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Abstract. The Alexander polynomial (1928) was the first polynomial invariant of links
devised to help distinguish them up to isotopy. In this abstract, we highlight views of
the Alexander polynomials of special alternating links in terms of polytopes, namely,
generalized permutahedra and root polytopes. Polytopes have been previously used
to study polynomial invariants of special alternating links in the works of Juhász,
Kálmán, and Rasmussen (2012) and Kálmán and Postnikov (2017). We settle Fox’s
longstanding conjecture of the trapezoidal property of the Alexander polynomials of
alternating links in the special case of special alternating links using generalized per-
mutahedra. We also offer a simple explanation of the connection between the gener-
alized Alexander polynomial of Eulerian graphs defined by Murasugi and Stoimenow
(2003) and root polytopes of unimodular matrices, building on the works of Li and
Postnikov (2013) and Tóthmérész (2023).

Keywords: Alexander polynomial, special alternating link, log-concavity, generalized
permutahedron, Eulerian digraph, root polytope

1 Introduction

This extended abstract is based on two papers of the authors [10, 11] and follows their
exposition. For full details on the results presented here, consult the aforementioned
works.

The Alexander polynomial ∆L(t) ∈ Z[t, t−1] associated to an oriented link L was the
first polynomial knot invariant, discovered in the 1920s [1]. The Alexander polynomial
was originally defined by fixing a diagram – a projection of L in the plane decorated
with undercrossings and overcrossings. The key property of the Alexander polynomial is
that if oriented links L1 and L2 are isotopic, then ∆L1(t) = ∆L2(t) up to multiplication by
±tk for some integer k. Namely, up to multiplication by ±tk for some integer k, ∆L(t) is
independent of the choice of diagram used to compute it.
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The coefficients of ∆L(t) for an arbitrary link L are palindromic. A link is alternating
if it admits an alternating diagram – that is, tracing along each component, crossings
alternate between over and under. In 1962, Fox [9] conjectured that for alternating links,
the absolute values of the coefficients of Alexander polynomials are trapezoidal. For
alternating links L, the works [8, 19] show that the Alexander polynomial can be nor-
malized so that ∆L(−t) ∈ Z≥0[t] and that its sequence of coefficients contains no internal
zeros. Thus, we can write Fox’s conjecture as follows:

Conjecture 1.1 ([9]). Let L be an alternating link. Then the coefficients of ∆L(−t) form a
trapezoidal sequence.

Stoimenow [23] strengthened Fox’s conjecture from trapezoidality to log-concavity.
Fox’s conjecture remains stubbornly open in general, although some special cases have
been settled by Hartley [12] for two-bridge knots, Murasugi [20] for a family of alter-
nating algebraic links, Ozsváth and Szabó [22] for the case of genus 2 alternating knots,
by the present authors for special alternating links [10], and by Azarpendar, Juhász and
Kálmán [5] for certain diagrammatic Murasugi sums of special alternating links. That
Fox’s conjecture holds for genus 2 alternating knots was also confirmed by Jong [13].

In Section 3 of this abstract, we leverage Crowell’s combinatorial model for Alexan-
der polynomials of alternating links [8], generalized permutahedra, and the theory of
Lorentzian polynomials1 [6] to prove the following theorem, as the present authors did
in [10, Theorem 1.2]:

Theorem 1.2. The coefficients of the Alexander polynomial ∆L(−t) of a special alternating link
L form a log-concave sequence with no internal zeros. In particular, they are trapezoidal.

In Section 4, we study a generalization of the Alexander polynomials of special alter-
nating links to all Eulerian digraphs, defined by Murasugi and Stoimenow [21]. Mura-
sugi and Stoimenow introduced the Alexander polynomial of an Eulerian digraph H,
which we denote PH(t). The present authors prove in [11, Theorem 1.7]:

Theorem 1.3. Let H be an Eulerian digraph, and let M be the oriented graphic matroid associated
to H. Let AH be a totally unimodular matrix representing M∗, the oriented dual of M, and let
m be the size of a basis of M∗. Then,

PH(t) = ∑
A′ has property *

Vol(QA′)(t − 1)#col(A′)−m, (1.1)

where a matrix A′ has property * if it is obtained by deleting a set of columns from AH without
decreasing the rank of the matrix, and QA′ denotes the root polytope of A′.

