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Abstract. The field of analytic combinatorics in several variables (ACSV) develops
techniques to compute the asymptotic behaviour of multivariate sequences from an-
alytic properties of their generating functions. When the generating function under
consideration is rational, its set of singularities forms an algebraic variety – called the
singular variety – and asymptotic behaviour depends heavily on the geometry of the
singular variety. By combining a recent algorithm for the Whitney stratification of alge-
braic varieties with methods from ACSV, we present the first software that rigorously
computes asymptotics of sequences whose generating functions have non-smooth sin-
gular varieties (under other assumptions on local geometry). Our work is built on the
existing sage_acsv package for the SageMath computer algebra system, which pre-
viously gave asymptotics under a smoothness assumption. We also report on other
improvements to the package, such as an efficient technique for determining higher
order asymptotic expansions using Newton iteration, the ability to use more efficient
backends for algebraic computations, and a method to compute so-called critical points
for any multivariate rational function through Whitney stratification.

Résumé. Le domaine de la combinatoire analytique à plusieurs variables (ACSV)
développe des techniques permettant de calculer le comportement asymptotique de
suites multivariées à partir des propriétés analytiques de leurs fonctions génératrices.
Lorsque la fonction génératrice considérée est rationnelle, son ensemble de singular-
ités forme une variété algébrique - appelée variété singulière - et son comportement
asymptotique dépend fortement de la géométrie de cette variété. En combinant un
algorithme récent de stratification de Whitney des variétés algébriques avec des méth-
odes de l’ACSV, nous présentons le premier logiciel permettant de calculer rigoureuse-
ment l’asymptotique de suites dont les fonctions génératrices présentent des variétés
singulières non lisses (sous d’autres hypothèses sur la géométrie locale). Nos travaux
s’appuient sur le package sage_acsv existant pour le système de calcul formel Sage-
Math, qui fournissait auparavant des asymptotiques sous une hypothèse de régularité.
Nous présentons également d’autres améliorations du package, telles qu’une tech-
nique efficace pour déterminer les développements asymptotiques d’ordre supérieur à
l’aide de l’itération de Newton, la possibilité d’utiliser des backends plus performants
pour les calculs algébriques et une méthode pour calculer les points critiques pour toute
fonction rationnelle multivariée via une stratification de Whitney.
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The field of analytic combinatorics in several variables (ACSV) [11, 16] develops tech-
niques to study multivariate sequence using properies of their (multivariate) generating
functions. In this document, our main goal is to take a rational function

F(z) =
G(z)
H(z)

= ∑
i∈Nd

fizi = ∑
i1,...,id∈Nd

fi1,...,id zi1
1 · · · zid

d

defined by coprime polynomials G, H ∈ Z[z], and a direction vector r ∈ Nd with non-zero
coordinates, and determine asymptotics of the r-diagonal sequence ( fnr)n≥0.

CAUTION 0.1. The function F is called combinatorial if there exists a polynomial P ∈
Z[z] coprime with H such that all but a finite number of the power series coefficients
of P(z)/H(z) are non-negative (for instance, this holds whenever all but a finite num-
ber of the fi are non-negative). For reasons described below, the main functionality of
our package (automatic derivation of asymptotics) assumes that F is combinatorial. It
is an open problem whether combinatoriality is a decidable property, even in dimen-
sion one [15], so this is not verified by the package. All other conditions necessary to
determine asymptotic behaviour are rigorously verified.

Remark 0.2. Our results are more general than they may first appear. For instance, a
diagonal of a d-variate algebraic function can be expressed as a modified diagonal of a
(d + 1)-variate rational function in an algorithmic way [7], and the theory of ACSV im-
plies that asymptotic behaviour of fi as i → ∞ with i/∥i∥ → r typically varies smoothly
with r, allowing for more general asymptotic results and even limit theorems [12] from
the asymptotic behaviour of r-diagonals. Any multivariate generating function coming
from an enumeration problem is necessarily combinatorial.

