visits every vertex exactly once and the edges
in C alternate between upper and lower vertices. Further without loss of generality we
can assume that S = (1, . . . , n) is the standard cyclic order on [n] and T = (j1, . . . , jn).

For a cyclic order T = (j1, . . . , jn) we define its i-th step si to be

si = ji+1 − ji mod n,

for i < n and the n-th step to be j1 − jn mod n. Let us assume that there is i such that the
i-th step in T is not 1 or 3. We will construct a violating cycle C′ strictly shorter than C,
i.e., not passing through all vertices of GS,T. The existence of C′ proves the theorem
under the assumption that not all the steps in T are equal to 1 or 3. The case that this
assumption is not true is dealt with in Proposition 4.7.

Let si ̸= 1, 3 be the i-th step in T. We can assume that the cycle C contains the edges
ji+1 − 3↷ ji+1 − 2 and ji+1 − 1↷ ji+1 of GS. If not, we can consider the complementary
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cycle to C. Thus, the cycle C consists of the concatenation of the four segments ji+1 −
3↷ ji+1 − 2, P1, ji+1 − 1↷ ji+1, and P2 where P1 is an alternating path from ji+1 − 2 to
ji+1 − 1 and P2 is an alternating path from ji+1 to ji+1 − 3. Note that both paths start and
end with a lower edge.

Let C′ be the cycle comprised of the two segments ji+1 − 3↷ ji+1 − 2↷ji+1 − 1↷ ji+1
and P2. It is easy to see that C′ is still violating. By removing the vertices ji+1 − 2
and ji+1 − 1 we thus get a shorter violating cycle of the two segments ji+1 − 3↷ ji+1
and P2 in the graph corresponding to the restricted set partitions S|[n]\{ji+1−2 , ji+1−1} and
T|[n]\{ji+1−2 , ji+1−1}.

Proposition 4.7. Assume that T = (j1, . . . , jn) is a non-degenerate ordered set partitions with
all steps si equal to either 1 or 3. Then there are only four possible cases:

(1) si = 1 for all 1 ≤ i ≤ n;

(2) n is not divisible by 3 and si = 3 for all 1 ≤ i ≤ n;

(3) n = 4k + 2 and s2i−1 = 1, s2i = 3 for all 1 ≤ i ≤ 2k + 1;

(4) n = 4k + 2 and s2i−1 = 3, s2i = 1 for all 1 ≤ i ≤ 2k + 1.

In particular, a nonstandard order T with all steps equal to either 1 or 3 is 4- or 6-interlaced with
the standard order on [n] for n ≥ 7.

5 Prominent alcoved polytopes

In this section we will present three series of polytopes which can be shown to be alcoved
using Theorem B: the associahedron An, the cyclohedron Cn and D̂n-polytope. The fact
that associahedra and cyclohedra are alcoved is well-known, but our techniques give a
new proof. The conclusion that the D̂n-polytope is alcoved is new to our knowledge.

One can show that the cyclohedron is normally equivalent to the Minkowski sum
over all coarsenings of the OSP (1, 2, . . . , n) such that at most one block has more than
one element. Moreover, the associahedron normally equivalent to the Minkowski sum
over all coarsenings of the OSP (1, 2, . . . , n) such that at most one block has more than
one element and n is in this largest block. In particular, the associahedron is a Minkowski
summand of the cyclohedron.

Finally, we present the D̂n-polytope as follows. For a cyclic interval I = [s, t] ⊂ [n− 1],
let SI be an ordered set partition of [n − 1] which is given as follows

SI = ([s, t], t + 1, t + 2, . . . , s − 1).
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Now for any partition Ss,t of [n − 1] we define the partition Ŝs,t of [n], by joining n-th
point to the interval [s, t], resulting in

Ŝs,t = ([s, t] ∪ n, t + 1, . . . , s − 1). (5.1)

In total there are (n − 1)2 of such partitions and we define D̂n as ∑
r,t∈[n−1]

∆Ŝr,t
.

The main result of this section is the following.

Theorem 5.1. The associahedron An, the cyclohedron Cn and the D̂n-polytope are alcoved.

Proof. Since the associahedron is a Minkowski summand of the cyclohedron, it is enough
to show that Cn and D̂n are alcoved. Using Theorem A it is enough to show that any
pair of simplices in the corresponding Minkowski sum is compatible.

Let us start with Cn and let S, S′ be two ordered set partitions as above. Notice that
for any subset A ⊂ [n] of size 6, the restrictions S|A, S′|A again have the form of as above.
Thus by Theorem B the compatibility of S, S′ follows from the fact that C6 is alcoved,
which can be checked directly.

The argument for D̂n is similar. For S, S′ of the form (5.1), their restrictions S|A, S′|A
to a subset A ⊂ [n] of size 6 are of the form of cyclohedron summand if n /∈ A and of
the form (5.1) if n ∈ A. So the compatibility of S, S′ follows from the fact that C6 and D̂6
are alcoved.
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