The above theorem is inspired by a result of Li and Postnikov [18], which, in the case
that H is planar, relates slices of zonotopes to the right-hand side of (1.1).

1In this abstract, we use the theory as developed by Brändén and Huh in [6]. Lorentzian polynomials
were independently developed by Anari, Liu, Oveis Gharan and Vinzant [2, 4, 3] under the name completely
log-concave polynomials.
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2 Background

In this brief section, we give the background used throughout this abstract. We present
additional background in Sections 3 and 4 when needed.

2.1 Notation and graph theory definitions

For any graph G, let V(G) denote the vertex set of G and E(G) the edge set of G. For
a digraph H, we will denote the initial vertex of any e ∈ E(H) by init(e) and the final
vertex of e by fin(e). The number of edges with initial vertex v will be denoted outdeg(v),
and the number of edges with final vertex v will be denoted indeg(v). The digraph H
is Eulerian if it is connected and at each vertex v ∈ V(H), indeg(v) = outdeg(v). A
planar Eulerian digraph is called an alternating dimap if its planar embedding is such
that, reading cyclically around each vertex, the edges alternate between incoming and
outgoing. We will interchangeably use the terms “faces” and “region” of a planar graph.

2.2 Special alternating links

We follow the construction for special alternating links presented by Juhász, Kálmán,
and Rasmussen [14] and by Kálmán and Murakami [15] to associate a positive special
alternating link LG to a planar bipartite graph G. Let M(G) be the medial graph of G:
the vertex set of M(G) is the set {ve | e ∈ E(G)}, and two vertices ve and ve′ of M(G) are
connected by an edge if the edges e and e′ are consecutive in the boundary of a face of G.
We think of a particular planar drawing of M(G) here: the midpoints of the edges of G
are the vertices of M(G). Thinking of M(G) as a flattening of a link, there are two ways
to choose under and overcrossings at each vertex of M(G) to make it into an alternating
link LG. We select the over and undercrossings and orient LG so that each crossing is
positive. Every positive special alternating link admits a diagram of the form LG for
some planar bipartite graph G. Figure 1 shows an example of this construction.

3 Log-concavity of the Alexander polynomial of special al-
ternating links

The purpose of this section is to explain the idea of the present authors’ theorem [10,
Theorem 1.2]:

Theorem 1.2. The coefficients of the Alexander polynomial ∆L(−t) of a special alternating link
L form a log-concave sequence with no internal zeros. In particular, they are trapezoidal.

To do this, we review Crowell’s model for the Alexander polynomial of an alternating
link and its multivariate generalization that the present authors introduced in [10].
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Figure 1: A planar bipartite graph along with its positive special alternating link LG.

3.1 Crowell’s model and its multivariate generalization

We begin with an overview of Crowell’s model [8]. Let L be an alternating link, and let
G(L) be the planar graph obtained by flattening the crossings of an alternating diagram
of L; the crossings of L are the vertices of G(L) while the arcs between the crossings are
the edges of G(L). Note that G(L) is a planar 4-regular graph. Next, we assign directions
to the edges of G(L) – but not those coming from the orientation of the link – as well as
weights in the following way:

becomes
1

−t

Denote by
−−→
G(L) the oriented weighted graph obtained from G(L) in this fashion. Let

var(e) be the weight −t or 1 assigned to the edge e ∈ E(
−−→
G(L)). An arborescence rooted

at r is a spanning tree with a unique directed path from the root r to any vertex.