Unlike the univariate theory of analytic combinatorics [5], where many natural gen-
erating functions (including all rational, algebraic, and D-finite functions) admit a finite
number of singularities, in dimension d ≥ 2 the singular variety V = V(H) defined by
the vanishing of the denominator H is a positive dimensional algebraic variety, and the
geometry of V plays a large role in the asymptotic analysis. The simplest case occurs
when H is square-free and V is a smooth manifold, which happens precisely when H
and all of its partial derivatives don’t simultaneously vanish. In 2023, the sage_acsv

package [8] was developed to rigorously determine leading asymptotics in this smooth
setting. Here we report on new extensions that combine more advanced ACSV methods
with a recent algorithm [9] for the Whitney stratification of algebraic varieties to give the
first rigorous software computing asymptotics from multivariate generating functions
with non-smooth singular varieties.
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Remark 0.3. Although smoothness of V(H) is a generic property, meaning that it holds
for all polynomials H of a fixed degree except for those whose coefficients lie in a proper
algebraic set, generating functions coming from combinatorial problems often exhibit
non-generic behaviours (since having a combinatorial interpretation already makes them
non-generic). We estimate that somewhere between a quarter and a half of generating
functions described in the literature have non-smooth singular varieties.

As before, the sage_acsv package can be installed in any recent SageMath installation
(preferably version 10.1 or later) by running the command

sage -pip install sage-acsv

from any Sage instance with access to the internet, or by downloading its source code
from

https://github.com/ACSVMath/sage_acsv

Full documentation is available through Sage’s built-in documentation system and at

https://acsvmath.github.io/sage_acsv/

This article discusses the functionality of version v0.3.0, released in April 2025.

1 Computing Diagonal Asymptotics

We begin with an example of a simple function whose singular variety is smooth.

Example 1.1. The (1, 1)-diagonal of the combinatorial rational function

F(x, y) =
1

1 − x − y
= ∑

a,b≥0

(
a + b

a

)
xayb

forms the sequence fn,n = (2n
n ). After installing our package, the code execution

sage: from sage_acsv import (get_expansion_terms ,

....: diagonal_asymptotics_combinatorial as diagonal)

sage: var('w x y z')

(w, x, y, z)

sage: diagonal (1/(1 - x - y))

1/sqrt(pi)*4^n*n^( -1/2) + O(4^n*n^( -3/2))

verifies the required assumptions (other than combinatoriality) and proves that(
2n
n

)
=

4n
√

πn

(
1 + O

(
1
n

))
.

An optional argument to diagonal_asymptotics_combinatorial allows one to specify
directions other than the default main diagonal r = 1.

https://github.com/ACSVMath/sage_acsv
https://acsvmath.github.io/sage_acsv/
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sage: diagonal (1/(1 - x - y), r=[2, 1])

0.866025403784439?/ sqrt(pi)*(27/4)^n*n^( -1/2) + O((27/4)^n*n^( -3/2))

The coefficient 0.866025403784439? is a printed numerical approximation of a constant
that is computed exactly as an element of Sage’s Algebraic Field. Asymptotics of the
rational diagonal sequences we handle can be expressed as a sum of terms of the form
Cρnπαnβ, where C and ρ are algebraic numbers and α, β ∈ Q. By default we return
an element of Asymptotic Ring, but other options (such as a symbolic expression) are
possible throught the optional output_format argument. New functionality added af-
ter [8] also allows us to compute higher-order asymptotic expansions using the optional
expansion_precision argument. Regardless of the chosen output format, or number of
terms in the expansion, the get_expansion_terms function turns the expansion into a
list of Term objects, from which the individual components can be more easily inspected.

sage: ex = diagonal (1/(1-x-y), r=[2, 1], expansion_precision =2); ex

0.866025403784439?/ sqrt(pi)*(27/4)^n*n^( -1/2) - 0.08419691425682043?/ sqrt(

pi)*(27/4)^n*n^( -3/2) + O((27/4)^n*n^( -5/2))

sage: terms = get_expansion_terms(ex); terms

[Term(coefficient =0.866025403784439? , pi_factor =1/ sqrt(pi), base =27/4 ,

power = -1/2),

Term(coefficient = -0.08419691425682043? , pi_factor =1/ sqrt(pi), base =27/4,

power = -3/2)]

sage: terms [0]. coefficient.minpoly () # exact value of 0.86... is sqrt (3)/2

x^2 - 3/4

Our higher-order asymptotic expansions use Newton iteration to implicitly compute
high-order series expansions of analytic functions appearing in the analysis; here we can
get 10 terms in the expansion in ≈1 second on a modern laptop. ◁

We now provide some examples with non-smooth singular varieties.

Example 1.2. The coefficients of the generating function

F(x, y) = ∑
p,q≥0

fp,qxpyq =
1

(1 − x/3 − 2y/3)(1 − 2x/3 − y/3)

have an interpretation involving the number of winning choices in a single player game
with a biased coin where the player must obtain p heads and q tails in p + q flips [16,
Example 12.25]. The derivation of (r, s)-diagonal asymptotics breaks down into different
cases for

• r/s < 1/2, when the behaviour is dictated by a smooth point of the singular variety
where the first denominator factor of F vanishes but the second doesn’t;

• r/s > 2, when the behaviour is dictated by a smooth point of the singular variety
where the second denominator factor of F vanishes but the first doesn’t;
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• 1/2 < r/s < 2, when asymptotics are dictated by the non-smooth point (1, 1) and
we always have frn,sn ∼ 3;

• and r/s ∈ {1/2, 2}, when we have a non-generic direction.

Our algorithm can automatically handle all cases except when r/s ∈ {1/2, 2} (see Defi-
nition 2.10 below for more details on non-generic directions).

sage: F = 1/(1 - x/3 - 2*y/3)/(1 - 2*x/3 - y/3)

sage: diagonal(F, r=[1, 3])

6.531972647421808?/ sqrt(pi)*(2048/2187)^n*n^( -1/2)

+ O((2048/2187)^n*n^( -3/2))

sage: diagonal(F, r=[4, 1])

3.952847075210475?/ sqrt(pi)*(3125/3888)^n*n^( -1/2)

+ O((3125/3888)^n*n^( -3/2))

sage: diagonal(F, r=[1, 1])

3 + O(n^(-1))

Running diagonal(F, r=[2,1]) throws the ACSVException: Non-generic direction

detected - critical point [1, 1] is contained in 0-dimensional stratum. ◁

Example 1.3. The methods of ACSV have found great application in the enumeration of
lattice path models restricted to convex cones [11, Chapters 4, 6, and 9]. For instance, in
2009 Bostan and Kauers [3] guessed linear ODEs satisfied by the generating functions for
23 of the 79 non-isomorphic two-dimensional models restricted to a quadrant that take
steps in {0,±1}2 \ {(0, 0)} and are not isomorphic to models restricted to halfspaces.
From these linear ODEs, which were later rigorously derived [2], Bostan and Kauers
combined the singularity analysis of D-finite functions with heuristic guesses of numer-
ically approximated constants to conjecture asymptotics of the 23 models. Due to the
connection problem for D-finite functions [11, Section 2.4.1], several of these asymptotic
conjectures stood until 2016, when they were resolved via ACSV [13].

As an explicit example, consider the sequence sn defined as the number of lattice
paths that start at the origin, take n steps in {(−1,−1), (1,−1), (0, 1)}, and never leave
the quadrant N2. The kernel method for lattice path model enumeration [11, Chapter 4]
implies that sn is the (1, 1, 1)-diagonal of the rational function

F(x, y, z) =
(1 + x)(1 − 2zy2(1 + x2))

(1 − y)(1 − z(x2y2 + y2 + x))(1 − zy2(1 + x2))
,

from which one can use the methods of creative telescoping to compute [2, Model 15]
that the generating function S(t) of sn satisfies a linear ODE of order 5 with polyno-
mial coefficients of maximum degree 16. Desingularizing this equation using the Sage
ore_algebra package [10, 4] shows that S(t) satisfies a linear ODE of order 43 whose
leading coefficient is the polynomial

t3(t − 1/3)(t + 1)(t2 − 1/8)(t2 + 1/8),
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so the theory of D-finite function asymptotics [11, Section 2.4] then implies the existence
of constants α, β, C, C0, C1, . . . such that

sn = C · 3nnα logβ(n) ∑
k≥0

Ckn−k + O((2
√

2)n).