Theorem 3.1 ([8, Theorem 2.12]). Given an alternating diagram of the link L, fix an arbitrary
vertex r ∈ V(

−−→
G(L)). Denote by A(L, r) the set of arborescences of

−−→
G(L) rooted at r. The

Alexander polynomial of L is

∆L(t) = ∑
T∈A(L,r)

∏
e∈E(T)

var(e).

Theorem 3.1 reveals the possibility of a multivariate generalization of the Alexander
polynomial by assigning a new variable weight to each edge of

−−→
G(L). Our goal is to

make a Lorentzian generalization of the Alexander polynomial in such a way that the
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Figure 2: Left: the graph
−−−→
G(LG) for the positive special alternating link in Figure 1

with edge variables in Crowell’s convention. Center:
−−−→
G(LG) with edge variables as in

Definition 3.3. Right: an arborescence rooted at r and the associated monomial.

(denormalized) Lorentzian property carries over to the homogenization of the Alexander
polynomial ∆LG(−t) for any planar bipartite graph G. This, in turn, would imply the
log-concavity of the coefficients of ∆LG(−t).

We note that the oriented graph
−−−→
G(LG) is an alternating dimap. Any alternating

dimap D is two-face colorable. The edges surrounding faces in one color class are clock-
wise oriented cycles, and the edges surrounding the other faces are counterclockwise
oriented cycles. In [10, Lemma 3.1], the present authors show the following:

Lemma 3.2. Let G be a planar bipartite graph. Suppose R is the set of all regions of
−−−→
G(LG) whose

boundaries are clockwise oriented cycles. Then, R is either precisely the set of regions associated
to vertices of G or the set of regions associated to vertices in its planar dual G∗. Furthermore, the
boundary of every face in R is either labeled with a 1 on every edge or with a −t on every edge.

In light of Lemma 3.2, we consider a generalization of the Alexander polynomial
∆LG(−t) as in [10, Definition 3.3] and [10, Definition 3.4] of the present authors’ work:

Definition 3.3. Denote the set of clockwise oriented regions of the alternating dimap D by R(D).
Let R(D) = {R1, . . . , Rk}. Each edge e ∈ E(D) belongs to the boundary of exactly one region
in R(D). For each edge e in the boundary of Ri, i ∈ [k], assign the variable var(e) = xi. See
Figure 2 for an example.

Definition 3.4. Let D be an alternating dimap, and define var(e), e ∈ E(D), as in Defini-
tion 3.3. Fix a vertex r ∈ V(D). The M-polynomial of D is the polynomial

MD,r(x1, . . . , xk) = ∑
A

∏
e∈E(A)

var(e) (3.1)
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where the sum is over all arborescences A of D rooted at r.

We point out that MD,r(x1, . . . , xk) depends only on the dimap D and not on the
choice of root r. For this reason, we denote it simply by MD(x) for the rest of this
section. The polynomial we term the M-polynomial appeared as a determinant in works
by Juhász, Kálmán, and Rasmussen [14] and by Kálmán [17] with a different, but closely
related, prelude. We conclude this section with the following theorem, which appears as
[10, Theorem 3.5] in the present authors’ work:

Theorem 3.5. Let G be a planar bipartite graph, and assign
−−−→
G(LG) the orientation and labeling

from Crowell’s model as described in Section 3.1. Let {R1, . . . , Rl} and {Rl+1, . . . , Rk} be the
clockwise oriented regions of

−−−→
G(LG) labeled with −t’s and 1’s respectively. Then,

∆LG(−t) = M−−−→
G(LG)

(t, . . . , t, 1, . . . , 1) (3.2)

where we set x1 = · · · = xl = t and xl+1 = · · · = xk = 1 in M−−−→
G(LG)

.
Similarly,

Homogq(∆LG(−t)) = M−−−→
G(LG)

(t, . . . , t, q, . . . , q), (3.3)

where Homogq(∆LG(−t)) denotes the q-homogenization of ∆LG(−t) and we set x1 = · · · =
xl = t and xl+1 = · · · = xk = q in M−−−→

G(LG)
.