Using efficient algorithms [14] for the numeric analytic continuation of solutions of linear
ODEs it is possible to rigorously approximate C = 0.000 . . . to thousands of decimal
places on a modern laptop, but it is unknown if it can be rigorously decided when such
connection coefficients are exactly 0 (which in this case would imply that sn has exponential
growth at most 2

√
2).

Although we cannot proceed with univariate generating function methods1, with our
package we can now rigorously compute asymptotics of sn directly from the multivariate
function F(x, y, z). Indeed, the code execution

sage: F = (1 + x)*(2*z*x^2*y^2 + 2*z*y^2 - 1)/((-1 + y)*(z*x^2*y^2 + z*y^2

+ z*x - 1)*(z*x^2*y^2 + z*y^2 - 1))

sage: diagonal(F)

O(2.828427124746190?^n*n^(-2))

sage: diagonal(F, expansion_precision =2)

0.9705627484771406?/ pi *( -2.828427124746190?)^n*n^(-2)

+ 32.97056274847714?/ pi *2.828427124746190?^n*n^(-2)

+ O(2.828427124746190?^n*n^(-3))

implies, after expressing the degree two algebraic numbers that appear in radicals, that

sn = (12
√

2 − 16)
(−2

√
2)n

πn2 + (12
√

2 + 16)
(2
√

2)n

πn2 .

Note that we must set expansion_precision=2 because the expected leading coefficient
vanishes in this example, so by default we only conclude sn = O((2

√
2)n/n2). ◁

2 Theoretical Background and Other Functionality

The methods of ACSV work by computing a (generically) finite collection of critical points
on the singular variety V , where local behaviour of F could impact asymptotics of the
r-diagonal, and then refining them to points that actually do impact the asymptotics.
The simplest situation is the square-free smooth case, when H and its partial deriva-
tives never simultaneously vanish, in which case the critical points in the direction r are

1In this case one can use probabilistic arguments linking random walks to Brownian motion to prove
that the exponential growth of sn is strictly less than 3, and then deduce it is 2

√
2 via a generating function

analysis, but this specialized argument for lattice paths cannot be automated for general sequences.
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defined by the polynomial system

H(w) = 0
rkz1Hz1(w)− r1zkHzk(w) = 0 for 2 ≤ k ≤ d.

(2.1)

In general, the variety V may not be smooth (due to self-intersections, cusp points, etc.)
and must be partitioned into a finite collection of smooth sets.

Stratifications

A Whitney stratification [6] of V is a particular decomposition into smooth sets, called
strata, such that the local picture of V near all points in the same stratum is consistent.
Although originally described by Whitney in terms of limit behaviour of secant lines
and tangent planes on V , an algebraic characterization of Whitney stratifications using
conormal spaces was given by Lê and Teissier [17]. For our purposes, it is enough to note
that there is a Whitney stratification defined by a collection of algebraic sets

V(H) = Xd ⊃ Xd−1 ⊃ · · · ⊃ X0 ⊃ X−1 = ∅

such that, for each 0 ≤ k ≤ d, the stratum Sk = Xk \ Xk−1 is either empty or a smooth
k-dimensional manifold. We compute polynomial generators for the ideals I(Xk) using
a recent algorithm of Helmer and Nanda [9], in a function whitney_stratification that
is used implicitly for ACSV purposes but may also be of independent interest.