3.2 Proof Strategy for Theorem 1.2

The goal of this section is to outline the proof in the present authors’ work [10, Theorem
4.1] of the following result:

Theorem 3.6. For any alternating dimap D, the polynomial MD(x) = MD,r(x) is independent
of the choice of root r ∈ D. Moreover, MD(x) is denormalized Lorentzian.

This, together with Theorem 3.5 and results from Lorentzian theory [6, 7], settle Theo-
rem 1.2. For brevity, we will not define what it means for a polynomial to be denormalized
Lorentzian. Rather, we invoke results in the theory of Lorenztian polynomials and refer
the reader to [6] and [7] for further background.

Recall that the support of a polynomial f ∈ R[x1, . . . , xn] is the set supp( f ) ⊆ Nn of
all tuples (α1, . . . , αn) such that the monomial xα1

1 · · · xαn
n has nonzero coefficient in f . If

the convex hull of supp( f ) is a generalized permutahedron – a polytope all of whose
edges are all parallel to ei − ej, where ei is the standard basis vector – and if every lattice
point in the convex hull of supp( f ) appears in some monomial of f , then f is said to have
M-convex support. A polynomial with 0 and 1 coefficients whose support is M-convex
is always denormalized Lorentzian.
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We first relate the support of the M-polynomial to another well-known Lorentzian
polynomial. Let gD be the integer point enumerator, defined below, of the base polytope
of the graphic matroid of D considered without orientation. If we let R1, . . . , Rk of D be
the regions bounded by the clockwise oriented cycles C1, . . . , Ck and denote the edges of
Ci by ei,1, . . . , ei,|Ci|, i ∈ [k], then

gD(x1,1, . . . , xn,|Ck|) = ∑
T∈T (D)

∏
ei,j∈E(T)

xi,j.

Next, we specialize gD(x) in a way that preserves the Lorentzian property:

fD(x1, . . . , xk) = ∑
T∈T (D)

k

∏
i=1

xai(T)
i ,

where ai(T) is the number of edges of T belonging to the cycle Ci, i ∈ [k]. Thus, we have
the following lemma, which the present authors prove in [10, Lemma 4.2]:

Lemma 3.7. Given an alternating dimap D, the polynomial fD is Lorentzian. In particular, fD
has M-convex support.

Next, we see that for any r ∈ D, supp( fD(x1, . . . , xk)) = supp(MD,r(x1, . . . , xk)). To
do this, we need Kálmán’s lemma:

Lemma 3.8 ([17, see proof of Theorem 10.1]). Let D be an alternating dimap. Denote the
cycles surrounding the clockwise oriented regions by C1, . . . , Ck. Let T be any spanning tree in
D, and fix any r ∈ V(D). Let ai(T) be the number of edges of T in the cycle Ci. Then, there
exists an arborescence A, rooted at r, such that ai(A) = ai(T) for all i ∈ [k].

Corollary 3.9. For any r ∈ V, supp( fD(x1, . . . , xk)) = supp(MD,r(x1, . . . , xk)). In particular,
supp(MD,r(x1, . . . , xk)) is M-convex.

The above corollary, which appears as [10, Corollary 4.4] in the present authors’ prior
work, shows the M-polynomial is supported on a generalized permutahedron. It also
implies that the support of the M-polynomial is entirely independent of the choice of
root. Kálmán proved a statement within [17, see proof of Theorem 10.1] which yields
that MD,r has 0 and 1 coefficients. Thus, MD,r does not depend on the choice of r.

Proof of Theorem 3.6. By Corollary 3.9, the support of MD,r(x) is M-convex and indepen-
dent of the choice of root r. Moreover, all coefficients of MD,r(x) are 1 on its support.
Thus, MD,r(x) is independent of the choice of r, and we may denote it by MD(x). Since
the M-polynomial has M-convex support and 0 and 1 coefficients, we conclude that
MD(x) is denormalized Lorentzian.