Example 2.1. The following code computes a Whitney stratification of V(y2 + z3 − x2z2).

sage: from sage_acsv import whitney_stratification

sage: R.<x, y, z> = PolynomialRing(QQ , 3)

sage: IX = Ideal(y^2 + z^3 - x^2*z^2)

sage: whitney_stratification(IX, R)

[Ideal (z, y, x) of Multivariate Polynomial Ring in x, y, z over Rational

Field ,

Ideal (z, y) of Multivariate Polynomial Ring in x, y, z over Rational

Field ,

Ideal (x^2*z^2 - z^3 - y^2) of Multivariate Polynomial Ring in x, y, z

over Rational Field]

◁

Remark 2.2. When V is smooth then {V} is its (trivial) Whitney stratification.

Definition 2.3. A collection of square-free polynomials {p1, . . . , ps} is said to intersect
transversely if each of the varieties V(pk) is smooth (meaning each pk and its partial
derivatives do not simultaneously vanish) and for each sub-collection {pπ1 , . . . , pπr} the
gradients of the pπj are linearly independent at any point of V(pπ1) ∩ · · · ∩ V(pπr). If
H(z) = H1(z)a1 · · · Hs(z)as for positive integers ak and all collections of the irreducible
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polynomial factors Hk intersect transversely then we say that H has a transverse polyno-
mial factorization; if all ak = 1 then we also say that the factorization is square-free.

For ACSV purposes, when H admits a transverse polynomial factorization then we
can define flats consisting of the simultaneous vanishing of all subsets of {H1, . . . , Hs}
and make strata by taking each flat and removing all subflats. This process is more
efficient than the general computations performed by whitney_stratification.
Remark 2.4. Our algorithm for diagonal asymptotics currently requires a transverse poly-
nomial factorization, and can only compute higher-order asymptotic terms when V is
smooth or there is a square-free transverse factorization. Work is ongoing to compute
higher-order terms in the general non-square-free case, and to reduce transverse factor-
ization at the level of polynomials to transverse factorization in terms of local analytic
functions near points determining asymptotics.

Contributing Points

The starting point of an asymptotic analysis is the Cauchy integral representation

fnr =
1

(2πi)d

∫
C

F(z)
dz

znr+1 ,

where C = {z ∈ Cd : |z1| = · · · = |zd| = ϵ} is a product of sufficiently small circles
around the origin, and the function ϕr(z) = zr captures the part of the Cauchy integrand
that changes as n → ∞.

Definition 2.5. The critical points of F on the stratum Sk are defined to be the critical points
of the map ϕr : Sk → C as a map of manifolds (i.e., the places where the differential of
the restricted map ϕr

∣∣
Sk

is rank deficient) and the set of critical points of F is obtained by
taking the union of the critical points on each stratum.

If (p1, . . . , ps) = I(Xk) and (q1, . . . , qr) = I(Xk+1) are the radical ideals defining
the algebraic sets Xk and Xk+1 then the critical points on the stratum Sk are defined by
the non-vanishing of q1, . . . , qr together with the vanishing of p1, . . . , ps and (as Sk is a
stratum of dimension k) the vanishing of the (k + 1)× (k + 1) minors of the matrix with
rows ∇p1, . . . ,∇ps,∇ϕ. Thus, critical points are always defined by a finite collection of
polynomial equalities and inequalities. The function critical_points returns a list of
the critical points of F in the direction r (with default r = 1) whenever this set is finite.
In particular, this function does not assume that F is combinatorial.
Remark 2.6. Because Sage’s built-in functionality for ideal computations with Gröbner
bases can be quite slow, we allow the user to change default settings using ACSVSettings

to perform Gröbner computations using Macaulay2 (if installed on their system) and
(often dramatically) speed up the computations. The path to Macaulay2 may also need
to be specified, depending on the user’s installation method and environment variables.
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Example 2.7. The code execution
sage: from sage_acsv import ACSVSettings as AS , critical_points

sage: AS.set_default_groebner_backend(AS.Groebner.MACAULAY2)

sage: AS.set_macaulay2_path('/opt/homebrew/bin/M2')

sage: critical_points (1/(1 - (w + x + y + z) + 27*w*x*y*z))