Theorem 3.6 with other results lend themselves to a proof of Theorem 1.2.
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Figure 3: A planar bipartite graph G along with its dual alternating dimap H in dashed
lines. See Figure 1 for the associated special alternating link LG.

4 The Alexander polynomial of an Eulerian digraph

Recall that an arborescence rooted at r is a spanning tree such that for every v ∈ V(H),
there is a unique directed path from r to v. An oriented spanning tree rooted at
r ∈ V(H) is a spanning tree of H such that for each vertex v ∈ V(H), there is a unique
directed path from v to r. A k-spanning tree rooted at r ∈ V(H) is a spanning tree of
H such that reversing the orientation of exactly k of its edges yields an oriented span-
ning tree rooted at r. With this terminology, {|V(H)| − 1}-spanning trees are precisely
arborescences, and 0-spanning trees coincide with oriented spanning trees.

Definition 4.1 ([21, Definition 1]). Denote by ck(H, r) the number of k-spanning trees rooted
at r in the Eulerian digraph H. The Alexander polynomial of an Eulerian digraph H (and
arbitrary r ∈ V(H)) is

PH(t) =
∞

∑
k=0

ck(H, r)tk. (4.1)

To understand why this name is justified, recall that the planar dual of a planar
bipartite graph G is a planar Eulerian graph H. Note also that a planar Eulerian graph
H is readily orientable to become an alternating dimap if we consistently keep one color
class of the bipartition of vertices of G to the left and the other to the right (see Figure 3).
Recall also from Section 2.2 that any special alternating link is associated to a planar
bipartite graph. Given a planar bipartite graph G, we may construct a unique positive
special alternating link LG from it so that the projection of LG is the medial graph M(G)
of G.

The following theorem of Murasugi and Stoimenow then explains the naming in
Definition 4.1:
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Theorem 4.2 ([21, Theorem 2]). For an alternating dimap H, the polynomial PH(t) equals the
Alexander polynomial ∆LG(−t) for the special alternating link LG associated to the planar dual
G of H.

The present authors main contribution in this section is [11, Theorem 1.7] below:

Theorem 1.3. Let H be an Eulerian digraph, and let M be the oriented graphic matroid associated
to H. Let AH be a totally unimodular matrix representing M∗, the oriented dual of M, and let
m be the size of a basis of M∗. Then,

PH(t) = ∑
A′ has property *

Vol(QA′)(t − 1)#col(A′)−m, (4.2)

where a matrix A′ has property * if it is obtained by deleting a set of columns from AH without
decreasing the rank of the matrix, and QA′ denotes the root polytope of A′.

To make sense of the above theorem, we need to review the work of Tóthmérész [24]
on root polytopes of co-Eulerian matroids, which we do in the next subsection.

4.1 Root polytopes of oriented co-Eulerian matroids

In this section, we follow parts of Tóthmérész’s [24] exposition and refer the reader there
for more details.

A matroid M is said to be regular if it is representable by a totally unimodular
matrix, i.e., a matrix whose subdeterminants are all either 1, 0, or −1. Every real-
representable matroid is naturally an oriented matroid. In particular, we orient a reg-
ular matroid M by assigning the following bipartitions to its circuits. Let A denote
a totally unimodular matrix representing M and {a1, . . . , am} its columns. For each
circuit C = {i1, . . . , ij} of a regular matroid with a corresponding linear dependence

relation ∑
j
k=1 λkaik = 0 of columns of A, we may partition its elements into two sets:

C+ = {ik | λk > 0} and C− = {ik | λk < 0}. Scaling the expression ∑
j
k=1 λkaik by a

nonzero constant potentially interchanges C+ and C−, but the partition of C into these
two sets is well-defined up to this exchange.