[[1/3 , 1/3, 1/3, 1/3],

[ -0.3333333333333334? + 0.4714045207910317?*I,

-0.3333333333333334? + 0.4714045207910317?*I,

-0.3333333333333334? + 0.4714045207910317?*I,

-0.3333333333333334? + 0.4714045207910317?*I],

[ -0.3333333333333334? - 0.4714045207910317?*I,

-0.3333333333333334? - 0.4714045207910317?*I,

-0.3333333333333334? - 0.4714045207910317?*I,

-0.3333333333333334? - 0.4714045207910317?*I]]

shows that F(x, y, z, w) = 1/(1− (x + y+ z+w) + 27xyzw) admits 3 critical points in the
direction 1: the point (1/3, 1/3, 1/3, 1/3), where F has a so-called cone point singularity,
and a pair of points whose coordinates are complex conjugates, which are smooth points
of the singular variety. Cone point singularities in even dimension at least 4 exhibit a
lacuna phenomenon that makes determining asymptotics particularly challenging [1]. ◁

Although critical points are crucial to the analysis, not all critical points will affect
asymptotic behaviour. We must therefore introduce some additional concepts.

Definition 2.8. A minimal point is an element w ∈ V ∩Cd
∗ with non-zero coordinates that

is coordinate-wise minimal, meaning that there does not exist any v ∈ V with |vj| < |wj|
for all 1 ≤ j ≤ d.

As in [8], we test for minimal critical points when F is combinatorial using Kronecker
representations to reduce the necessary computations to bounding roots of univariate
polynomials. We refer the interested reader to [11, Chapter 7] for theoretical details,
or [8, Section 2.2] for information on our implementation. Our test for minimality is
what restricts us to studying combinatorial functions, as testing minimality for non-
combinatorial functions is currently expensive enough to be non-feasible beyond very
small cases. The function minimal_critical_points_combinatorial returns a list of the
minimal critical points of F in the direction r (with default r = 1) whenever this set is
finite.
Example 2.9. The function FC(x, y, z, w) = 1/(1 − (x + y + z + w) + Cxyzw) is known to
be combinatorial whenever C ≤ 24 (see [18]). When C = 24 it can be shown using the
critical_points function that F admits 4 critical points in the direction 1, however the
code execution
sage: from sage_acsv import minimal_critical_points_combinatorial

sage: minimal_critical_points_combinatorial (1/(1 -(w+x+y+z)+24*w*x*y*z))

[[0.2961574755620697? , 0.2961574755620697? , 0.2961574755620697? ,

0.2961574755620697?]]
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shows that F admits only one minimal critical point in this direction. ◁

In the smooth case, if there are a finite number of minimal critical points then (un-
der mild assumptions) they all have the same coordinate-wise modulus and determine
dominant asymptotic behaviour. However, in the non-smooth case there are often differ-
ent groups of minimal critical points with the same coordinate-wise moduli, with only
the points in one group contributing asymptotically. To determine the relevant points,
we make use of an amazing fact about minimal points from the theory of hyperbolic
polynomials. Given a polynomial P, let

(∇logP)(z) = (z1Pz1(z), . . . , zdPzd(z))

denote the logarithmic gradient of P. If w is a minimal point then (∇logP)(w) is a scalar
multiple of a real vector (see [16, Theorem 6.44]).

Definition 2.10. Suppose that H admits the transverse polynomial factorization H(z) =
H1(z)a1 · · · Hs(z)as and let w ∈ V ∩ Cd

∗ be a minimal critical point where (without loss
of generality) precisely the factors H1, . . . , Hr vanish. For any 1 ≤ k ≤ d let vk ∈ R be a
real vector obtained by scaling (∇logHk)(w) by one of its non-zero entries. We say that
w ∈ V(H) is contributing if there exist λ1, . . . , λr ≥ 0 such that

r = λ1v1 + · · ·+ λrvr. (2.2)

The direction r is called generic if for any contributing point w of F the constants
λ1, . . . , λr in (2.2) are all strictly positive.

Remark 2.11. Our definition of contributing points does not depend on which non-zero
entries of the ∇logHk are used to define the vk in Definition 2.10. A critical point is
a point where r lies in the complex span of the ∇logHk, and a contributing point is a
minimal critical point where r lies in the non-negative real cone generated by the ∇logHk
after a suitable scaling. A non-generic direction r is roughly one where a critical point of
ϕr on a closure of a stratum lies in a stratum of lower dimension; as the name suggests,
‘most’ directions are generic.

The function contributing_points_combinatorial computes the contributing points
in the direction r (with default r = 1) when H admits a transverse polynomial factoriza-
tion; it fails with an ACSVException when a non-generic direction is detected.
Example 2.12. Returning to the lattice path model with steps {(−1,−1), (1,−1), (0, 1)}
restricted to a quadrant, if F is the multivariate function from Example 1.3 then running
sage: minimal_critical_points_combinatorial(F)

[[1, 1, 1/3], [1, -0.7071067811865475? , 1/2], [1, 0.7071067811865475? ,

1/2], [-1, 0.7071067811865475?*I, -1/2], [-1, -0.7071067811865475?*I,

-1/2]]

sage: contributing_points_combinatorial(F)

[[1, 0.7071067811865475? , 1/2], [1, -0.7071067811865475? , 1/2], [-1,

-0.7071067811865475?*I, -1/2], [-1, 0.7071067811865475?*I, -1/2]]
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shows that F has five minimal critical points – the non-smooth point (1, 1, 1/3) where
two of the denominator factors vanish, and four smooth points – with only the smooth
points being contributing (smooth minimal critical points are always contributing points,
when they exist). Note that only the two real points contribute to dominant asymptotics,
but the other minimal critical points affect higher-order terms. ◁

Once the contributing points are identified, diagonal_asy can compute the relevant
asymptotic expansions under mild assumptions using [11, Theorems 9.1 and 9.2]. Given
the combinatorial rational function F(z) = G(z)/H(z) as input, the algorithm succeeds
when: H(0) ̸= 0 so that F(z) has a power series expansion at the origin; H has a trans-
verse polynomial factorization; F admits a finite number of critical points, at least one of
which is contributing; and the contributing points are non-degenerate, which means that
the Hessian matrices of certain implicitly defined analytic functions [11, Definition 9.10]
are non-singular at the origin. All of these assumptions (except combinatoriality) are
verified by the algorithm. If the numerator H does not vanish for at least one contribut-
ing singularity then a sum of asymptotic terms will be returned. If H vanishes at all
such points then by default the algorithm will simply return a big-O bound; in this case,
to compute dominant asymptotics a user should try using the expansion_precision

argument to determine more terms in the asymptotic expansion.

3 Acknowledgements

AL partially supposed by an Ontario Graduate Scholarship, SM partially supported
by NSERC Discovery Grant RGPIN-2021-02382, and ES partially supported by NSERC
Discovery Grant RGPIN-2023-03463.

References

[1] Y. Baryshnikov, S. Melczer, and R. Pemantle. “Asymptotics of multivariate sequences in
the presence of a lacuna”. Ann. Inst. Henri Poincaré D 12.1 (2025), pp. 143–187. doi.

[2] A. Bostan, F. Chyzak, M. van Hoeij, M. Kauers, and L. Pech. “Hypergeometric expressions
for generating functions of walks with small steps in the quarter plane”. European J. Combin.
61 (2017), pp. 242–275. doi.

[3] A. Bostan and M. Kauers. “Automatic classification of restricted lattice walks”. 21st Inter-
national Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2009). Discrete
Math. Theor. Comput. Sci. Proc., AK. Assoc. Discrete Math. Theor. Comput. Sci., Nancy,
2009, pp. 201–215.