Two regular oriented matroids M1 and M2 on groundset E have mutually orthogonal
signed circuits if for each pair of signed circuits C1 = C1

+ ⊔ C1
− and C2 = C2

+ ⊔ C2
−

of M1 and M2, respectively, either C1 ∩ C2 = ∅, or (C1
+ ∩ C2

+) ∪ (C1
− ∩ C2

−) and
(C1

+ ∩C2
−)∪ (C1

− ∩C2
+) are both nonempty. Every regular oriented matroid M admits

a unique dual oriented matroid M∗ such that M and M∗ have mutually orthogonal
signed circuits.

Definition 4.3 ([24, Definition 3.4]). A regular oriented matroid is co-Eulerian if for each
circuit C, |C+| = |C−|.
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Lemma 4.4 ([24, Claim 3.5]). For an Eulerian digraph H, the oriented dual M∗ of the graphic
matroid of H is a co-Eulerian regular oriented matroid.

With this foundation, Tóthmérész introduces the following definition and results:

Definition 4.5 ([24, Definition 3.1]). Let A be a totally unimodular matrix with columns
a1, . . . , am. The root polytope of A is the convex hull QA := conv(a1, . . . , am).

Tóthmérész demonstrates that for any pair of totally unimodular matrices A and Ã
representing the same regular oriented matroid M, there is a lattice point-preserving
linear bijection between t · QA and t · QÃ for any t ∈ Z. In this way, the definition of
a root polytope can be extended to regular oriented matroids. The set of arborescences
of an Eulerian digraph yields a triangulation of the root polytope of the dual matroid.
Recall that an arborescence of H rooted at r ∈ V(H) is a directed subgraph A such that
for each other vertex v of H, there is a unique directed path in A from r to v.

Proposition 4.6 ([24, Proposition 3.8]). For a regular oriented matroid represented by a totally
unimodular matrix A and a basis B = {i1, . . . , ij}, the simplex ∆B := conv(ai1 , . . . , aij) is
unimodular. That is, its normalized volume is 1.

Theorem 4.7 ([24, Theorem 4.1]). Let H be an Eulerian digraph, and let AH be any totally
unimodular matrix representing the oriented dual of the oriented graphic matroid of H. Let
r ∈ V(H) and H = {B ⊂ E(H) | E(H) − B is an arborescence of H rooted at r}. Then
{∆B | B ∈ H} is a triangulation of QAH .

Corollary 4.8 ([24]). Let H be an Eulerian digraph, and let AH be any totally unimodular
matrix representing the oriented dual of the oriented graphic matroid of H. Let r ∈ V(H). Then,

Vol(QAH) = c0(H, r).

4.2 Proof Sketch of Theorem 1.3

By an inclusion-exclusion argument, the authors of the present paper proved [11, Theo-
rem 2.3], which states:

Theorem 4.9. Let H be an Eulerian digraph, and fix any r ∈ V(H). Then,

ck(H, r) =
k

∑
i=0

(−1)i ∑
acyclic E′⊂E(H)

|E′|=k−i

(
|V(H)| − 1 − (k − i)

i

)
c0(H/E′, r).

The following result–[11, Corollary 3.7] in the present authors’ prior work–is imme-
diately proven with the above result and Corollary 4.8:
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Corollary 4.10. For an Eulerian digraph H, let AH denote a totally unimodular matrix repre-
senting the oriented dual of the graphic matroid of H. Then,

ck(H, r) =
k

∑
i=0

(−1)i ∑
acyclic E′⊂E(H)

|E′|=k−i

(
|V(H)| − 1 − (k − i)

i

)
Vol(QAH/E′

).

Both Theorem 1.3 and the following corollary–[11, Corollary 1.8] in the present au-
thors’ work–are closely related to Li and Postnikov’s [18] beautiful work on slicing zono-
topes in which they explicitly consider the right-hand side of (4.3).

Corollary 4.11. The Alexander polynomial ∆LG(−t) of the special alternating link associated to
the planar bipartite graph G can be expressed as

∆LG(−t) = ∑
G′⊂G

G′ connected

Vol(QG′)(t − 1)|E(G
′)|−|V(G)|+1. (4.3)
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