[4] S. Chen, M. Kauers, and M. F. Singer. “Desingularization of Ore operators”. J. Symbolic
Comput. 74 (2016), pp. 617–626. doi.

https://dx.doi.org/10.4171/aihpd/182
https://dx.doi.org/10.1016/j.ejc.2016.10.010
https://dx.doi.org/10.1016/j.jsc.2015.11.001


12 Benjamin Hackl, Andrew Luo, Stephen Melczer, and Éric Schost

[5] P. Flajolet and R. Sedgewick. Analytic combinatorics. Cambridge University Press, Cam-
bridge, 2009, pp. xiv+810. doi.

[6] M. Goresky and R. MacPherson. Stratified Morse theory. Vol. 14. Ergebnisse der Mathematik
und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)]. Springer-Verlag,
Berlin, 1988, xiv+272 pp. doi.

[7] T. Greenwood, S. Melczer, T. Ruza, and M. C. Wilson. “Asymptotics of coefficients of al-
gebraic series via embedding into rational series (extended abstract)”. Sém. Lothar. Combin.
86B (2022), Art. 30, 12 pp.

[8] B. Hackl, A. Luo, S. Melczer, J. Selover, and E. Wong. “Rigorous analytic combinatorics in
several variables in SageMath”. Sém. Lothar. Combin. 89B (2023), Art. 90, 12 pp.

[9] M. Helmer and V. Nanda. “Conormal spaces and Whitney stratifications”. Found. Comput.
Math. 23.5 (2023), pp. 1745–1780. doi.

[10] M. Kauers, M. Jaroschek, and F. Johansson. “Ore polynomials in Sage”. Computer algebra
and polynomials. Vol. 8942. Lecture Notes in Comput. Sci. Springer, Cham, pp. 105–125.
doi.

[11] S. Melczer. An invitation to analytic combinatorics—from one to several variables. Texts and
Monographs in Symbolic Computation. With a foreword by Robin Pemantle and Mark
Wilson. Springer, Cham, [2021] ©2021, xviii+418 pp. doi.

[12] S. Melczer and T. Ruza. “Central limit theorems via analytic combinatorics in several
variables”. Electron. J. Combin. 31.2 (2024), Paper No. 2.27, 35 pp. doi.

[13] S. Melczer and M. C. Wilson. “Asymptotics of lattice walks via analytic combinatorics in
several variables”. Proceedings of FPSAC 2016 (28th International Conference on Formal Power
Series and Algebraic Combinatorics), DMTCS proc. BC. 2016, pp. 863–874.

[14] M. Mezzarobba. “Rigorous Multiple-Precision Evaluation of D-Finite Functions in Sage-
Math”. 2016. arXiv:1607.01967.

[15] J. Ouaknine and J. Worrell. “Positivity problems for low-order linear recurrence se-
quences”. Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Al-
gorithms. ACM, New York, 2014, pp. 366–379. doi.

[16] R. Pemantle, M. C. Wilson, and S. Melczer. Analytic combinatorics in several variables. Second
ed. Vol. 212. Cambridge Stud. Adv. Math. Cambridge University Press, Cambridge, 2024,
xix+571 pp. doi.

[17] L. D. u. Tráng and B. Teissier. “Limites d’espaces tangents en géométrie analytique”.
Comment. Math. Helv. 63.4 (1988), pp. 540–578. doi.

[18] Y. Yu. “Positivity of the Rational Function of Gillis, Reznick and Zeilberger”. 2019. arXiv:
1910.05880.

https://dx.doi.org/10.1017/CBO9780511801655
https://dx.doi.org/10.1007/978-3-642-71714-7
https://dx.doi.org/10.1007/s10208-022-09574-8
https://dx.doi.org/10.1007/978-3-319-15081-9\_6
https://dx.doi.org/10.1007/978-3-030-67080-1
https://dx.doi.org/10.37236/11732
https://arxiv.org/abs/1607.01967
https://dx.doi.org/10.1137/1.9781611973402.27
https://dx.doi.org/10.1017/9781108874144
https://dx.doi.org/10.1007/BF02566778
https://arxiv.org/abs/1910.05880
https://arxiv.org/abs/1910.05880

	Computing Diagonal Asymptotics
	Theoretical Background and Other Functionality
	Acknowledgements

